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A simple but energy-efficient HVAC control synthesis for data centers

Michel Fliess1,3, Cédric Join2,3, Maria Bekcheva4, Alireza Moradi4, Hugues Mounier5

Abstract— The air conditioning management of data centers,
a key question with respect to energy saving, is here tackled via
the recent model-free control synthesis. Mathematical modeling
becomes useless in this approach. The tuning of the corre-
sponding intelligent proportional controller is straightforward.
Computer simulations show excellent tracking performances
in various realistic situations, like CPU load or temperature
changes.

Key words— Data centers, cloud computing, HVAC, PID,
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I. INTRODUCTION

Two exciting advances in cloud computing [2], a fast
growing industry in information technology, have been re-
cently derived by the authors:

• improving resource elasticity [7] thanks to model-free
control in the sense of [17],

• workload forecasting [18] via time series analysis as in
[20].

Data centers, which are fundamental in this context, consume
a huge amount of electrical energy [8], [27], [44]. Almost
half of it is devoted to their cooling. The aim of this
communication is to show that model-free control might
provide also a most efficient control tool with respect to air
conditioning.

Remark 1: 1) HVAC, i.e., heating, ventilation, and air
conditioning, which is defined by Wikipedia as “the
technology of indoor and vehicular environmental
comfort” (see, e.g., [29]), plays therefore a key rôle
(see, e.g., [11], [28]). The corresponding numbers of
publications and patents are increasing rapidly.

2) From an applied control engineering perspective,
on/off and PID controllers seem to be widely used (see,
e.g., [9], [14], [15], [32], [37], [40], and the references
therein). To a large extent this situation is explained by
their conceptual simplicity. Nevertheless their tuning,
which is too often a quagmire, might lead to poor
performances.
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3) Most of the model-based approaches rest on various
optimization techniques (see, e.g., [6], [12], [26], [34],
[38], [43]). Let us add that predictive control (see, e.g.,
[13], [16], [31], [35], [36], [41], [45]) is essential in
that respect. Deriving sound mathematical modeling
necessitates complex parameter identification and/or
machine learning procedures in order to get convincing
results (see, e.g., [21]).

Remark 2: Besides excellent existing results on the HVAC
of greenhouses [30] and buildings [1], [5], [33], [39], model-
free control has already given birth to many successful
concrete applications (see the references in [17] and [4], [22])
including some patents.

Our paper is organized as follows. Model-free control
is summarized in Section II. A simplified mathematical
modeling via ordinary differential equations is sketched in
Section III for the purpose of computer simulations. The
performances of our control synthesis are presented and
discussed in Section IV. Section V is devoted to some
concluding remarks.

II. WHAT IS MODEL-FREE CONTROL?1

A. Generalities

Replace the unknown or poorly known SISO system by
ultra-local model

ẏ = F + αu (1)

where
• u and y are the input (control) and output variables,
• the derivation order of y is 1, like in most concrete

situations,
• α ∈ R is chosen by the practitioner such that αu and ẏ

are of the same magnitude.
The following explanations on F might be useful:

• F subsumes the knowledge of any model uncertainties
and disturbances,

• F is estimated via the measures of u and y.

B. Intelligent controllers

The loop is closed by an intelligent proportional con-
troller, or iP,

u = − F̂ − ẏ
∗ +KP e

α
(2)

where
• y? is the reference trajectory,
• e = y − y? is the tracking error,
• KP is the usual tuning gain.

1See [17] for more details.



Combining equations (1) and (2) yields:

ė+KP e = 0

where F does not appear anymore. Local exponential stabil-
ity is ensured if Kp > 0:

• The gain KP is thus easily tuned.
• Robustness with respect to different types of distur-

bances and model uncertainties is achieved.
Remark 3: See [17] for a discussion about the equivalence

between the iP (2) and proportional-integral controllers (PIs).

C. Real-time estimation of F

The term F in Equation (1) is estimated in real-time
according to recent algebraic identification techniques [19].
It may be assumed to be “well” approximated by a piecewise
constant function F̂ (see, e.g., [10]). Rewrite then Equation
(1) in the operational domain (see, e.g., [42]):

sY =
Φ

s
+ αU + y(0) (3)

where Φ is a constant. We get rid of the initial condition
y(0) by multiplying both sides on the left by d

ds :

Y + s
dY

ds
= − Φ

s2
+ α

dU

ds
(4)

Noise attenuation is achieved by multiplying both sides on
the left by s−2. It yields in the time domain the real-time
estimate, thanks to the equivalence between d

ds and the
multiplication by −t,

F̂ (t) = − 6

τ3

∫ t

t−τ
[(τ − 2σ)y(σ) + ασ(τ − σ)u(σ)] dσ

(5)
where τ > 0 might be quite “small.”

III. A SIMPLE MATHEMATICAL MODEL FOR
COMPUTER SIMULATIONS

Our model, which is essential for computer simulations,
is to a great extent borrowed from [13]. Figures 1-(a) and
1-(b) represent respectively the server air flow circulation
and the simplified data center. Figure 2 is sketching the
controller and permits to define various important variables.
Basic thermodynamic laws lead to the differential equations



ṪIT = α11PIT − α12(TIT − TRack)

ṪRack = α21(TcAisle − TRack) + α22(TIT − TRack)

ṪcAisle = α31(TAir,in − TcAisle) + α32(TcAisle − TcWall)

ṪcWall = α41(Tout − TcWall) + α42(TcWall − TcAisle)

ṪhAisle = α51(TRack − ThAisle) + α52(ThAisle − ThWall)

ṪhWall = α61(Tout − ThWall) + α62(ThWall − ThAisle)
(6)

where
• PIT is the input power which corresponds to the CPU

load,
• TAir,in (resp. TIT) is the control (resp. output) variable,
• αij are suitable parameters.

From a classic control-theoretic viewpoint,
• Equations (6) yields a system (Σ) with a single input
u = TAir,in and a single output y = TIT (see also Figure
2),

• PIT may be viewed as an external disturbance.

IV. SOME COMPUTER SIMULATIONS

A. Basic facts

The following values of the parameters are inspired by
[13]: α11 = 2.7248, α12 = −32.6975, α21 = 4.2997.103,
α22 = 2.9632.104, α31 = 537.4670, α32 = 131.6406, α41 =
514.2857, α42 = 153.5354, α51 = 335.9169, α52 = 7.7166,
α61 = 12, α62 = 9.6000. Following again [13], the output y
of System (Σ) is assumed to track the setpoint 20.9◦ (degree
Celsius). In Formulae (1)-(2), set α = 10, Kp = 1. The
sampling period is 1 min.

Remark 4: Note that forecasting results via time series
were used in [13]. They become pointless here.

B. Four preliminary scenarios

1) Sudden CPU load change: Figure 3-(a) exhibits a
sudden change of the CPU load PIT. Figure 3-(d) shows
that the setpoint is well tracked.

2) A more realistic CPU load change: It is given by lna-
gral, i.e., the Company to which two authors, M. Bekcheva
and A. Moradi, belong, and is depicted in Figure 4-(a).
Figures 4-(d) confirms a great tracking.

3) Sudden temperature change: Figure 5-(b) exhibits a
sudden temperature of the data center temperature Tout. Here
again Figure 5-(d) depicts an excellent tracking.

4) Another reference trajectory: Some situations may ne-
cessitate, contrarily to Section IV-A, to replace the setpoint,
i.e., a constant reference trajectory, by a more general one. As
demonstrated by Figure 6, the tracking remains exceptional.

C. Sudden model change

Represent a sudden model change at time t = 2.7 h by
multiplying α21, α31, α51 in Equations (6) by 0.5 and 1.5.2

If those changes would occur at time t = 0, they should
be interpreted as a model mismatch. The variables PIT and
Tout remain unaltered and constant. Although the model-
free control synthesis of Section IV-A remains unchanged,
Figures 7 et 8 display excellent performances.

V. CONCLUSION

The power usage effectiveness, or PUE, of data cen-
ters, although heavily criticized [24], seems to be the only
measure for checking the energy saving quality today. It
would however be meaningless to try applying this indicator
here, in the context of such a paper. Section IV, which
demonstrates that the tracking works well in rather stringent
conditions, may convince the reader that our approach should
be nevertheless quite efficient with respect to energy saving.
The most important for future developments is of course the

2In accordance with [13], those variations may be justified by the change
of a coefficient called κ.
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Fig. 1: A simplified data center
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Fig. 2: Control scheme

application of our method to real data. A positive outcome
would lead to a critical simplification of the HVAC control
management of data centers:

• irrelevance of complex and time-consuming mathemat-
ical modeling, which is inherently uncertain,

• forthright tuning.
Promising experiments with a greenhouse [30] and a building
[33] comfort this hope. It would confirm thanks also to [7]
that model-free control should become important in computer
science (compare with [3], [23], [25]).
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Fig. 3: Sudden CPU load change
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Fig. 4: Realistic CPU load change
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