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PARTIAL REGULARITY IN TIME

FOR THE SPACE HOMOGENEOUS LANDAU EQUATION

WITH COULOMB POTENTIAL

FRANÇOIS GOLSE, MARIA PIA GUALDANI, CYRIL IMBERT, AND ALEXIS VASSEUR

Abstract. We prove that the set of singular times for weak solutions of the
space homogeneous Landau equation with Coulomb potential constructed as
in [C. Villani, Arch. Rational Mech. Anal. 143 (1998), 273–307] has Hausdorff

dimension at most 1

2
.

1. Introduction

We are concerned with the regularity of weak solutions f ≡ f(t, v) ≥ 0 a.e. to the
space homogeneous Landau equation with Coulomb interaction potential

(1) ∂tf(t, v) = divv ∫
R3

a(v−w)(f(t,w)∇vf(t, v)−f(t, v)∇wf(t,w))dw , v ∈R3 ,

where the collision kernel a is the matrix field

a(z) = ∇2∣z∣ = Π(z)∣z∣ , with Π(z) ∶= I − ( z∣z∣)
⊗2
.

(In other words, Π(z) is the orthogonal projection on (Rz)⊥ for all z ∈ R3 ∖ {0}.)
This equation is used in the description of collisions between charged particles in
plasma physics (see [24] or §41 in [27]).

Equivalently, the Landau equation with Coulomb potential takes the form

(2) ∂tf(t, v) = trace(A[f](t, v)∇2
vf(t, v)) + 8πf(t, v)2

with A[f](t, ⋅) ∶= a ⋆ f(t, ⋅).
Villani has proved the global existence of a special kind of weak solutions of

the Cauchy problem for (1), known as “H-solutions”, for all initial data with finite
mass, energy and entropy (Theorem 4 (i) in [35]). Whether H-solutions of (1) with
smooth initial data remain smooth for all times or blow up in finite time is one
of the outstanding problems in the mathematical analysis of kinetic models: see
§1.3 (2) in chapter 5 of Villani’s monograph [36]. The form (2) of the Landau
equation suggests that blow-up might occur in finite time, by analogy with the
semilinear heat equation ∂tu(t, x) = ∆xu(t, x) + u(t, x)2: see the last statement in
Theorem 1 of [37] (for nonnegative solutions of the initial boundary value problem
on a smooth bounded domain of R3 with homogeneous Dirichlet condition at the
boundary), or section 5.4 in [7]. On the other hand, global existence of classical,
radially symmetric and nonincresing (in the velocity variable) solutions has been
established for the equation ∂tu(t, x) = ((−∆x)−1u)(t, x)∆xu(t, x)+αu(t, x)2 which
can be seen as an “isotropic” variant of (2) (i.e. with the diffusion matrix A[f]
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replaced with the diffusion coefficient 4π((−∆v)−1f) and the constant 8π replaced
with the (smaller) coefficient 4πα), for all α ∈ [0, 74

74
) in [12, 23], then for α = 1 in

[16].
These arguments being somewhat inconclusive, the recent research on the Cauchy

problem for (1) has produced mostly conditional results — with one notable ex-
ception, which we shall discuss in more detail below. For instance, the uniqueness
of bounded solutions of (1) has been proved in [13]; the regularity of radial Lp

solutions with p > 3
2
has been proved in [16] (see also [17]); the case of nonradial Lp

solutions with p > 3
2
and moments in v of order larger than 8 is treated in [30], while

the large time behavior of H-solutions of (1) is discussed in [5]. Of course, the exis-
tence and uniqueness theory for the space inhomogeneous Landau equation is even
harder, and most of the existing results on that equation bear on near-Maxwellian
equilibrium global solutions [18, 6, 8], apart from the very general weak stability
result in [28]. There are also various local existence and uniqueness results, as well
as smoothing estimates for solutions of the space inhomogeneous Landau equation
under the assumption of locally (in time and space) bounded moments in v: see
[19, 21, 20] (notice that [21, 20] require only that the distribution function has
bounded moments in v of order larger than 9/2). Since the present paper is focused
on the Coulomb case, which is the most interesting on physical grounds, we have
omitted the rather large literature on the generalizations of the Landau equation
where the collision kernel a is replaced with ∣z∣γ+2Π(z) with γ > −3.

Perhaps the most remarkable recent contribution to the mathematical theory of
(1) is the following result by Desvillettes [10]: any (nonnegative) H-solution of (1)
on [0, T ] ×R3 with finite mass, energy and entropy satisfies the bound

(3) ∫
T

0
∫
R3

∣∇v√f(t, v)∣(1 + ∣v∣)3 dvdt <∞ ;

(see Theorem 1 in [10]).This bound implies in particular the propagation of mo-
ments in v of arbitrary order for such solutions of (1) (see Proposition 2 in [10]).
Both this bound and the propagation of moments are of key importance in the
present work.

Our main result is the following partial regularity statement, which will be pre-
sented and discussed in detail in the next section.

Main Theorem. The set of singular times of any H-solution of (1) constructed

by the approximation scheme described in [35] has Hausdorff dimension at most 1
2
.

2. Main Results

The prototype of all partial regularity results in partial differential equations is
Leray’s observation [25] that the set of singular times of any Leray solution to the
Navier-Stokes equations for incompressible fluid dynamics in three space dimensions
has Hausdorff dimension at most 1

2
(see §34 in [25], especially, formula (6.5)).

Leray’s remark was later considerably refined by Scheffer [29], and by Caffarelli,
Kohn and Nirenberg [4] (see also [32, 26, 34])

One key ingredient in Leray’s observation is the energy inequality satisfied by
Leray solutions to the Navier-Stokes equations. Our first task is therefore to estab-
lish an analogous inequality for solutions to (1). Henceforth we denote by Lpk(R3)
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the set of measurable g ≡ g(v) defined a.e. on R3 such that

∥g∥Lp

k
(R3) ∶= (∫

R3

(1 + ∣v∣2)k/2∣g(v)∣pdv)1/p <∞ .

We first recall that an H-solution to (1) on the time interval [0, T ) with initial
data fin ≡ fin(v) ≥ 0 a.e. is an element f ∈ C([0, T );D′(R3))∩L1((0, T );L1

−1(R3))
such that
(4)

f(t, v) ≥ 0 for a.e. v ∈R3 , and ∫
R3

⎛⎜⎝
1
v∣v∣2
⎞⎟⎠ f(t, v)dv = ∫R3

⎛⎜⎝
1
v∣v∣2
⎞⎟⎠fin(t, v)dv

while

(5) ∫
R3

f(t, v) ln f(t, v)dv ≤ ∫
R3

fin(v) ln fin(v)dv
for a.e. t ≥ 0, and

∫
R3

fin(v)φ(0, v)dv +∫ T

0
∫
R3

f(t, v)∂tφ(t, v)dv
=∫

T

0
∫
R3

√
f(t,v)f(t,w)
∣v−w∣ (∇φ(t, v)−∇φ(t,w)) ⋅Π(v−w)(∇v−∇w)√ f(t,v)f(t,w)

∣v−w∣ dvdw

for each φ ∈ C1
c ([0, T ) ×R3). Of course, the notion of H-solution is based on the

observation that classical solutions of the Landau equation with appropriate decay
as ∣v∣→ +∞ satisfy
(6)

d

dt
H(f)(t)

= − 1
2∬

R3×R3

f(t, v)f(t,w)∣v −w∣ Π(v −w) ∶ (∇v ln f(t, v) −∇w lnf(t,w))⊗2dvdw ≤ 0 ,
where

H(f)(t) ∶= ∫
R3

f(t, v) ln f(t, v)dv .
The notation H(f) to designate this quantity comes from the “Boltzmann H The-
orem”, which is the analogous differential inequality for the Boltzmann equation in
the kinetic theory of gases. The positivity of the entropy production − d

dt
H(f)(t)

comes from the symmetries in the Landau collision integral (i.e. the right hand side
of (1)), which are hidden in the nonconservative parabolic form (2).

Definition 2.1. A suitable solution of (1) on [0, T ) ×R3 is an H-solution which

satisfies, for some negligible set N ⊂ (0, T ), some q ∈ (1,2) and some CE > 0, the
truncated entropy inequality

(7)
H+(f(t2, ⋅)∣κ) +C′E ∫ t2

t1

(∫
R3

∣∇v(f(t, v)1/q − κ1/q)+∣qdv)2/q dt
≤H+(f(t1, ⋅)∣κ) + 2κ∫ t2

t1
∫
R3

(f(t, v) − κ)+dvdt
for all t1 < t2 ∈ [0, T ) ∖N and all κ ≥ 1. For each measurable g ≡ g(v) ≥ 0 a.e. on

R3, we denote

H+(g∣κ) ∶= ∫
R3

κh+ (g(v)
κ
)dv , with h+(z) ∶= z(ln z)+ − (z − 1)+ .
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The term “suitable solution” is used here by analogy with the notion of suitable
weak solutions of the Navier-Stokes equations defined in [4], which satisfy a local
(in space) variant of the Leray energy inequality. Indeed, one can think of (7) as a
variant of the entropy inequality for (1) localized in the set of values of the solution.

Our first result is that the approximation scheme used in [35] to construct an
H-solution of the Cauchy problem for (1) converges to a suitable solution of (1).

Proposition 2.2. Let fin ∈ L1(R3) satisfy fin ≥ 0 a.e. on R3 and

(8) ∫
R3

(1 + ∣v∣k + ∣ ln fin(v)∣)fin(v)dv <∞ for some k > 3 .
Then, there exists an H-solution of (1) with initial data fin and a negligible set

N ⊂ R∗+ such that f is a suitable solution of (1) for each T ≥ 0 satisfying (7) with

q ∶= 2k
k+3 and C′E ≡ C′E[T, q, fin] > 0 for all t1 < t2 ∈ [0, T ) ∖N and all κ ≥ 1.

The proof of this proposition is based on the analysis in [35], with the following
additional observations
(a) the truncated entropy −H+(f ∣κ) is not a increasing function of time as the
original entropy −H(f)(t), but combining the symmetries of the collision inte-
gral and the fact that div(div a) = ∆2∣z∣ = −4πδ0 shows that the negative part of
the truncated entropy production involves the depleted nonlinearity κ(f − κ)+ =
min(f, κ)(f − κ)+ instead of the full nonlinearity f2(ln(f/κ))+ which the noncon-
servative form (2) seems to suggest;
(b) the Desvillettes argument leading to the inequality (3) can be modified to handle
the positive part of the truncated entropy production, and
(c) the Desvillettes propagation of moments argument can be used to purge the
positive part of the truncated entropy production from the weight (1+ ∣v∣)−3 at the
expense of introducing the exponent q < 2 in the inequality (7).

The notion of relative entropy of f to a MaxwellianMρ,u,θ

−∫
R3

(f(v) ln( f(v)
Mρ,u,θ(v)) − f(v) +Mρ,u,θ(v))dv

with

Mρ,u,θ(v) ∶= ρ(2πθ)3/2 e−∣v−u∣2/2θ
for some ρ, θ > 0 and u ∈ R3 is used traditionally in kinetic theory to measure the
distance of f toMρ,u,θ (see for instance section 3 in [2]). The term −H+(f/κ) can
be thought of as the truncated variant of the relative entropy −H(f ∣M(2πθ)3/2κ,0,θ)
in the large temperature limit θ → +∞; its time derivative benefits therefore from
the same cancellations which lead to the nonnegative entropy production term
in (6), up to the lower order perturbation term due to the truncation, which lead
ultimately to the depleted nonlinearity on the right hand side of (7). The truncated
entropy −H(f ∣κ) is therefore the best imaginable tool for applying the Stampacchia
truncation method to the Landau equation (1) without loosing the symmetries of
the Landau collision integral. This is precisely the reason why the truncated entropy
has been introduced in [15] to handle a class of reaction-diffusion systems which is
very close to a kinetic equation (in the discrete velocity setting). In particular, the
inequality (7) is similar to Lemma 3.1 in [15] — notice however the Remark 3.2
in [15] which states that extensions of these tools outside of the discrete velocity
setting is far from straightforward.
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Next we study the occurence of blow-up times for suitable solutions of (1). The
set of singular times for a suitable solution of (1) is defined by analogy with §33-34
in [25].

Definition 2.3. A real number τ > 0 is a regular time for an H-solution f of

the Landau equation (1) on [0,+∞) × R3 if there exists ǫ ∈ (0, τ) such that f ∈
L∞((τ − ǫ, τ) ×R3). A real number τ > 0 is a singular time for f if it is not a

regular time for f . The set of singular times for f in the interval I ⊂ (0,+∞) is
denoted by S[f, I].

Our main result is the following partial regularity statement on suitable solutions
of the Landau equation (1).

Theorem 2.4. Let f be a suitable solution to the Landau equation on [0, T )×R3

for all T > 0 , with initial data fin satisfying the condition

∫
R3

(1 + ∣v∣k + ∣ ln fin(v)∣)fin(v)dv <∞ for all k > 3 .
Then the set S[f, (0,+∞)] of singular positive times for f satisfies

Hausdorff dim S[f, (0,+∞)] ≤ 1
2
.

Our approach to Theorem 2.4 departs from the general method for proving par-
tial regularity results outlined in section 1 of [4]. First, we do not use any dimension
analysis similar to formula (1.9) of [4] on solutions of the Landau equation. One
easily checks that if f is a classical solution of (1), then

(9) fλ,µ(t, v) ∶= λf(λt,µv)
is a classical solution of (1). But although the Landau equation (1) has a two-
parameter family of invariant scaling transformations (richer than the single-para-
meter family of invariant scaling transformations of the Navier-Stokes equations),
the three conserved quantities in (4) and the entropy −H(f)(t) are not simultane-
ously preserved by any one of these transformations (except for λ = µ = 1). Within
this family of scaling transformations, we retain only the case

(10) λ = µγ with γ = 5q − 6

2q − 2

which leaves the inequality (7) invariant (upon transforming κ into λκ). Notice that
this scaling transformation depends on the Lebesgue exponent q, which depends
itself on the decay in v of fin through (8). The “optimal” scaling corresponds to
the limit case k →∞, i.e. to q → 2 and therefore to γ → 2 in (10). This “optimal”
scaling is exactly the same as the invariant scaling for the squared velocity field
in the Navier-Stokes equations, which explains why the bound on the Hausdorff
dimension of the set of singular times in both equations is the same. However, the
“optimal” scaling γ = 2 is only a limit case and cannot be used directly on (1), at
variance with the case of the Navier-Stokes equations.

A first step towards partial regularity is to prove that any suitable solution of
the Landau equation (1) whose truncated entropy has small enough L1 norm on
some time interval is bounded on a smaller time interval.

Proposition 2.5. Let f be a suitable solution to the Landau equation (1) on [0,1]
satisfying (7) for some negligible set N ⊂ (0,1], some q ∈ ( 6

5
,2), and some C′E > 0.
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There exists η0 ≡ η0[q,C′E] > 0 such that

∫
1

1/8
H+(f(t, ⋅)∣12)dt < η0 Ô⇒ f(t, v) ≤ 2 for a.e. (t, v) ∈ [1

2
,1] ×R3 .

This proposition is proved by using the parabolic variant of the De Giorgi
method, following the analysis in section 3 of [15]. However, the proof of this
result diverges from the classical De Giorgi method in at least one important step.
While the key idea in De Giorgi’s solution [9] of Hilbert’s 19th problem is to con-
sider the equations satisfied by the partial derivatives of the extremal as a linear
elliptic equations with bounded coefficients, our proof of Proposition 2.5 is based
on the truncated entropy inequality which makes critical use of the symmetries of
the right hand side of (1). It seems very unclear that Proposition 2.5 could follow
from applying the De Giorgi strategy to the conservative form

(11) ∂tf(t, v) = divv(A[f](t, v)∇vf(t, v) − f(t, v)divv A[f][t, v))
of the Landau equation without using cancellations suggested by the integral form
(1) of that equation. For the same reason, the De Giorgi method is used in the
present paper in a way that differs from earlier applications of the same method
to other kinetic equations [14, 22]. Notice that the restriction q > 6

5
comes from

the Sobolev embedding used in the nonlinearization procedure in the De Giorgi
method.

The key result leading to partial regularity is the following proposition involving
only the dissipation term in (7), by analogy with the argument in §34 of [25], or
Proposition 2 of [4] for the Navier-Stokes equations.

Proposition 2.6. Let f be a suitable solution to the Landau equation (1) on [0,1]
satisfying (7) for some negligible set N ⊂ [0,1], some q ∈ ( 4

3
,2), and some C′E > 0.

There exists η1 ≡ η1[q,C′E] > 0 and δ1 ∈ (0,1) such that

lim
ǫ→0+

ǫγ−3∫
1

1−ǫγ
(∫

R3

∣∇V (f(T,V )1/q − ǫ−γ/q)+∣qdV )2/q dT < η1
Ô⇒ f ∈ L∞((1 − δ1,1) ×R3) ,

with γ ∶= 5q−6
2q−2 .

The further restriction q > 4
3
is chose to arrive at the two-level iteration inequality

(30), which is one of the key ingredients in the proof of Prooposition 2.6.
Once Proposition 2.6 is proved, the proof of Theorem 2.4 follows by a Vitali

covering argument as in section 6 of [4].
The idea of using the De Giorgi method to prove partial regularity in time of

suitable solutions of (1) comes from [34], where the partial regularity result in [4]
for the Navier-Stokes equations is recast in terms of the De Giorgi arguments.

The outline of the paper is as follows: the existence proof of suitable solutions
(Proposition 2.2) occupies section 3. Then, section 4 contains the proof of Propo-
sition 2.5, while section 5 gives the proof of Proposition 2.6. Finally, the proof of
the main theorem (Theorem 2.4) is given in section 6.

3. Existence of Suitable Solutions

3.1. Proof of Proposition 2.2. The argument is split in several steps, some of
which are already used in the construction of a H-solution in [35], but need to be
recalled for the sake of clarity.
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Step 1: Truncated and regularized initial data. For each integer n ≥ 1, set
ξn(v) = ξ( 1nv) , ζn(v) = n3ξ(nv)/∥ξ∥L1(R3) ,

where

ξ ∈ C∞(R3) , 1∣v∣≤1 ≤ ξ(v) ≤ 1∣v∣≤2 .
Set

fnin ∶= ζn ⋆ (ξnfin) , f̃nin(v) ∶= fnin(v) + 1

n
e−∣v∣

2/2 .

Obviously

∫
R3

fnin(v)dv = ∫
R3

ξn(v)fnin(v)dv ≤ ∫
R3

fin(v)dv ,
and

∫
R3

∣v∣2fnin(v)dv ≤∫
R3

(∫
R3

ζn(w)∣v −w∣2dw) fin(v)dv
≤2∫

R3

(∫
R3

ζn(w)(∣v∣2 + ∣w∣2)dw) fin(v)dv
≤∫

R3

(2∣v∣2 +O(1/n2))fin(v)dv .
Hence

∫
R3

(1 + ∣v∣2)f̃nin(v)dv ≤ ∫
R3

(1 + 2∣v∣2 +O(1/n))fin(v)dv .
Likewise since the function z ↦ z(ln z)+ is nondecreasing and convex

ζn ⋆ (ξnfin)(v)(ln(ζn ⋆ (ξnfin)(v))+ ≤ ζn ⋆ (ξnfin)(v)(ln(ξnfin)(v))+ ,
so that

∫
R3

fnin(v)(lnfnin(v))+dv ≤∫
R3

(ξnfin)(v)(ln(ξnfin)(v))+dv
≤∫

R3

fin(v)(ln fin(v))+dv <∞ .

Because of the elementary inequality1

(ln(a + b))+ ≤ (lna)+ + b for all a, b > 0 ,
one has

∫
R3

f̃nin(v)(ln f̃nin(v))+dv
≤ ∫

R3

fnin(v)(ln f̃nin(v))+dv + ∫
R3

1

n
e−∣v∣

2/2(ln f̃nin(v))+dv
≤ ∫

R3

fnin(v)((lnfnin(v))+ + 1
n
e−∣v∣

2/2)dv +∫
R3

1
n
e−∣v∣

2/2 ln(1 + f̃nin(v))dv
≤ ∫

R3

fnin(v)((lnfnin(v))+ + 2
n
e−∣v∣

2/2)dv
≤ ∫

R3

fnin(v)((lnfnin(v))+ + 2
n
)dv .

1Indeed

ln(a + b)+ − (lna)+ { = ln(1 + b/a) ≤ b/a ≤ b if a > 1 ,
≤ ln(1 + b) ≤ b if a ≤ 1 .
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Hence

∫
R3

(1 + ∣v∣2 + (ln f̃nin(v))+)f̃nin(v)dv
≤ ∫

R3

(1 + 2∣v∣2 + (ln fin(v))+ +O(1/n))fin(v)dv .
Step 2: Truncated and regularized Landau equation. Set

ψn(z) ∶= 1
8π

min( 1∣z∣ , n) , Π(z) ∶= (I − z⊗2∣z∣2 )
and

an(s) ∶= ψn(z)Π(z) ,
so that

div an(z) = 1
8π

min( 1∣z∣ , n)div (I − z
⊗2

∣z∣2 ) = − z

4π∣z∣31n∣z∣>1
and

div(div an)(z) = −div ( z

4π∣z∣31n∣z∣>1) = 1

4π∣z∣2 δ(∣z∣ − 1
n
) ≥ 0 .

Let fn ≡ fn(t, v) be the solution of the truncated and regularized Landau equa-
tion

∂tf
n(t, v) = 1

n
∆vf

n(t, v)
+ divv ∫

R3

ψn(∣v −w∣)Π(v −w)(∇v −∇w)(fn(t, v)fn(t,w))dw
fn∣

t=0
=f̃nin ,

The truncated and regularized Landau has a unique global smooth solution fn

satisfying

fn(t, v) ≥ Cn,T e−∣v∣2/2 > 0 , for all v ∈R3 and 0 ≤ t ≤ T ,
together with

∫
R3

fn(t, v)dv = ∫
R3

f̃nin(v)dv
∫
R3

∣v∣2fn(t, v)dv = ∫
R3

∣v∣2f̃nin(v)dv + 6
n
t∫

R3

f̃nin(v)dv ,
and the following variant of the H Theorem:
(12)

∫
R3

fn lnfn(t, v)dv +∫ t

0
Dψn
(fn(s, ⋅))ds + 4

n ∫
t

0
∫
R3

∣∇v√fn(s, v)∣2 dvds
= ∫

R3

f̃nin ln f̃
n
in(v)dv ≤ ∫

R3

f̃nin(ln f̃nin(v))+dv ,
with the notation

Dψ(g) ∶= 2∫
R6

ψ(∣v −w∣) ∣Π(∇v −∇w)√g(v)g(w)∣2 dvdw .
Let G ≡ G(v) be the centered, reduced Gaussian distribution

G(v) ∶= 1

(2π)3/2 e
−∣v∣2/2 .

Observe that

f ln f = (f ln(f/G) − f +G) − (f ln(1/G) − f +G) ,
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with (f ln(f/G) − f +G) ≥ 0
and

f ln(1/G) − f +G) = f( 1
2
∣v∣2 + 3

2
ln(2π) − 1) +G ≥ 0 ,

so that

f(f ln f)+ ≤ (f ln(f/G) − f +G) and f(lnf)− ≤ (f ln(1/G)− f +G) .
Hence (12) becomes

∫
R3

fn(lnfn(t, v))+dv +∫ t

0
Dψn
(fn(s, ⋅))ds + 4

n ∫
t

0
∫
R3

∣∇v√fn(s, v)∣2 dvds
≤ ∫

R3

f̃nin(ln f̃nin(v))+dv +∫
R3

(fn(t, v) ln(1/G(v)) − fn(t, v) +G(v))dv
= ∫

R3

f̃nin(ln f̃nin(v))+dv +∫
R3

fn(t, v)( 1
2
∣v∣2 + 3

2
ln(2π) − 1)dv + 1

= ∫
R3

f̃nin(ln f̃nin(v))+dv +∫
R3

f̃nin(v)( 12 ∣v∣2 + 6t
n
+ 3

2
ln(2π) − 1)dv + 1 .

In particular, one has

∫
R3

fn(lnfn(t, v))+dv ≤∫
R3

f̃nin(ln f̃nin(v))+dv
+∫

R3

f̃nin(v)( 12 ∣v∣2 + 6t
n
+ 3

2
ln(2π) − 1)dv + 1 ,

and

∫
t

0
Dψn
(fn(s, ⋅))ds + 4

n ∫
t

0
∫
R3

∣∇v√fn(s, v)∣2 dvds
≤ ∫

R3

f̃nin(ln f̃nin(v))+dv +∫
R3

f̃nin(v)( 12 ∣v∣2 + 6t
n
+ 3

2
ln(2π) − 1)dv + 1 .

In the limit as n→∞, one has

fn(t, ⋅)⇀f(t, ⋅) in L1(R3) uniformly in t ∈ [0, T ] for all T > 0 ,
where f is an H-solution of the Cauchy problem for (1) with initial data fin, ac-
cording to [35] on p. 297.
Step 3: A.e. pointwise convergence of fn. By Theorem 3 in [10], since ψn satisfies
the assumption used there with γ1 = −3 and K3 = 1

8π
, one has

∫
R3

∣∇v√fn(t, v)∣2(1 + ∣v∣)3 dv ≤ CD[t, ∥f̃nin∥L1

2
(R3), ∥f̃nin(ln f̃nin)+∥L1(R3)](1+Dψn

(fn(t, ⋅))) .
Hence

1

CD
∫

t

0
∫
R3

∣∇v√fn(s, v)∣2(1 + ∣v∣)3 dvds + 4
n ∫

t

0
∫
R3

∣∇v√fn(s, v)∣2 dvds
≤ ∫

R3

f̃nin(ln f̃nin(v))+dv +∫
R3

f̃nin(v)( 12 ∣v∣2 + 6t
n
+ 3

2
ln(2π) − 1)dv + 1 + t .

Next we apply Proposition 4 in [10]. Observe that

ψn(z) =min( 1∣z∣ , n)
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satisfies the assumption in Proposition 4 of [10] with γ1 = γ2 = −3 and δ = 2, and
with K1 =K2 =K3 = 1. By Lemma 3 of [10]

∫
R3

fn(t, v)3dv(1 + ∣v∣)9 ≤ C ⎛⎝∫R3

fn(t, v)dv +∫
R3

∣∇v√fn(t, v)∣2(1 + ∣v∣)3 dv
⎞⎠ ,

so that QT,3,−3(fn) ≤ CT for all T > 0. Then, for all T > 0 and all t ∈ [0, T ], one has
∫
R3

(1 + ∣v∣2)kf(t, v)dv ≤ C′D[T, ∥f̃nin∥L1

2k
(R3), ∥f̃nin(ln f̃nin)+∥L1(R3),QT,3,−3(fn)] .

By Hölder’s inequality, choosing p′ = 2/q (so that q ∈ (1,2))
∫
R3

∣∇vfn(t, v)1/q ∣qdv = ( 2q )q ∫
R3

fn(t, v)1/p∣∇v√fn(t, v)∣2/p′dv
= ( 2

q
)q ∫

R3

(1 + ∣v∣2)3/2p′fn(t, v)1/p(1 + ∣v∣2)−3/2p′ ∣∇v√fn(t, v)∣2/p′dv
≤ ( 2

q
)q (∫

R3

(1 + ∣v∣2)3p/2p′fn(t, v)dv)1/p ⎛⎝∫R3

∣∇v√fn(t, v)∣2(1 + ∣v∣2)3/2 dv
⎞⎠
1/p′

≤ ( 2
q
)qC′D[T, ∥f̃nin∥L1

3p−3(R3), ∥f̃nin(ln f̃nin)+∥L1(R3),QT,3,−3(fn)]1/p
×
⎛⎝∫R3

∣∇v√fn(t, v)∣2(1 + ∣v∣2)3/2 dv
⎞⎠
1/p′

.

Hence

(∫
R3

∣∇vfn(t, v)1/q ∣qdv)2/q
≤ ( 2

q
)2C′D[T, ∥f̃nin∥L1

3p−3(R3), ∥f̃nin(ln f̃nin)+∥L1(R3),QT,3,−3(fn)] 1

p−1

×∫
R3

∣∇v√fn(t, v)∣2(1 + ∣v∣2)3/2 dv

≤ ( 2
q
)2C′D[T, ∥f̃nin∥L1

3p−3(R3), ∥f̃nin(ln f̃nin)+∥L1(R3),QT,3,−3(fn)] 1

p−1

×CD[T, ∥f̃nin∥L1

2
(R3), ∥f̃nin(ln f̃nin)+∥L1(R3)](1 +Dψn

(fn(t, ⋅)) .
Therefore

CE ∫
t

0
(∫

R3

∣∇vfn(s, v)1/q ∣qdv)2/q ds + 4
n ∫

t

0
∫
R3

∣∇v√fn(s, v)∣2 dvds
≤ ∫

R3

f̃nin(ln f̃nin(v))+dv +∫
R3

f̃nin(v)( 12 ∣v∣2 + 6t
n
+ 3

2
ln(2π) − 1)dv + 1 + t ,

with

1

CE
∶= ( 2

q
)2C′D[T, ∥f̃nin∥L1

3p−3(R3), ∥f̃nin(ln f̃nin)+∥L1(R3),QT,3,−3(fn)] 1

p−1

×CD[T, ∥f̃nin∥L1

2
(R3), ∥f̃nin(ln f̃nin)+∥L1(R3)] .

Hence

(fn)1/q = O(1)L∞(0,T ;Lq(R3)) and ∇v(fn)1/q = O(1)L2(0,T ;Lq(R3)) .

In particular,

∇vf
n = q(fn)1/q′∇v(fn)1/q = O(1)L2(0,T ;L1(R3)) ,
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since

fn = O(1)L∞(R+;L1(R3)) .

On the other hand

∂t ∫
R3

fn(t, v)φ(v)dv = 1

n
∫
R3

∆φ(v)fn(t, v)dv
−∬

R6

ψn(v −w)√fn(t, v)fn(t,w)Π(v −w)(∇v −∇w)√fn(t, v)fn(t,w)
⋅(∇φ(v) −∇φ(w))dvdw

and

∣∬
R6

ψn(v −w)√fn(t, v)fn(t,w)Π(v −w)(∇v − ∇w)√fn(t, v)fn(t,w)
⋅(∇φ(v) −∇φ(w))dvdw∣ ≤ ∥∇2φ∥L∞∥fn(t, ⋅)∥L1(R3)

×(∬
R6

ψn(v −w) ∣Π(v −w)(∇v − ∇w)√fn(t, v)fn(t,w)∣2 dvdw)1/2 ,
for all φ ∈W 2,∞(R3), so that

∥∂t ∫
R3

fn(t, v)φ(v)dv∥
L2(0,T )

≤ C[T, ∥f̃nin∥L1

2
(R3), ∥f̃nin(ln f̃nin)+∥L1(R3)]∥∇2φ∥L∞(R3) .

In other words

fn = O(1)L2(0,T ;W−2,1(R3)) .

By the Aubin-Lions lemma (Lemmas 24.5 and 24.3 in [33]), fn is relatively compact
in L1

loc(R+ ×R3) and, possibly after extracting a subsequence of fn, one has

fn → f a.e. on [0,+∞) ×R3 .

Step 4: Truncated entropy inequality For κ > 0, multiplying both sides of the trun-
cated and regularized Landau equation by (ln(fn(t, v)/κ))+ and integrating in v

shows that

H+(fn(t2, ⋅)∣κ) + 1

n
∫

t2

t1
∫
R3

∣∇v(fn(t, v) − κ)+∣2
fn(t, v) dv

+ 1
2 ∫

t2

t1
∬

R6

an(v −w) ∶ (∇v (ln fn(t, v)
κ

)
+
−∇w (ln fn(t,w)

κ
)
+
)⊗2

×fn(t, v)fn(t,w)dvdwdt
= −∫

t2

t1
∬

R6

an(v −w) ∶ ∇v (ln fn(t, v)
κ

)
+
⊗∇w (ln fn(t,w)

κ
)
−

×fn(t, v)fn(t,w)dvdwdt +H+(fn(t1, ⋅)∣κ) .
Now

−∬
R6

an(v −w)fn(t, v)fn(t,w) ∶ ∇v (ln fn(t, v)
κ

)
+
⊗∇w (ln fn(t,w)

κ
)
−
dvdw

= −∬
R6

an(v −w) ∶ ∇v(fn(t, v) − κ)+ ⊗∇w((κ − fn(t,w))+ − κ)dvdw
=∬

R6

div(div an)(v −w)(fn(t, v) − κ)+(κ − (κ − fn(t,w))+)dvdw ,
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so that

−∬
R6

an(v −w)fn(t, v)fn(t,w) ∶ ∇v (ln fn(t, v)
κ

)
+
⊗∇w (ln fn(t,w)

κ
)
−
dvdw

=∬
R6

1

4π∣v −w∣2 δ(∣v −w∣ − ǫ)(fn(t, v) − κ)+(κ − (κ − fn(t,w))+)dvdw
≤ κ

4π∬R6

1∣v −w∣2 δ(∣v −w∣ − ǫ)(fn(t, v) − κ)+dvdw
= κ∫

R3

(fn(t, v) − κ)+dvdw .
In the end, for each κ > 0 and each t1, t2 such that 0 ≤ t1 ≤ t2 <∞, one has

(13)

H+(fn(t2, ⋅)∣κ) + 1

n
∫

t2

t1
∫
R3

∣∇v(fn(s, v) − κ)+∣2
fn(s, v) dvds

+ 1
2 ∫

t2

t1
∬

R6

bn(v−w) ∶ (∇v (ln fn(s, v)
κ

)
+
−∇w (ln fn(s,w)

κ
)
+
)⊗2

×fn(s, v)fn(s,w)dvdwds
≤ κ∫

t2

t1
∫
R3

(fn(s, v) − κ)+dvds +H+(fn(t1, ⋅)∣κ) .
Step 5: A local lower bound for the truncated entropy production We begin with
the following auxiliary result, whose proof is deferred until the end of the present
section. This is an extension of Theorem 3 in [10] to truncated entropies.

Lemma 3.1. The sequence fn constructed in step 1 of the present section satisfies

the inequality:

∫
R3

∣∇v√fn(t, v)∣2(1 + ∣v∣)3 1fn(t,v)>κdv

≤ C′′D∬
R6

fn(t,v)fn(t,w)
∣v−w∣3 Π(v −w) ∶ (∇v (ln fn(t,v)

κ
)
+
−∇w (ln fn(t,w)

κ
)
+
)⊗2 dvdw

+C′′D ∫
R3

(fn(t,w) − κ)+dw ,
where

C′′D ≡ C′′D[M0(fn)M2(t, fn)2,H(fin)]
∶=18C[M2(t, fn)2,H(fin)]2M2(t, fn)4M0(fn) (1+ 1√

eλ
)2max(4,4λ2, ( 3

2eλ
)3/2),

with

M0(fn) ∶= ∫
R3

fn(t, v)dv , M2(t, fn) ∶= ∫
R3

(1 + ∣v∣2)fn(t, v)dv ,
and where C′′[M2(t, fn)2,H(fin)] is the constant C(N, H̄) of Lemma 2 of [10].
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Applying Lemma 3.1 shows that

H+(fn(t2, ⋅)∣κ)+ 1
n
∫

t2

t1
∫
R3

∣∇v(fn(s, v) − κ)+∣2
fn(s, v) dvds

+
1

C′′D
∫

t2

t1
∫
R3

∣∇v√fn(t, v)∣2(1 + ∣v∣)3 1fn(s,v)≥κdvds

≤(1 + κ)∫ t2

t1
∫
R3

(fn(s, v) − κ)+dvds +H+(fn(t1, ⋅)∣κ) ,
for all t1, t2 such that 0 ≤ t1 < t2 < ∞. By Proposition 4 [10] recalled in step 3
above, for all T > 0 and all t ∈ [0, T ], one has

∫
R3

(1 + ∣v∣2)kf(t, v)dv ≤ C′D[T, ∥f̃nin∥L1

2k
(R3), ∥f̃nin(ln f̃nin)+∥L1(R3),QT,3,−3(fn)] .

By Hölder’s inequality, choosing p′ = 2/q (so that q ∈ (1,2))
∫
R3

∣∇v(fn(t, v)1/q − κ1/q)+∣qdv = ∫
R3

∣∇vfn(t, v)1/q ∣q1fn(t,v)≥κdv

= ( 2
q
)q ∫

R3

fn(t, v)1/p∣∇v√fn(t, v)∣2/p′1fn(t,v)≥κdv

= ( 2
q
)q ∫

R3

(1 + ∣v∣2)3/2p′fn(t, v)1/p(1 + ∣v∣2)−3/2p′ ∣∇v√fn(t, v)∣2/p′1fn(t,v)≥κdv

≤ ( 2
q
)q (∫

R3

(1 + ∣v∣2)3p/2p′fn(t, v)dv)1/p ⎛⎝∫R3

∣∇v√fn(t, v)∣21fn(t,v)≥κ(1 + ∣v∣2)3/2 dv
⎞⎠
1/p′

≤ ( 2
q
)qC′D[T, ∥f̃nin∥L1

3p−3(R3), ∥f̃nin(ln f̃nin)+∥L1(R3),QT,3,−3(fn)]1/p
×
⎛⎝∫R3

∣∇v√fn(t, v)∣21fn(t,v)≥κ(1 + ∣v∣2)3/2 dv
⎞⎠
1/p′

.

Hence

H+(fn(t2, ⋅)∣κ)+ 1
n
∫

t2

t1
∫
R3

∣∇v(fn(s, v) − κ)+∣2
fn(s, v) dvds

+C′E ∫
t2

t1

(∫
R3

∣∇v(fn(t, v)1/q − κ1/q)+∣qdv)2/q ds
≤(1 + κ)∫ t2

t1
∫
R3

(fn(s, v) − κ)+dvds +H+(fn(t1, ⋅)∣κ) ,
with

1

C′E
∶= ( 2

q
)qC′D[T, ∥f̃nin∥L1

3p−3(R3), ∥f̃nin(ln f̃nin)+∥L1(R3),QT,3,−3(fn)]1/p
×C′′D[M0(fn)M2(T, fn)2,H(fin)] .

Step 6: Passing to the limit in the truncated entropy. By Sobolev embedding, for
each T > 0, one has (fn)1/q = O(1)L2(0,T ;Lq∗(R3)) ,

and hence
fn = O(1)L2/q(0,T ;Lq∗/q(R3)) .

Since 1 < q < 2 < q′, and
(1 + ∣v∣2)fn = O(1)L∞(0,T ;L1(R3)) ,
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this implies that (1 + ∣v∣2) 2−q
4−q fn = O(1)

L
4

q
−1([0,T ]×R3)

(applying Proposition 5 of [10] with 1 − β = 2
4−q ).

Then

∫
T

0
∣∫

R3

(h+(f(t, v)/κ) − h+(fn(t, v)/κ))dv∣dt
≤ ∫

T

0
∫
R3

∣h+(f(t, v)/κ)− h+(fn(t, v)/κ)∣dvdt → 0 as n→∞ .

Indeed, h+(f(t, v)/κ) − h+(fn(t, v)/κ) → 0 for a.e. (t, v) ∈ [0, T ) ×R3 as n → ∞;
moreover, the sequence h+(f/κ)−h+(fn/κ) is equiintegrable and tight on [0, T ]×R3

since we have seen that there exists α1, α2 > 0 such that

(1 + ∣v∣2)α1(fn)1+α2 = O(1)L1([0,T ]×R3) .

Hence, for all κ > 0, one has

H+(fn∣κ) →H+(f ∣κ) in L1
loc([0,+∞)) as n→ +∞ ,

and hence, possibly after extracting a subsequence if necessary

H+(fn(t, ⋅)∣κ) →H+(f(t, ⋅)∣κ) for a.e. t ≥ 0 as n→ +∞ .

The subsequence and the negligible exceptional set of times where the pointwise
convergence above is not valid may depend on κ. Henceforth, we restrict our
attention to the case of κ being a rational number, and since there are countably
many such numbers, the union of the exceptional sets corresponding to each rational
κ is another negligible set N . Hence, by diagonal extraction

H+(fn(t, ⋅)∣κ) →H+(f(t, ⋅)∣κ) for all t ∈R+ ∖N and all κ ∈Q ∩ [1,+∞)
as n→∞.

Step 7: Passing to the limit in the truncated entropy production. One has

((fn)1/q − κ1/q)+ → (f1/q − κ1/q)+ a.e. on R+ ×R
3 ,

and ((fn)1/q − κ1/q)q+ ≤ fn = O(1)L∞(0,T ;L1

−2(R3)) .

Hence ((fn)1/q − κ1/q)+ is equiintegrable and tight on [0, T ] ×R3, so that

((fn)1/q − κ1/q)+ → (f1/q − κ1/q)+ in L1([0, T ] ×R3) .
By continuity of the gradient in the sense of distributions, we already know that

∇v((fn)1/q − κ1/q)+ → ∇v(f1/q − κ1/q)+ in D′((0, T )×R3) .
On the other hand

∇v((fn)1/q − κ1/q)+ = 1fn≥κ∇v(fn)1/q = O(1)L2(0,T ;Lq(R3)) .

Since L2(0, T ;Lq(R3)) is reflexive because 1 < q < 2 (see Corollary 2 in Chapter
IV, §1 of [11]), the Banach-Alaloglu theorem implies that, possibly after extracting
a subsequence,

∇v((fn)1/q − κ1/q)+⇀ℓ in L2(0, T ;Lq(R3)) ,
and therefore in D′((0, T )×R3). Hence

ℓ = ∇v(f1/q − κ1/q)+ ,
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and by compactness and uniqueness of the limit

∇v((fn)1/q − κ1/q)+⇀∇v(f1/q − κ1/q)+ in L2(0, T ;Lq(R3)) .
For all t1 < t2 ∈R+ ∖N , and all κ ∈Q ∩ [1,+∞), one has

∫
t2

t1

(∫
R3

∣∇v((fn)1/q − κ1/q)+∣qdv)2/q dt ≤H+(fn(t1, ⋅)∣κ) −H+(fn(t2, ⋅)∣κ)
+ (1 + κ)∫ t2

t1
∫
R3

(fn(t, v) − κ)+dvdt ,
and passing to the limit as n → +∞, one finds that

∫
t2

t1

(∫
R3

∣∇v(f1/q − κ1/q)+∣qdv)2/q dt ≤ lim
n→∞

∫
t2

t1

(∫
R3

∇v((fn)1/q − κ1/q)q+dv)2/qdt
≤H+(f(t1, ⋅)∣κ) −H+(f(t2, ⋅)∣κ)
+ (1 + κ)∫ t2

t1
∫
R3

(f(t, v) − κ)+dvdt ,
where the first inequality is Proposition III.5 (iii) of [3].

Step 8: Writing (7) for all κ ≥ 1. Let κ > 1, and let κj be an increasing sequence
of rational numbers converging to κ. Since h+ is nondecreasing, for all t ∈R+ ∖N ,
one has

0 ≤ h+(f(t, v)/κj) ≤ h+(f(t, v)/κ1) for a.e. v ∋R3 ,

so that
1

κj
H+(f(t, ⋅)∣κj)→ 1

κ
H+(f(t, ⋅)∣κ) as j → +∞

for all t ∈R+ ∖N by dominated convergence. By the same token

∣∇v(f1/q − κ1/qj )+∣q = ∣∇v(f1/q)∣q1f≥κj
≤ ∣∇v(f1/q)∣q1f≥κ1

= ∣∇v(f1/q − κ1/q1 )+∣q ,
a.e. on (0,+∞) ×R3, so that

∫
t2

t1
∫
R3

∣∇v(f1/q − κ1/qj )+∣qdvdt → ∫ t2

t1
∫
R3

∣∇v(f1/q − κ1/qj )+∣qdvdt
as j → +∞ by dominated convergence. Since f satisfies (7) for each k∈Q ∩ [1,+∞),
and since this set is dense in [1,+∞), we conclude from the argument above that f
satisfies (7) for each κ ≥ 1, by passing to the limit as j → +∞ in (7) written for κj.

This concludes the proof of Proposition 2.2

3.2. Proof of Lemma 3.1. This proof is a simple variant of the proof of Theorem
3 in [10], with a few additional terms which require a specific treatment.

Start from the elementary identity

trace((X ∧ Y )2) = 2(X ⋅ Y )2 − 2∣X ∣2∣Y ∣2 ,
which holds for all X,Y ∈ R3, with the notation X ∧ Y = X ⊗ Y − Y ⊗X . For all
v /= w ∈R3, setting X = v −w and

Y ∶= ∇v (ln fn(t, v)
κ

)
+
− ∇w (ln fn(t,w)

κ
)
+
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leads to the identity

(14)

(I −Π(v −w)) ∶ (∇v (ln fn(t, v)
κ

)
+
−∇w (ln fn(t,w)

κ
)
+
)⊗2

= ∑
1≤i<j≤3

∣qfn

ij (t, v,w)∣2∣v −w∣2 ,

where

q
f
n

ij (t, v,w) =
RRRRRRRRRRRRRRRRR
vi −wi Zi − ∂wi

(ln f
n(t,w)
κ
)
+

vj −wj Zj − ∂wj
(ln fn(t,w)

κ
)
+

RRRRRRRRRRRRRRRRR
= Zij +wjZi −wiZj −

RRRRRRRRRRRRRRRRR
vi −wi ∂wi

(ln fn(t,w)
κ
)
+

vj −wj ∂wj
(ln fn(t,w)

κ
)
+

RRRRRRRRRRRRRRRRR
and

Zi = ∂vi (ln fn(t, v)
κ

)
+
, Zj = ∂vj (ln fn(t, v)

κ
)
+
, Zij = viZj − vjZi .

Hence

∫
R3

e−λ∣w∣
2

fn(t,w)⎛⎜⎝
1
wj
−wi

⎞⎟⎠ qf
n

ij (t, v,w)dw = Γji[λ, fn(t, ⋅)]⎛⎜⎝
Zij
Zi
Zj

⎞⎟⎠
−∫

R3

e−λ∣w∣
2
⎛⎜⎝

1
wj
−wi

⎞⎟⎠
RRRRRRRRRRRRR
vi −wi ∂wi

(fn(t,w) − κ)+
vj −wj ∂wj

(fn(t,w) − κ)+
RRRRRRRRRRRRRdw ,

since fn∂wk
(ln fn/κ)+ = ∂wk

fn1fn>κ = ∂wk
(fn − κ)+, or equivalently

∫
R3

e−λ∣w∣
2

fn(t,w)⎛⎜⎝
1
wj
−wi

⎞⎟⎠ qf
n

ij (t, v,w)dw + S(t, v) = Γji[λ, fn(t, ⋅)]⎛⎜⎝
Zij
Zi
Zj

⎞⎟⎠ .
We have denoted

Γji[λ, fn(t, ⋅)] ∶= ∫
R3

e−λ∣w∣
2

fn(t,w)⎛⎜⎝
1 wj −wi
wj w2

j −wjwi
−wi −wiwj w2

i

⎞⎟⎠dw
and

S(t, v) ∶=∫
R3

e−λ∣w∣
2
⎛⎜⎝

1
wj
−wi

⎞⎟⎠
RRRRRRRRRRRRR
∂wj

(vj −wj)
∂wi

(vi −wi)
RRRRRRRRRRRRR (f

n(t,w) − κ)+dw

=∫
R3

(fn(t,w) − κ)+
RRRRRRRRRRRRR
(vj −wj) ∂wj

(vi −wi) ∂wi

RRRRRRRRRRRRR e
−λ∣w∣2

⎛⎜⎝
1
wj
−wi

⎞⎟⎠dw

=∫
R3

(fn(t,w) − κ)+e−λ∣w∣2 ⎛⎜⎝
2λ(viwj − vjwi)

2λ(viwj − vjwi)wj +wi − vi
2λ(vjwi − viwj)wi +wj − vj

⎞⎟⎠dw .
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By Cramer’s formula

detΓji[λ, fn(t, ⋅)]Zi
= det∫ e−λ∣w∣

2

fn(t,w)
⎡⎢⎢⎢⎢⎢⎢⎣

1 q
f
n

ij (t, v,w) −wi

wj wjq
fn

ij (t, v,w) −wjwi

−wi −wiq
fn

ij (t, v,w) w2
i

⎤⎥⎥⎥⎥⎥⎥⎦
dw

+det∫ e−λ∣w∣
2

⎡⎢⎢⎢⎢⎢⎣
fn(t,w) 2λvi ∧wj(fn(t,w)−κ)+ −wif

n(t,w)
wjf

n(t,w) (2λwj(vi∧wj)+wi−vi)(fn(t,w)−κ)+ −wjwifn(t,w)
−wif

n(t,w) (2λwi(vj∧wi)+wj−vj)(fn(t,w)−κ)+ w2
i f

n(t,w)
⎤⎥⎥⎥⎥⎥⎦
dw

with the notation ai ∧ bj ∶= aibj − ajbi = −bj ∧ ai. Using the lower bound for
detΓji[λ, fn(t, ⋅)] obtained in Lemma 2 of [10], one finds that

∣Zi∣ ≤6CD(M2(t, fn)2,H(fin))M2(t, fn)2
×
⎛⎝∫R3

fn(t,w)qfn

ij (t, v,w)(1 + ∣w∣)e−λ∣w∣2dw
+ (1 + 1√

2eλ
)max(1,2λ)(1 + ∣v∣)∫

R3

(fn(t,w) − κ)+dw⎞⎠ .
Therefore

4∫
R3

∣∂vi√fn(t, v)∣2(1 + ∣v∣)3 1fn(t,v)>κdv = ∫
R3

fn(t, v)∣Zi∣2(1 + ∣v∣)3 dv

≤72CD(M2(t, fn)2,H(fin))2M2(t, fn)4
×
⎛⎝(1 + 1√

eλ
)2 ∫

R3

fn(t, v)dv(1 + ∣v∣)3 (∫R3

fn(t,w)qfn

ij (t, v,w)e−λ∣w∣2/2dw)2

+ (1 + 1√
2eλ
)2max(1,4λ2)∫

R3

fn(t, v)dv
1 + ∣v∣ (∫R3

(fn(t,w) − κ)+dw)2 ⎞⎠
≤72CD(M2(t, fn)2,H(fin))2M2(t, fn)4 (1 + 1√

eλ
)2 ∫

R3

fnin(v)dv
×
⎛⎝∬R3×R3

∣v −w∣3e−λ∣w∣2(1 + ∣v∣)3
∣qfn

ij (t, v,w)∣2∣v −w∣3 fn(t, v)fn(t,w)dvdw
+max(1,4λ2)∫

R3

fnin(v)dv∫
R3

(fn(t,w) − κ)+dw⎞⎠ .
Since

∣v −w∣3e−λ∣w∣2(1 + ∣v∣)3 ≤ 4(∣v∣3 + ∣w∣3)e−λ∣w∣2(1 + ∣v∣)3 ≤ 4 ∣v∣3 + (3/2eλ)3/2(1 + ∣v∣)3 ≤ 4max(1, 3
2eλ
)3/2 ,
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we conclude that

∫
R3

∣∂vi√fn(t, v)∣2(1 + ∣v∣)3 1fn(t,v)>κdv

≤ 18CD(M2(t, fn)2,H(fin))2M2(t, fn)4M0(fn) (1 + 1√
eλ
)2

×
⎛⎝4max(1, 3

2eλ
)3/2∬

R3×R3

∣qfn

ij (t, v,w)∣2∣v −w∣3 fn(t, v)fn(t,w)dvdw
+max(1,4λ2)∫

R3

fnin(v)dv∫
R3

(fn(t,w) − κ)+dw⎞⎠ .
This concludes the proof of Lemma 3.1.

4. Proof of Proposition 2.5

4.1. Replacing the localized entropy with Lebesgue norms.

Lemma 4.1. Set µ(r) ∶= min(r, r2) for each r ≥ 0. Let f be a suitable solution of

the Landau equation, for some q ∈ (1,2) and some negligible N ⊂R+. Denote

f+κ (t, v) ∶= µ((f(t, v)1/q − κ1/q)+) for all κ ≥ 1 .
Then, for each ι > 0, there exists C(q, ι) > 0 such that, for all κ ∈ [1,2] and all

t1 < t2 ∈R+ ∖N

(15)

1
2
ch∫

R3

f+κ (t2, v)qdv + 1
4
C′E ∫

t2

t1

(∫
R3

∣∇vf+κ (t, v)∣qdv)2/q dt
≤ C(q, ι)∫

R3

f+κ (t1, v)q(1+ι) + κ1+ι1f+κ(t1,v)>0)dv
+2qκ∫

t2

t1
∫
R3

(f+κ (t, v)q + 2κ1f+κ(t,v)>0))dvdt .
Proof. There exists ch > 0, and for each ι > 0, there exists Cι > 0 such that

(16) chµ((r − 1)+) ≤ h+(r) ≤ Cι(r − 1)1+ι+ , for all r ≥ 0 .
Thus, for each κ ∈ [1,2], since the functions µ and z ↦ (r1/q − κ1/q + z)q − zq for
r > κ are nondecreasing on R+, one has

1
2
chµ((r1/q − κ1/q)q+) ≤ 1

2
chµ((r − κ)+) ≤ chκµ((r/κ − 1)+) ≤ chκh+(r/κ − 1) ,

and since µ(rq) = µ(r)q,
(17) 1

2
ch ∫

R3

µ((f(t, v)1/q − κ1/q)+)qdv ≤H+(f(t, ⋅)∣κ) .
On the other hand, by convexity of z ↦ zq on R∗+(r − κ)+ ≤ 2q−1(r1/q − κ1/q)q+ + (2q−1 − 1)κ1r>κ ≤ 2q−1(µ((r1/q − κ1/q)+)q + 2κ1r>κ) ,
where the second inequality follows from observing that y1f>κ = µ(y1f>κ) if y ≥ 1,
while y1f>κ ≤ 1f>κ ≤ κ1f>κ otherwise. Hence

(18)

H+(f(t, ⋅)∣κ) ≤ Cικ−ι ∫
R3

(f(t, v) − κ)1+ι+ dv

≤ 2(q−1)(1+ι)Cι ∫
R3

(µ((f(t, v)1/q − κ1/q)+)q + 2κ1f(t,v)>κ)1+ιdv
≤ C(q, ι)∫

R3

(µ((f(t, v)1/q − κ1/q)+)q(1+ι) + κ1+ι1f(t,v)>κ)dv ,
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with C(q, ι) ∶= 2(1+ι)(ι+q−1)Cι. Finally,
(19) ∫

R3

∣∇v(µ((f(t, v)1/q − κ1/q)+)∣qdv ≤ 2q ∫
R3

∣∇v((f(t, v)1/q − κ1/q)+)∣qdv ,
since 0 ≤ µ′(r) ≤ 2 for all r ≥ 0. �

4.2. The De Giorgi Method. For each integer k ≥ 0, set
tk ∶= 1

2
− 1

4
⋅ 2−k , and κk ∶= (1 + (21/q − 1)(1 − 2−k))q .

In this proof, we abuse the notation and write for simplicity

f+k ∶= f+κk
.

Set

Ak ∶= ess sup
tk≤t≤1

ch
2 ∫

R3

f+k (t, v)qdv + 1
4
C′E ∫

1

tk
(∫

R3

∣∇vf+k (t, v)∣qdv)2/q dt .
4.2.1. Step 1: the recurrence inequality. Writing (15) for t1 ∶= θ ∈ [tk, tk+1]∖N and
each t2 ∈ [tk+1,1] ∖N and letting t2 → 1− in the integrals over [t1, t2] implies that

Ak+1 ≤ 2max(ess sup
tk+1≤t≤1

ch
2 ∫

R3

f+k+1(t, v)qdv, C′E4 ∫ 1

tk+1
(∫

R3

∣∇vf+k+1(t, v)∣qdv)2/q dt)
≤ 2C(q, ι)∫

R3

f+k+1(θ, v)q(1+ι) + κ1+ιk+11f+k+1(θ,v)>0)dv
+2q+1κk+1 ∫

1

θ
∫
R3

(f+k+1(t, v)q + 2κk+11f+k+1(t,v)>0))dvdt .
Averaging the left- and rightmost sides of this inequality in θ ∈ [tk, tk+1] shows that
Ak+1≤2k+5(C(q, ι)+2q+1)∫ 1

tk
∫
R3

(f+k+1(θ, v)q(1+ι)+f+k+1(θ, v)q+2κ1+ιk+11f+k+1(θ,v)>0)dvdθ
since tk − tk+1 = 2−k−4 and κk+1 ≤ 2. Here comes the nonlinearization part of
DeGiorgi’s argument. First f+k+1 ≤ f+k , and
f+k+1 > 0 Ô⇒ f > κk+1 Ô⇒ f+k > µ(κ1/qk+1 −κ1/qk ) = µ((21/q − 1) ⋅ 2−k−1) ≥ 4−k−1(1 +√2)2 ,
so that

1f+
k+1
>0 ≤ 1f+

k
>4−k−3 , and hence 1f+

k+1
>0 ≤ 4(k+3)p0(f+k )p0 .

Thus (f+k+1)q(1+ι) + (f+k+1)q + κ1+ιk+11f+k+1>0

≤ (f+k )q(1+ι) + 4−(k+3)q(4k+3f+k )q(1+ι) + 21+ι(4k+3f+k )q(1+ι) ,
so that

Ak+1≤2k+5(1 + 4(k+3)qι + 21+ι4(k+3)q(1+ι))(C(q, ι)+2q+1)∫ 1

tk
∫
R3

f+k (θ, v)q(1+ι)dvdθ.
By Hölder’s inequality and Sobolev’s embedding (Theorem IX.9 in [3])

∥f+k ∥Lr([t1,t2]×R3) ≤∥f+k ∥1−αL∞(t1,t2;Lq(R3))∥f+k ∥αL2(t1,t2;Lq∗(R3))

≤CS(q,3)α∥f+k ∥1−αL∞(t1,t2;Lq(R3))∥∇vf+k ∥αL2(t1,t2;Lq(R3))

with
1

r
= α
2
= 1 − α

q
+
α

q∗
and

1

q∗
= 1

q
−
1

3
, so that r = 5

3
q , and α = 6

5q
.
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Notice that we use the restriction q > 6
5
at this point. With ι = 2

3
, one finds

∫
1

tk
∫
R3

f+k+1(θ, v) 5q

3 dvdθ ≤CS(q,3)2∥f+k ∥ 5q

3
−2

L∞(tk,1;Lq(R3))∥∇vf+k ∥2L2(tk,1;Lq(R3))

≤CS(q,3)2( 2
ch
) 5

3
− 2

q 4
CE
A

8

3
− 2

q

k
,

so that
Ak+1 ≤MΛkAβk , k ≥ 0 ,

with

β ∶= 8

3
−
2

q
> 1 and Λ ∶= 2 ⋅ 45q/3 ,

while

M ∶= 25+10q ⋅ 3 ⋅ (C(q, 2
3
)+2q+1)CS(q,3)2 ( 2

ch
) 5

3
− 2

q 4

CE
.

An easy induction shows that, for all k ≥ 1, one has

Ak ≤M− 1

β−1Λ
− 1

(β−1)2 Λ
k

β−1 (M 1

β−1Λ
1

(β−1)2A0)βk

.

Hence

(20) A0 <M− 1

β−1Λ
− 1

(β−1)2 Ô⇒ Ak → 0 as k → +∞ ,

and by Fatou’s lemma

∫
1

1/2 ∫R3

µ((f(t, v)1/q − 21/q)+)dv ≤ 2
ch

lim
k→∞

Ak = 0 ,

which implies in turn that f(t, v) = 0 for a.e. (t, v) ∈ [1
2
,1] ×R3.

4.2.2. Step 2: initialization. Write (7) for t1 ∈ [0, 14 ] ∖N and t2 ∈ [14 ,1] ∖ N , with
κ = 1. Letting t2 → 1− in the integrals over [t1, t2] and using (17)-(19) shows that

A0 = ess sup
1

4
≤t≤1

ch
2 ∫

R3

µ((f(t, v)1/q−1)+)qdv
+
C
′
E

4 ∫
1

1/4
(∫

R3

∣∇vµ((f(t, v)1/q−1)+)∣qdv)2/q dt
≤2(H+(f(t1, ⋅)∣1) + 2∫ 1

t1
∫
R3

(f(t, v) − 1)+dvdt) .
Averaging in t1 over [1

8
, 1
4
] shows that

A0 ≤ 16(∫ 1

1/8
H+(f(t1, ⋅)∣1)dt1 + 2∫ 1

1/8∫R3

(f(t, v) − 1)+dvdt) .
Since (f − 1)+ ≤ (f − 1

2
)+ and

(f − 1)+ ≤ (f − 1)+1(f− 1

2
)+≥ 1

2

≤ 2(f − 1)+(f − 1
2
)+ ≤ 2(f − 1

2
)2+ ,

one has, by (16), (f − 1)+ ≤ 2µ((f − 1
2
)+) ≤ 1

ch
h+(2f) .

Hence

A0 ≤ 16(∫ 1

1/8
H+(f(t1, ⋅)∣1)dt1 + 1

ch ∫
1

1/8
H+(f(t, ⋅)∣12)dt)

≤ 16(1+ 1
ch
)∫ 1

1/8
H+(f(t, ⋅)∣12)dt .
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Together with (20), this implies Proposition 2.5 with

η0 ∶= c2h
1 + ch

( C′E
3(C(q, 2

3
)+2q+1)CS(q,3)2)

1

β−1

2
−5− 7+12q

β−1 − 4

(β−1)2 .

5. Proof of Proposition 2.6

The key idea in the proof of Proposition 2.6 is to apply the De Giorgi local
boundedness argument (Proposition 2.5) to a scaled suitable solution of (1). As
explained in section 2, the 2-parameter group of scaling transformations (9) leaving
(1) invariant is not rich enough to contain a subgroup leaving the conserved quan-
tities (4) and the entropy invariant. However, this is unessential for our argument,
and we only seek to leave the truncated entropy inequality (7) invariant.

Step 1: Scaling solutions to the Landau equation with Coulomb interac-

tion. Let f be a suitable solution to the Landau equation with Coulomb interac-
tion, satisfying (7) for some Lebesgue negligible set N ⊂ (0,+∞), some q ∈ ( 4

3
,2),

and with a given constant C′E > 0. According to Proposition 2.2, the existence of

such a solution is known provided that the initial data f ∣
t=0
=∶ fin satisfies (8) with

q = 2k
k+3 with k > 6.
For each integer n ≥ 0, set ǫn ∶= 2−n and

fn(t, v) ∶= ǫγnf(1 + ǫγn(t − 1), ǫnv) , with γ ∶= 5q − 6

2q − 2
.

(Observe that, up to the translation in time, this is precisely the subgroup of scaling
transformations (10)). One easily checks that fn is a H-solution to the Landau
equation for each n ≥ 0, that

∫
R3

fn(t, v)dv = ǫγ−3n ∫
R3

f(1 + ǫγn(t − 1), V )dV = ∫
R3

fin(V )dV ,
while

(21)

H+(fn(t, ⋅)∣ǫγnκ) = ǫγ−3n H+(f(1 + ǫγn(t − 1), ⋅)∣κ)
∫

t2

t1
∫
R3

(fn(t, v) − ǫγnκ)+dvdt = 1

ǫ
γ
n
∫

1+ǫ3n(t2−1)

1+ǫγn(t1−1)
∫
R3

(f(T,V ) − κ)+dV dT ,
and that

(22)
∫

t2

t1

(∫
R3

∣∇v(fn(t, v)1/q − (ǫγnκ)1/q ∣qdv)2/q dt
= ǫγ−3n ∫

1+ǫγn(t2−1)

1+ǫγn(t1−1)
(∫

R3

∣∇V (f(T,V )1/q − κ1/q ∣qdV )2/q dT .
Since f satisfies (7) for all κ ≥ 1 and all t ∈N , the scaling transformations (21) and
(22) imply that

(23)
H+(fn(t2, ⋅)∣ǫγnκ) +C′E ∫ t2

t1

(∫
R3

∣∇v(fn(t, v)1/q − (ǫγnκ)1/q ∣qdv)2/q dt
≤H+(fn(t1, ⋅)∣ǫγnκ) + 2ǫγnκ∫ t2

t1
∫
R3

(fn(t, v) − ǫγnκ)+dvdt ,
for all κ ≥ 1 and all t ∈ Nn, where
(24) Nn ∶= {t ≥ 0 s.t. 1 + ǫγn(t − 1) ∈ N} .
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Since Nn is the image of the Lebesgue negligible set N by an affine transformation,
it is Lebesgue negligible. On the other hand fn satisfies the truncated entropy
inequality (23) for all κ ≥ 1, or equivalently whenever κn ∶= ǫγnκ ≥ 2−nγ . Since q > 4

3
,

one has γ > 0, so that [1,+∞) ⊂ [2−nγ ,∞).
This proves that fn is a suitable solution to the Landau equation satisfying (7)

with the same Lebesgue exponent q ∈ ( 4
3
,2), the same constant C′E , and with the

new Lebesgue-negligible set Nn.
From now on, and until the very end of this proof, we forget completely the

suitable solution f , and consider only the sequence of scaled solutions fn. The goal
is to show that, by choosing η1 small enough, one can find some n large enough so
that the scaled solution fn satisfies the assumption of Proposition 2.5. Applying
Proposition 2.5 shows that this fn is locally bounded near t = 1, which implies in
turn that f is locally bounded (by a very large number, whose size is unessential)
near t = 1 (here again, the size of the domain on which f is bounded is of no interest
for the partial regularity result).

Step 2: Replacing the local entropy with Lebesgue norms. In this section we seek to
apply (15) to each suitable solution fn with truncation parameter κn = ǫγnκ = 1.

Thus we define Fn(t, v) ∶= µ((fn(t, v)1/q − 1)+) for each integer n ≥ 0, and for
a.e. (t, v) ∈ [0,+∞) ×R3. Then

(25)
∫
R3

Fn(t, v)qdv ≤∫
R3

(fn(t, v)1/q − 1)q+dv
≤∫

R3

fn(t, v)dv = ǫγ−3n ∫
R3

fin(v)dv = ǫγ−3n ,

while

∫
1

0
(∫

R3

∣∇vFn(t, v)∣qdv)2/q dt
= ∫

1

0
(∫

R3

∣µ′((fn(t, v)1/q − 1)+)∇v(fn(t, v)1/q − 1)+∣qdv)2/q dt
≤ 4∫

1

0
(∫

R3

∣∇v(fn(t, v)1/q − 1)+∣qdv)2/q dt
= 4ǫγ−3n ∫

1

1−ǫγn
(∫

R3

∣∇V (f(T,V )1/q − ǫ−g/qn )+∣qdV )2/q dT < 8η1 ,
for all n ≥ N large enough.

Writing (15) for each fn, replacing the truncation parameter κ in (15) with
κn = 1, shows that, for t1 < t2 ∈ [0,+∞) ∖Nn and all ι > 0, one has

ch
2 ∫

R3

Fn+1(t2, v)qdv + C′E
4 ∫

t2

t1

(∫
R3

∣∇vFn+1(t, v)∣qdv)2/q dt
≤ C(q, ι)∫

R3

(Fn+1(t1, v)q(1+ι) + 1Fn+1(t1,v)>0)dv
+2q ∫

t2

t1
∫
R3

(Fn+1(t, v)q + 21Fn+1(t,v)>0)dvdt .
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Taking the ess sup of the left hand side for 1
2
< t2 < 1 and averaging the right hand

side in t1 ∈ [0, 12 ] shows that

(26)

ess sup
1

2
<t2<1

∫
R3

Fn+1(t2, v)qdv
≤ 4C(q, ι)

ch
∫

1/2

0
∫
R3

(Fn+1(t1, v)q(1+ι) + 1Fn+1(t1,v)>0)dvdt1
+
2q+2

ch
∫

1

0
∫
R3

(Fn+1(t, v)q + 21Fn+1(t,v)>0)dvdt
≤ 4C(q,ι)+2q+3

ch ∫
1

0
∫
R3

(Fn+1(t, v)q(1+ι) +Fn+1(t, v)q + 1Fn+1(t,v)>0)dvdt .
Step 3: Using the Sobolev embedding. We recall that

∥φ∥Lq∗ (R3) ≤ CS(q,3)∥∇φ∥Lq(R3) with q∗ = 3q

3 − q

for all q ∈ [1,3) and all φ ∈ W 1,q(R3) (see Theorem IX.9 in [3]). Thus, for each
ι ≥ 0,

∫
1

0
∫
R3

Fn+1(t, v)q(1+ι)dvdt
≤ ∥F q(1+ι)n+1 ∥

L
2

q(1+ι) (0,1;L
q∗

q(1+ι) (R3))
∥1Fn+1>0∥

L
2

2−q(1+ι) (0,1;L
3

3−(3−q)(1+ι) (R3))

≤ ∥Fn+1∥q(1+ι)L2(0,1;Lq∗(R3)) ess sup
0<t<1

∣{v ∈R3 s.t. Fn+1(t, v) > 0}∣ q−(3−q)ι3

≤ CS(q,3)q(1+ι)∥∇vFn+1∥q(1+ι)L2(0,1;Lq(R3)) ess sup
0<t<1

∣{v ∈R3 s.t. Fn+1(t, v) > 0}∣ q−(3−q)ι3

≤ (8CS(q,3))q(1+ι)η q(1+ι)
2

1 ess sup
0<t<1

∣{v ∈R3 s.t. Fn+1(t, v) > 0}∣ q−(3−q)ι3 .

Observe that

Fn+1(t, v) > 0 Ô⇒ fn+1(t, v) > 1
Ô⇒ (fn(1 + 2−γ(t − 1), v)1/q − 1)+ > 2γ/q − 1
Ô⇒ Fn(1 + 2−γ(t − 1), 12v)q > µ(2γ/q − 1)q .

Hence

∣{v ∈R3 s.t. Fn+1(t, v) > 0}∣ ≤ 8

µ(2γ/q − 1)q ∫R3

Fn(1 + 2−γ(t − 1), V )qdV ,
so that
(27)

∫
1

0
∫
R3

Fn+1(t, v)q(1+ι)dvdt
≤ (8CS(q,3))q(1+ι) ( 8

µ(2γ/q−1)q )
q−(3−q)ι

3

η
q(1+ι)

2

1 ess sup
1−2−γ<T<1

(∫
R3

Fn(T,V )qdV )
q−(3−q)ι

3

.



24 F. GOLSE, M. P. GUALDANI, C. IMBERT, AND A. VASSEUR

Likewise, setting ι = 0 in the inequality above

(28)
∫

1

0
∫
R3

Fn+1(t, v)qdvdt
≤ (8CS(q,3))q ( 8

µ(2γ/q−1)q )
q

3

η
q

2

1 ess sup
1−2−γ<T<1

(∫
R3

Fn(T,V )qdV )
q

3

.

Finally

1Fn+1(t,v)>0 ≤
Fn(1 + 2−γ(t − 1), 12v)q

µ(2γ/q − 1)q 1Fn+1(t,v)>0

so that

(29)

∫
1

0
∫
R3

1Fn+1(t,v)>0dvdt ≤
2γ+3

µ(2γ/q − 1)q ∫
1

7/8 ∫R3

Fn(T,V )qdV dT
≤ 2γ+3+4qCS(q,3)q
µ(2γ/q − 1)q+ q2

3

η
q

2

1 ess sup
1−2−γ<T<1

(∫
R3

Fn−1(T,V )qdV )
q

3

.

Henceforth, we assume that q ∈ ( 4
3
,2), so that γ > 1, which implies in turn that

1 − 2−γ > 1
2
. Putting together (26), (27), (28), and (29) shows that

(30)

ess sup
1

2
<t2<1

∫
R3

Fn+1(t2, v)qdv ≤D(q, ι)η q

2

1 max
⎛⎝1, ess sup1

2
<T<1

∫
R3

Fn(T,V )qdV ⎞⎠
q

3

+D(q, ι)η q

2

1 max
⎛⎝1, ess sup1

2
<T<1

∫
R3

Fn−1(T,V )qdV ⎞⎠
q

3

,

with

D(q, ι) ∶= 4C(q,ι)+2q+3
ch

max(2(4q+ι)CS(q,3)q(1+ι)

µ(2γ/q−1)
q2(1+ι)

3
−qι
+

2
4q
CS(q,3)q

µ(2γ/q−1)
q2

3

,
2
γ+3+4q

CS(q,3)q

µ(2γ/q−1)q+
q2

3

) .
Step 4: The induction argument.

Lemma 5.1. Let Xn be a sequence of positive numbers such that

(31) Xn+1 < ρ(max(1,Xn)α +max(1,Xn−1)α) , n ≥ 1 ,
where 0 < ρ < 1

2
and X0,X1 ≤M with M ≥ 1. Then

X2n and X2n+1 ≤max(2ρ, (2ρ) 1−αn

1−α Mαn) n ≥ 1 .
Proof. This is proved by an elementary induction argument. The desired conclusion
holds for n = 0, i.e.

X0 and X1 ≤M =max(2ρ,M) , since M ≥ 1 and 2ρ < 1 .
Assume that

X2n and X2n+1 ≤max(2ρ, (2ρ)1+α+...+αn−1

Mαn) .
If (2ρ)1+α+...+αn−1

Mαn ≤ 1, the assumption 2ρ < 1 implies that

X2n+2 ≤ ρ(1α + 1α) = 2ρ < 1 , and X2n+3 ≤ ρ(max(1,2ρ)α + 1α) = 2ρ < 1 .
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If on the other hand (2ρ)1+α+...+αn−1

Mαn > 1, then

X2n+2 ≤ρ((2ρ)α(1+α+...+αn−1)Mαn+1

+ (2ρ)α(1+α+...+αn−1)Mαn+1)
=2ρ(2ρ)α(1+α+...+αn−1)Mαn+1 = (2ρ)1+α+...+αn

Mαn+1

≤max(2ρ, (2ρ)1+α+...+αn

Mαn+1) .
In particular

max(2ρ, (2ρ)1+α+...+αn

Mαn+1) ≤ (2ρ)1+α+...+αn−1

Mαn

since

2ρ < 1 < (2ρ)1+α+...+αn−1

Mα
n

.

Hence

X2n+3 ≤ρ((2ρ)α(1+α+...+αn−1)Mαn+1

+max(1,2ρ, (2ρ)1+α+...+αn

Mαn+1)α)
≤ρ((2ρ)α(1+α+...+αn−1)Mα

n+1

+ ((2ρ)1+α+...+αn−1

Mα
n)α)

=2ρ(2ρ)α(1+α+...+αn−1)Mαn+1 ≤max(2ρ, (2ρ)1+α+...+αn

Mαn+1) .
since 2ρ < 1 and Mαn+1(α−1) ≤ 1. �

Henceforth we choose ι = 2
3
, as in the proof of the first De Giorgi type lemma.

Choose η1 small enough so that

0 < η1 < (2D(q, 23))−2/q ,
and apply the lemma above to the sequence

Xn = ess sup
1

2
<t<1

∫
R3

FN+n(t, v)qdv ,
with

ρ ∶=D(q, 2
3
)η q

2

1 , α = q/3 , and M ∶= 2(N+1)(3−γ) .
Because of (30), this sequence Xn satisfies (31) for all n ≥ 0. Writing (25) with
n = N and n = N + 1 shows that

X0 ≤ 2−N(γ−3) ≤M and X1 ≤ 2−(N+1)(γ−3) ≤M
because 3 − γ = q

2q−2 > 1 since q ∈ ( 4
3
,2).

Since

(2ρ)1+α+...+αn

Mαn+1

→ (2ρ) 1

1−α < 2ρ as n→ +∞ ,

there exists n0 such that n ≥ N + n0 implies that

ess sup
1

2
<t<1

∫
R3

Fn(t, v)qdv ≤ 2ρ = 2D(q, 23)η q

2

1 < 1 .
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Step 5: Conclusion. Using (18) shows that

∫
1

0
H+(fN+n0+2(t, ⋅)∣1)dt

≤ C(q, 2
3
)∫ 1

0
∫
R3

(FN+n0+2(t, v)5q/3 + 1FN+n0+2
(t,v)>0)dvdt .

At this point, we use (27) and (29) to bound the right hand side of the inequality
above, which leads to

∫
1

0
H+(fN+n0+2(t, ⋅)∣1)dt

≤ C(q, 2
3
) 2

20q−6
3

CS(q,3)
5q
3 µ(2γ/q−1)

q(5q−6)
9

η
5q

6

1 ess sup
1−2−γ<T<1

(∫
R3

FN+n0+1(T,V )qdV )
5q−6

9

+C(q, 2
3
) 2γ+3+4qCS(q,3)q

µ(2γ/q−1)q+
q2

3

η
q

2

1 ess sup
1−2−γ<T<1

(∫
R3

FN+n0
(T,V )qdV ) q

3

≤ C(q, 2
3
)D(q, 2

3
)η q

2

1 max
⎛⎝1, ess sup1

2
<T<1

∫
R3

FN+n0+1(T,V )qdV ⎞⎠
q

3

+C(q, 2
3
)D(q, 2

3
)η q

2

1 max
⎛⎝1, ess sup1

2
<T<1

∫
R3

FN+n0
(T,V )qdV ⎞⎠

q

3

≤ 2C(q, 2
3
)D(q, 2

3
)η q

2

1 .

Using (21) shows that

∫
1

0
H+(fN+n0+3(t, ⋅)∣2−γ)dt =∫ 1

0
23−γH+(fN+n0+2(1 + 2−γ(t − 1), ⋅)∣1)dt

=8∫
1

1−2−γ
H+(fN+n0+2(T, ⋅)∣1)dT

≤16C(q, 2
3
)D(q, 2

3
)η q

2

1 .

On the other hand, since z ↦ h+(z) ∶= (z ln z − z + 1)1z>1 is nondecreasing (observe
for instance that h′+(r) = (ln r)+ ≥ 0), one has

κ1 ≤ κ2 Ô⇒ h+(φ/κ2) ≤ h+(φ/κ1) Ô⇒ 1
κ2

H+(φ∣κ2) ≤ 1
κ1

H+(φ∣κ1)
for all φ ≡ φ(v) measurable on R3 and such that φ(v) ≥ 0 for a.e. v ∈ R3. Since
q ∈ ( 4

3
,2), one has γ > 1 and therefore

∫
1

1/8
H+(fN+n0+3(t, ⋅)∣12)dt ≤∫ 1

0
H+(fN+n0+3(t, ⋅)∣12)dt

≤2γ−1∫
1

0
H+(fN+n0+3(t, ⋅)∣2−γ)dt

≤2γ+3C(q, 2
3
)D(q, 2

3
)η q

2

1 .

Choosing 0 < η1 small enough so that

η1 < η0[ch, q,C′E] 2q (2γ+3C(q, 23)D(q, 23)) 2

q ,

we conclude that

fN+n0+3(t, v) ≤ 2 for a.e. (t, v) ∈ [1
2
,1] ×R3 .
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At this point, we return to the original suitable solution f . The last inequality
is equivalent to

f(T,V ) ≤ 2γ(N+n0+3)+1 for a.e. (t, v) ∈ [1 − 2−γ(N+n0+3)−1,1] ×R3 ,

which completes the proof of Proposition 2.6.

6. Proof of Theorem 2.4

By Proposition 2.2, there exist a negligible set N ⊂ (0,+∞), and, for each
Lebesgue exponent q ∈ (1,2), a constant C′E[T, fin, q] > 0 such that (7) holds for all
t1, t2 ∈ [0, T ] ∖N and all κ ≥ 1.

If τ ∈ S[f, [1,2]], consider the function fτ ∶ (t, v) ↦ f(t + τ − 1, v). This is
a suitable solution to the Landau equation (1) on [0,1] for which (7) holds for
each q ∈ (1,2) with the constant C′E[1, fin, q] > 0, for all t1, t2 ∈ [0,1] such that
t1 + τ − 1 ∉N and t2 + τ − 1 ∉N .

Applying Proposition 2.6 to fτ shows that, for each q ∈ ( 4
3
,2), there exists

ǫ(τ) ∈ (0, 1
2
) such that

∫
τ

τ−ǫ(τ)γ
(∫

R3

∣∇v(f(t, v)1/q − ǫ(τ)−γ/q)+∣q)2/q dt ≥ 1
2
η1ǫ(τ)3−γ

with γ = 5q−6
2q−2 . Observe that

∇v(f(t, v)1/q − κ1/q)+ = ∇v(f(t, v)1/q)1f(t,v)≥κ ,
so that ∣∇v(f(t, v)1/q − ǫ(τ)−γ/q)+∣ ≤ ∣∇v(f(t, v)1/q − 1)+∣
and therefore

∫
τ

τ−ǫ(τ)γ
(∫

R3

∣∇v(f(t, v)1/q − 1)+∣q)2/q dt ≥ 1
2
η1ǫ(τ)3−γ .

Hence

S[f, [1,2]] ⊂ ⋃
τ∈S[f,[1,2]]

(τ − ǫ(τ)γ , τ + ǫ(τ)γ) .
By the Vitali covering theorem (see chapter I, §1.6 in [31]), there exists a countable
subcollection of pairwise disjoint intervals (τj − ǫ(τj)γ , τj + ǫ(τj)γ) such that

S[f, [1,2]] ⊂ ⋃
j≥1

(τj − 5ǫ(τj)γ , τj + 5ǫ(τj)γ) .
On the other hand

∑
j≥1

1
2
η1ǫ(τ)3−γ ≤∑

j≥1
∫

τj

τj−ǫ(τj)γ
(∫

R3

∣∇v(f(t, v)1/q − 1)+∣q)2/q dt
=∫
⋃j≥1(τj−ǫ(τj)γ ,τj)

(∫
R3

∣∇v(f(t, v)1/q − 1)+∣q)2/q dt
≤∫

2

0
(∫

R3

∣∇v(f(t, v)1/q − 1)+∣q)2/q dt
≤ 1

C′E
(H+(fin∣1) + 4∫

R3

fin(v)dv) <∞ ,
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where the equality above follows from the fact that the intervals (τj − ǫ(τj)γ , τj)
are pairwise disjoint. Since γ = 5q−6

2q−2 , this proves that

H
q

5q−6 (S[f, [1,2]]) <∞ , for all q ∈ ( 4
3
,2) .

Since q

5q−6 decreases from 2 to 1
2
as q increases from 4

3
to 2, we conclude that

Hs(S[f, [1,2]]) <∞ for all s > 1
2
, which implies in turn that Hs(S[f, [1,2]]) = 0 for

all s > 1
2
(see for instance Theorem 2.1.3 in [1]).

For each m ∈ Z, set fm(t, v) ∶= 2−mf(2−mt, v); then fm is a suitable solution to
the Landau equation on [0, T ] ×R3 for each T > 0, and

∫
R3

(1 + ∣v∣k + ∣ ln fm(0, v)∣)fm(0, v)dv
= 2−m∫

R3

(1 + ∣m∣ ln 2 + ∣v∣k + ∣ ln fin(v)∣)fin(v)dv <∞ for all k > 3 .
Hence, for each m ∈ Z, one has

Hs(S[f, [2−m,21−m]]) = 2−smHs(S[fm, [1,2]]) = 0 for all s > 1
2
.

Therefore

Hs(S[f, (0 +∞)]) = ∑
m∈Z

Hs(S[f, [2−m,21−m]]) = 0 for all s > 1
2
,

which implies that S[f, (0,+∞)] has Hausdorff dimension ≤ 1
2
(see Definition 2.1.5

in [1]).
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regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Nat., 3 (1957), 25–43.
[10] L. Desvillettes: Entropy dissipation estimates for the Landau equation in the Coulomb case

and applications, J. Funct. Anal. 269 (2015), 1359–1403.
[11] J. Diestel, J.J. Uhl: Vector measures, Mathematical Surveys 15, Amer. Math. Soc., Provi-

dence, 1977.

[12] P. T. Gressman, J. Krieger, and R. M. Strain: A non-local inequality and global existence,
Adv. Math. 230 (2012), 642–648.

[13] N. Fournier: Uniqueness of bounded solutions for the homogeneous Landau equation with a

Coulomb potential, Commun. Math. Phys. 299 (2010), 765–782.



PARTIAL REGULARITY FOR LANDAU EQUATION 29

[14] F. Golse, C. Imbert, C. Mouhot, A. Vasseur: Harnack inequality for kinetic Fokker-Planck

equations with rough coefficients and application to the Landau equation, Ann. Sc. Norm.
Super. Pisa Cl. Sci. (5) 19 (2019), 253–295.

[15] T. Goudon, A. Vasseur: Regularity Analysis for Systems of Reaction-Diffusion Equations,
Ann. Scient. Ec. Norm. Sup. 43 (2010), 117–142.

[16] M.P. Gualdani, N. Guillen: Estimates for radial solutions of the homogeneous Landau equa-

tion with Coulomb potential, Anal. PDE 9 (2016), 1772–1809.
[17] M.P. Gualdani, N. Guillen: On Ap weights and the Landau equation, Calc. Var. Partial

Differential Equations 58 (2019), no. 1, Art. 17, 55 pp.
[18] Y. Guo: The Landau equation in a periodic box, Commun. Math. Phys. 231 (2002), 391–434.
[19] L. He, X. Yang: Well-posedness and asymptotics of grazing collisions limit of Boltzmann

equation with Coulomb interaction, SIAM J. Math. Anal. 46 (2014), 4104–4165.
[20] C. Henderson, S. Snelson, C∞ smoothing for weak solutions of the inhomogeneous Landau

equation, preprint arXiv:1707.05710 [math.AP].
[21] C. Henderson, S. Snelson, A. Tarfulea: Local existence, lower mass bounds, and a new con-

tinuation criterion for the Landau equation, J. Diff. Eq. 266 (2019), 1536–1577.
[22] C. Imbert, L. Silvestre: The weak Harnack inequality for the Boltzmann equation without

cut-off, arXiv:1608.07571 [math.AP], to appear in J. Eur. Math. Soc..
[23] J. Krieger, R. Strain: Global solutions to a non-local diffusion equation with quadratic non-

linearity, Comm. P.D.E., 37 (2012), 647–689.
[24] L.D. Landau: Die kinetische Gleichung für den Fall Coulombscher Wechselwirkung, Phys.

Z. Sowjet. 10 (1936), 154–164.
[25] J. Leray: Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. (1934),

193–248.
[26] Fanghua Lin: A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl.

Math. 51 (1998), 241–257.
[27] E.M. Lifshitz, L.P. Pitaevskii: “Physical Kinetics”, Pergamon Press, Oxford, 1981.
[28] P.-L. Lions: On Boltzmann and Landau Equations, Phil. Trans. R. Soc. Lond. A 346 (1994),

191–204.
[29] V. Scheffer: The Navier-Stokes equations on a bounded domain, Commun. Math. Phys. 73

(1980), 1–42.
[30] L. Silvestre: Upper bounds for parabolic equations and the Landau equation, J. Differ. Equ.

262 (2017), 3034–3055.
[31] E. Stein: Singular Integrals and Differentiability Properties of Functions, Princeton Univer-

sity Press, 1970.
[32] M. Struwe: On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl.

Math. 41 1988, 437–458.
[33] L. Tartar: “An Introduction to Navier-Stokes Equation and Oceanography”, Springer-Verlag,

Berlin, Heidelberg, 2006.
[34] A. Vasseur: A new proof of partial regularity of solutions to Navier-Stokes equations, NoDEA

Nonlin. Diff. Eq. Appl. 14 (2007), 753–785.
[35] C. Villani: On a new class of weak solutions to the spatially homogeneous Boltzmann and

Landau equations, Arch. Rational Mech. Anal. 143 (1998), 273–307.
[36] C. Villani: A review of mathematical topics in collisional kinetic theory, in “Handbook

of mathematical fluid dynamics” vol. I, S. Friedlander and D. Serre eds., North-Holland,
Amsterdam, 2002, pp. 71–305.

[37] F. Weissler: Local Existence and Nonexistence for Semilinear Parabolic Equations in Lp,
Indiana Univ. Math. J. 29 (1980), 79–102.



30 F. GOLSE, M. P. GUALDANI, C. IMBERT, AND A. VASSEUR
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