
HAL Id: hal-02167837
https://polytechnique.hal.science/hal-02167837v1

Submitted on 28 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random 3D-printed isotropic composites with high
volume fraction of pore-like polydisperse inclusions and

near-optimal elastic stiffness
M.G. G Tarantino, O. Zerhouni, K. Danas

To cite this version:
M.G. G Tarantino, O. Zerhouni, K. Danas. Random 3D-printed isotropic composites with high volume
fraction of pore-like polydisperse inclusions and near-optimal elastic stiffness. Acta Materialia, 2019,
175, pp.331-340. �10.1016/j.actamat.2019.06.020�. �hal-02167837�

https://polytechnique.hal.science/hal-02167837v1
https://hal.archives-ouvertes.fr


1 
 

Random 3D-printed isotropic composites with high volume fraction of pore-like 

polydisperse inclusions and near-optimal elastic stiffness 

M. G. Tarantino, O. Zerhouni and K. Danas* 

LMS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91128, 

France 

Keywords: Closed-cell Porous material, Bulk and Shear moduli, finite element 

modeling, Homogenization. 

 

Abstract. Highly porous materials with random closed-cell architecture combine 

isotropy with high stiffness. Yet in practice, the complexity of their manufacturing 

limits the experimental exploration of these materials, for which studies of the elastic 

response remain to date mainly theoretical. In this study, we measure experimentally 

the elastic moduli of random closed-cell porous-like composites fabricated by 3D-

printing. These materials contain a high volume fraction (up to 82 vol pct) of non-

overlapping, polydisperse void-like spherical inclusions, which are randomly 

dispersed in a homogeneous polymer matrix. We first generate the virtual 

microstructures of these materials using a random sequential adsorption (RSA) 

algorithm, and then use numerical homogenization to compute the size of the material 

representative volume element (RVE). The latter is used to assemble the test samples, 

whereby the void-like inclusions are 3D-printed using a gel-like polymer with 

mechanical properties that are in high contrast with those of the base polymer thus 

behaving mechanically as pores. Experiments reveal that the proposed isotropic 
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random closed-cell porous materials have bulk and shear moduli that lie very close to 

the theoretical Hashin-Shtrikman upper bounds for an isotropic porous solid.  

 

1. Introduction  

Over the past two decades, rationally and virtually designed (meta-)materials have 

revolutionized our ability to exploit optimized architectures to achieve unprecedented, 

and if possible optimal, material properties. Examples are numerous and span several 

fields, from electro-magnetism [1],[2] and optics [3] to acoustics [4], mechanics [5], 

[6] and, more recently, mechanobiology [7], [8]. One of the major elements that 

promoted the rapid proliferation of such materials, is the advent of additive 

manufacturing. Using 3D laser lithography for example, systems with oddly shaped 

architectural features can be fabricated with design control down to only a few 

nanometers [9]. Equally important, the versatility of current 3D printing technologies 

enables the realization of composite architectures that cannot be fabricated in any 

other way, e.g., wood-inspired fiber-reinforced honeycombs [10] and two-phase co-

continuous solids that mimic biological exoskeletons and block copolymers [11]. This 

ability to incorporate complex architectures into a material system, coupled with the 

robustness of modern computational methods, has enabled extending the portfolio of 

materials now available to scientists and engineers.   

The most ubiquitous case study among architected materials is that of cellular 

solids, whereby an interconnected network of solid struts or plates forms the edges or 

faces of the cells [12]. Cellular solids are high-porosity materials with either periodic 

or stochastic architecture. In nature, as in most of synthetic structural materials, 

cellular solids have a three-dimensional (3D) architecture that typically consists of a 



3 
 

random packing of polyhedron cells. Stochastic foams, as these materials are also 

called, have been a topic of intense research prior to the advent of metamaterials [13]-

[19]. Over the past two decades, highly porous metal “sponges” were extensively 

produced using the replication processing [20], a method developed by Mortensen 

and Fitzgerlad in the late 90s [21]. In recent years, however, these materials have 

attracted far lesser attention than cellular solids with a periodic architecture (mainly 

lattices). The reason for this is two-fold. First, periodic cellular materials exhibit 

higher strength and stiffness than stochastic foams of the same density because of the 

higher strain-energy stored during deformation. The latter is governed by cell wall 

stretching rather than bending [22]. Second, lattices are also naturally amenable to 

optimization and thus offer unparalleled flexibility in achieving topology-optimized 

architectures depending, for instance, on the design objective, constituent material and 

manufacturing method. Noteworthy is the octet truss lattice by Deshpande et al. [23]. 

By virtue of its ideal nearly linear scaling of mechanical properties with density, such 

cellular systems have paved the way to novel lattice architectures with maximized 

strength and stiffness per unit weight. Examples comprise the ultra-low density 

lattices of high-strength metals and ceramics, whereby the cells are composed of 

either hollow trusses [24]-[28] and continuous thin shells [29] (“shellular”) with 

dimensions extending from nanometers to microns. These systems efficiently 

combine the structural advantages of their stretch-dominated cellular geometry with 

the strengthening size effects of their nano- or microscale features, and are today the 

lightest, stiffest and strongest metamaterials achieved. However, the poor scalability 

and highly anisotropic response largely limit the use of such cellular materials for 

macroscale engineering applications.  
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From a different viewpoint, there exists a large body of theoretical work in the 

context of homogenization [30]-[31] dealing with the optimal elastic properties 

(stiffness) of composite materials. In such theoretical studies, and specializing the 

discussion to porous materials, it has been known for long time that various 

microstructures may attain the optimal Hashin-Shtrikman (HS) theoretical bound for 

the bulk and/or shear modulus [32], [33]. Notable examples include the Hashin 

composite sphere assemblage (CSA) for the bulk modulus [34] and the high-rank 

laminates [35] among others [36], [37]. However, despite recent advances in current 

manufacturing technologies, the fabrication of those theoretical microstructures 

remains very difficult (if not impossible), as they usually comprise a very large (even 

infinite) number of scales. In the present study, we take inspiration from these seminal 

homogenization studies to realize porous-like microstructures with near-optimal 

elastic moduli. 

In very recent years, two novel closed-cell lattices, composed of plates rather than 

beams or shells, have emerged as promising candidates for approaching the 

theoretical limit of isotropic elastic stiffness. These are the cubic-octet foam proposed 

by Berger et al [38] and the plate-lattice designed by Tancogne-Dejean et al [39]. The 

first consists of a combination of two cellular geometries, i.e., a cubic and an octet 

foam. The second is obtained by placing plates along the closest–packed planes of 

crystal structures with cubic symmetry. Unlike open-cell truss lattices, closed-cell 

plate-lattices involve in-plane deformation of their constituent plates and thus better 

utilize material volume at different loading directions. The potential impact of these 

two new metamaterials has been mainly shown numerically by a purely linear elastic 

analysis, ignoring any local nonlinear effects due to stress and strain concentrations. 

In addition, these studies lack a thorough experimental demonstration except in a 
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limited number of cases [39]. In particular, due to the closed-cell geometry and 

current limitations in the maximum inclination angle of 3D printing technology, one 

is unable to remove (except only partially) the internal non-welded metallic powder or 

support material in polymers, thus making the use of relative density to analyze such 

materials unsuitable.  

In this work, we propose an alternative route to realize isotropic multi-scale 

closed-cell porous materials by taking inspiration from seminal studies on 

homogenization of two-phase composites [33],[34] containing random distribution of 

non-overlapping spherical inclusions/voids [40]-[43]. Specifically, we examine the 

elastic response of porous-like solids consisting of non-overlapping, finite 

polydisperse (i.e. multiple size) spherical inclusions that are randomly dispersed into a 

homogeneous matrix. Those inclusions are made of a very soft support material, 

which has a Young’s and bulk modulus that is one thousand times smaller than that of 

the matrix phase but of similar density. This result, which is discussed further in the 

following, allows treating such materials as “porous-like” composites in terms of their 

quasi-static mechanical response given the very high inclusion/matrix contrast, but 

not as cellular solids in terms of relative density since the support material has 

(almost) the same density of the matrix. Henceforth, the term “porosity”, denoted with 

c, refers to the volume fraction of the pore-like inclusions such that 1-c denotes the 

remaining volume fraction of the matrix phase (and not the relative density like for 

cellular solids and foams). 

In particular, we exploit the polydispersity of the spherical voids to generate 

random porous architectures that provide an experimentally feasible approximation of 

the Hashin CSA model-microstructure [34]. This theoretical model is known to 

achieve the theoretical limit of isotropic elastic compressibility but inherently 
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involves an “infinite” range of length scales, which makes the manufacturing of such 

composites practically impossible to achieve. To overcome this issue, we develop a 

numerical protocol that enables generating RVEs of multi-inclusion material systems, 

whereby high volume fractions of spherical voids are obtained by employing 

inclusions with very different diameter. The virtual realizations of such heterogeneous 

materials are then transformed into physical microstructures via the use of a 3D 

polymer printer. Using relatively large computational resources, we are able to 

explore experimentally and numerically a very large range of porosities that spans 

values from 0 to 0.82. In particular, we show that our 3D-printed random porous 

architectures are almost isotropic (both experimentally and numerically) and yield 

values of the effective elastic moduli that lie near the corresponding Hashin-

Shtrikman upper bounds. 

2. Methods 

2.1 A modified RSA algorithm for the generation of multi-inclusion systems 

Virtual realizations of the porous microstructures containing finite polydisperse 

spherical voids are obtained using a random sequential addition (RSA) procedure. 

This consists in introducing randomly, irreversibly and sequentially non-overlapping 

objects of arbitrary shape and size (here spherical inclusions) into a cubic cell [40]-

[43].  The algorithm is highly versatile, and to date it has been used to generate 

systems containing random distributions of monodisperse (i.e. single sized) [42], [44] 

and polydisperse spheres [43], and more recently also mono- and polydisperse 

ellipsoids of arbitrary aspect ratios and orientations [45]. Polydisperse spherical 

inclusions are generated from the inclusion center and diameter Di, and those 

intersecting the cell outer surfaces are cut off and copied to the opposite face of the 
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cube. The generated cubic unit cells are periodic, and contain a finite number of 

families of identical spheres (here pores) randomly dispersed in the cell volume. In 

Figure 1a, we show a few representative RSA-generated cubic cells containing a 

volume fraction of spherical pores, thereinafter denoted as c, which ranges from 0.2 to 

0.75.  

In order to achieve such high volume fractions of inclusions, especially up to 0.82, 

we need to modify the RSA algorithm adopted in Refs.[43]-[44]. Specifically, the 

modified RSA algorithm (which is described in detail in Refs.[43]-[44]) takes as input 

only two parameters, i.e. the diameter of the largest spherical pore family, i.e. Dmax, 

and the desired inclusion volume fraction (i.e. the porosity c).  

Following the standard RSA process, the algorithm starts by generating pores with 

diameter Dmax until no additional void of that family can be further inserted without 

 
Figure 1: (a) RSA-generated periodic unit cells of multi-inclusion systems containing a random 
distribution of spherical voids with different size at various volume fractions. (b) Optical images of the 
corresponding 3D-printed unit cells. (c) Micrographs of the 3D-printed porous microstructures 
obtained upon interrupting the 3D printing process at a build volume of thickness ~ 500 µm. The pore-
like inclusions are built by the 3D-printer using a gel-like support material (i.e. nearly transparent 
phase). Pores through thickness are also visible (i.e. light grey phase). 
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overlapping with any of the previously accepted voids. The cutoff value of iterations 

for moving to the next void family is set to 3000 consecutive rejected inclusion 

positions. Next, the algorithm reduces the size Di of the new generated pore family by 

1%. At each step, a minimum distance between any two neighboring inclusions is 

imposed and the periodicity on opposite faces is enforced. In this study, the minimum 

thickness of the matrix ligament between two inclusions is set equal to ~150 µm, 

which corresponds to the best resolution of our 3D-printer (see discussion in Section 

2.3). This procedure continues until the desired porosity c is reached. We note in 

passing that due to the sequential addition of voids the target porosity is reached up to 

a small deviation, which simply corresponds to the volume ratio between the last (and 

smallest) inclusion and that of the entire cell. The generated virtual microstructures 

are fabricated by 3D printing (see Figure 1b,c). This imposes an additional geometric 

constraint in the RSA process, which is the minimum attainable pore diameter, 

denoted as Dlim (see discussion in Section 2.3). In this study, we set Dlim = 250µm, 

which is the smallest pore size experimentally attainable by our 3D-printer.  

2.2 Finite Element Modeling 

Numerical estimates of the homogenized elastic moduli of the random porous 

microstructures are obtained by linear elastic finite element (FE) analysis carried out 

with Abaqus. Simulations are performed using standard quadratic 10-node tetrahedral 

isoparametric elements (i.e. C3D10 in Abaqus notation). An isotropic linear elastic 

material model is used for modelling the matrix phase and the elastic moduli of the 

constituent polymer are measured experimentally during tensile multi-step relaxation 

testing (see Section 2.3). Throughout the numerical study, and given the very low 

elastic moduli of the gel-like material, the simulations are carried out assuming that 

the spherical inclusions are voids. Mesh-refined FE models of the porous 
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microstructures are generated using the automatic mesh generator NETGEN [46]. The 

converged RVEs comprise approximately 1.2M degrees of freedom (d.o.f.) for the 

lower porosities (c < 0.1), 5M d.o.f. for the moderate ones (0.3<c<0.5) and up to 18M 

d.o.f. for the highest porosity (c = 0.82). Moreover, special care is taken to ensure 

pairing of the nodes on opposite faces of the cubic cell, which is necessary for the 

application of the periodic boundary conditions discussed in the following section. 

2.2.1 Protocol for the determination of converged RVEs for experiments 

The very first step towards the experimental realization of the proposed 

microstructures is the determination of the RVE physical dimensions that enable 

meaningful measurements of the effective elastic moduli in experiments, where the 

applied boundary conditions are mixed [44]. Specifically, our first goal is to 

determine, by means of numerical homogenization and for every given porosity, the 

geometrical RVE that yields values of the elastic constants independent on the applied 

boundary conditions. To this end, prior to experimental testing, we carry out an 

extensive computational investigation where cubic unit-cells, containing a given 

volume fraction of polydisperse pores, are subjected to both periodic boundary 

conditions (PBC) and kinematically uniform boundary conditions (KUBC) (see 

details in Ref. [47]). Specifically, these boundary conditions are implemented in a 

similar fashion to Ref. [48], and notably are defined such that the displacement field 

u(x) at point x in the microstructure is given by  

(PBC):   𝒖 𝒙 = 𝜺 ∙ 𝒙 +  𝒖∗ 𝒙 ,       KUBC :   𝒖 𝒙 = 𝜺 ∙ 𝒙. (1) 
 

In these equations, 𝜺 denotes the average strain in the cubic cell, whereas 𝒖∗ 𝒙  

represents an L-periodic displacement field that accounts for the field fluctuations and 

has volume average equal to zero. The PBC in Eq. (1) are automatically generated by 
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NETGEN and are implemented using the “*Equation” command in Abaqus as 

described by Danas in Ref. [51].  

The homogenized fourth-order elastic stiffness tensor ℂ is calculated from the 

average stress and strain fields using the constitutive equation [52] 

𝝈 𝒙 = ℂ 𝜺 𝒙 , (2) 
 

where  denotes the volume average of the stress σ(x) and strain field ε(x). To 

compute ℂ, we run six independent calculations [49], where a uniform macroscopic 

strain is applied along a specific direction, i.e. 𝜀!"with 𝑖𝑗 = 11, 22, 33, 12, 23, 13 

(using the Voigt notation).  The isotropized bulk and shear moduli, hereinafter 

denoted as 𝜅 and 𝐺  respectively, are then computed by 𝜅 = ℂ: 𝕁/3, 𝐺 = ℂ:𝕂/10, 

with 𝕁,𝕂  being the fourth-order hydrostatic and deviatoric projection tensors, 

respectively, of the fourth-order identity tensor 𝕀!"#$ =  1 2 𝛿!"𝛿!" +  𝛿!"𝛿!!  

(𝑖, 𝑗 = 1,2,3). In addition, since our porous architectures are random, we quantify the 

deviation from isotropy of the numerical fourth-order elastic stiffness tensor ℂ, using 

the scalar parameter 𝛿!"# = ℂ!"# −  ℂ
!
/  ℂ !(see Ref. [45]). In this last relation, 

𝔸 ! =  Tr 𝔸 ∙ 𝔸!   is the Frobenius norm of the tensor 𝔸,  and  ℂ!"#  is the 

isotropic stiffness tensor obtained by projecting the actual stiffness tensor ℂ along the 

𝕁,𝕂 spaces, i.e. ℂ!"# = 3𝜅𝕁+ 2𝐺𝕂.  In the current calculations reported in the present 

study, the numerical deviation from isotropy is found to be less than δiso <0.6%, thus 

making the proposed microstructures isotropic. 

Following those definitions, in a recent study [44], we proposed a roadmap for 

determining the size of the experimental RVE for random porous microstructures with 

monodisperse spheres up to 30% in volume. For these systems, the size of the RVE is 

univocally defined by a single geometrical parameter, namely the ratio D/L between 
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the void diameter D and the characteristic length L of the cubic cell [42], [49]-[50]. In 

Figure 3 of Ref. [44], we reported values of this ratio that lead to a converged RVE 

for every porosity explored. To compute these values, we progressively decreased the 

diameter of the voided spheres embedded in the cubic cell with fixed length L = 12 

mm and porosity c, until we obtained converged estimates for elastic moduli, i.e. 

estimates that are independent of the applied boundary conditions (PBC and KUBC). 

The study of the converged RVE for polydisperse systems is however less 

straightforward, as these microstructures depend on multiple geometrical parameters. 

For the problem under consideration, these are the diameter Di and the number Ni of 

the inclusions of the different pore families (i.e. different sizes). In this study, we 

determine the converged RVE for porous media with polydisperse voids/inclusions by 

modifying the protocol in [44] to account for polydispersity. Specifically, our strategy 

now consists in decreasing progressively the diameter Dmax of the biggest pores in the 

RVE, with fixed length L and porosity c, until convergence (up to a tolerance) of the 

elastic moduli is achieved by means of the two previously described boundary 

conditions PBC and KUBC. It is important to note at this point that a fixed value of 

the length of the cubic cell, i.e. L = 12mm, is imposed by the available axial 

extensometer (see Section 2.4), which has a nominal gage length of 10 mm with a 

travel of ± 2 mm. 

2.3 Fabrication 

We fabricate the above-described 3D microstructures by 3D printing using the 

polymer printer EDEN 260VS from Stratasys (see Figure 1b-c). Our 3D-printer uses a 

PolyJet technology, where micrometric sized droplets (i.e. ~16 µm) of liquid 

photopolymer are deposited layer by layer onto a build tray and cured instantly under 

UV light. The smallest sphere diameter that can be 3D-printed using this process is 
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about ~250 μm, see Figure 1c. Specifically, the employed matrix material is a glassy 

polymer with trade name VeroWhitePlus (Stratasys). Prior to testing, the matrix 

Young’s modulus Em and Poisson’s ratio νm were measured via multi-step relaxation 

testing at room temperature (see Section 4 in Ref. [44]), and values were found to be 

respectively Em = 1270 ± 120 MPa and νm = 0.42 ± 0.02.  

Since 3D-printed parts are built layer by layer, a previous layer to build upon is 

required. To this end, the closed-cell pores embedded in the microstructures are 

printed using a support material that allows a 3D spherical inclusion to be fabricated 

(i.e. the nearly transparent phase in Figure 1c). The use of the support material to 

fabricate internal porous-like geometries is instrumental in current inkjet 3D printing. 

Similar to the excess powder or liquid in powder- and liquid-based additive 

manufacturing technologies, the support material occupies the closed cells. The gel-

like support material, with commercial name SUPP705 (Stratasys), has a tensile 

modulus Es = 1.3 ± 0.1 MPa and Poisson’s ratio ν = 0.25. The obtained modulus is 

almost thousand times smaller than that of the VeroWhitePlus matrix, which implies 

(after rudimentary analytical calculations such as the Hashin-Shtrikman or Voigt 

bounds), that the composite material behaves effectively as a porous material. We 

anticipate here that the difference that is found in calculating the Hashin-Shtrikman 

bounds between the porous matrix and the matrix with soft inclusions is very small, 

and notably below 0.1 % (see Figure 3 for a more detailed discussion). These results 

are also corroborated in the following by the corresponding FE calculations.  

Specifically, the moduli of the support material are measured experimentally using 

5mm-thick strips printed out of this gel-like material. Every strip specimen is 

fabricated by 3D-printing length-wise a U-shaped sandwich structure, whereby a 5 

mm-thick empty core is enclosed between two 0.2mm-thick VeroWhitePlus layers. 
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The strip is then easily removed manually, and mounted onto the tensile testing 

machine by means of two rigid heads printed out of VeroWhitePlus material. A 

somewhat alternative investigation of the effect of the support material on 3D-printed 

microstructures with pore features is also reported in Section 4 of Ref. [44] and 

corroborates independently the present findings.  

2.4 Tensile multi-step relaxation testing 

The elastic properties of the 3D-printed porous materials, namely the Young’s 

Modulus and the Poisson’s ratio, are measured by multi-step tensile relaxation 

experiments. The experiments are conducted in displacement control at a quasi-static 

strain rate 𝜀 = 10-5 s-1, and consist of seven relaxation steps at average strain increment 

of 0.1% for all volume fractions except c = 0.82.  In this last case, a displacement 

corresponding to 0.05% average axial strain is applied in order to prevent large 

straining of the thin matrix ligaments between neighboring pore-inclusions. To pilot 

the experiments, we use an in-built computer program. Specifically, at each step of 

relaxation the difference between two consecutive force measurements at 3 min-time 

intervals is computed, and the material is considered to be at its equilibrium state if 

such difference is smaller than ~ 4 N. To measure the force signal, we employ a 1.5 

kN load transducer with accuracy ± 0.1 N, which is mounted onto the fixed platen of 

an MTS servo-hydraulic uniaxial machine. The Young’s modulus is then determined 

through linear regression of the ground elasticity points measured at each relaxation 

step, whereas the Poisson’s ratio is computed as the slope of transverse-axial strain 

curves, see respectively Fig. 7a and 7b in Ref. [44]. During the experiments, we 

measure simultaneously and independently the axial and radial strain signals 

respectively by means of a MTS 632.13F-20 (accuracy ± 0.0075 mm) and an Epsilon 

3475-025-M-ST (accuracy ± 0.1 mm) transducer. 
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In the proposed experiments, we 3D 

print dog-bone test specimens with a 

nominal gage length of 60 mm and a 

square gage section of 12 x 12 mm2.  

The gage length comprises five cubic 

RVEs with characteristic length L = 12 mm. The generated RVEs are assembled 

length-wise and are enclosed between the sample’s heads, which, in turn, have a solid 

section in order to ease the specimen mounting on the uniaxial testing machine, see 

Figure 2. Prior to fabrication, the virtual test specimens are converted into 

stereolithography format for subsequent 3D printing.  

3. Results 

3.1 FE results for the effective bulk and shear moduli 

Before we proceed to the experiments, we first carry out an extensive computational 

study to estimate the effective elastic moduli of composites containing random 

distributions of polydisperse spherical voids embedded in a linear elastic matrix. 

Using fairly significant computational resources, we explore numerically porosities 

ranging from c = 0 to c = 0.82. We emphasize here that no exact analytical solutions 

are available today (except for some special theoretical microstructures [53]) for the 

effective elastic moduli of general random porous solids, thus making the use of FE 

simulations instrumental.  

The normalized effective shear G/Gm and bulk κ/κm moduli (where the subscript “m” 

denotes the matrix phase) are shown as a function of the matrix volume fraction, 1 – 

c, in Figure 3. The data points, depicted by solid circles, correspond to the average 

values of four different realizations and exhibit a very small standard deviation 

 
Figure 2: (Top) Virtual and (bottom) 3D-printed test 
specimens with gage length comprising five cubic 
RVEs. The RVEs have characteristic length L = 
12mm. 
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(below 0.1%) as shown by the error bars. Moreover, for all porosities analyzed here 

the deviation from isotropy is less than δiso < 0.6% thereby indicating that our porous 

materials are fully isotropic solids. For comparison purposes, the theoretical HS 

bounds obtained for both an isotropic porous matrix (solid lines) and a matrix with 

soft inclusions with the measured elastic properties of the gel-like support material 

(dashed lines) are also reported in Figure 3. The difference between the FE 

predictions and the corresponding HS bounds remains small over the entire range of 

porosity explored. We also note in passing (see the inset in Figure 3) that the 

difference that is found by calculating the HS bounds for the porous matrix and the 

matrix with the soft inclusions is very small and notably in the same order as the 

contrast between the phases (i.e. ≈ 10-3). 

Moreover, this difference 

decreases gradually for moderate 

to low porosities (0 < c < 0.4) and 

for large ones (c > 0.6). Rather 

interestingly, this difference is 

found to be maximum for 

intermediate values of the porosity, 

i.e, 0.4<c<0.6. We also note that 

the numerical bulk modulus is in 

much better agreement with the 

HS bounds than the shear modulus.  

3.2 Determination of the converged RVEs for experiments 

In Figure 4, we report the results of the RVE convergence study. Specifically, in 

Figure 4a-d, we discuss the process of obtaining a converged RVE for a 

 
Figure 3: Plots of the normalized shear (G/Gm) and bulk 
modulus (κ/κm) vs. the matrix volume fraction (1-c). The 
data points are obtained from FE periodic unit-cell 
simulations (PBC). The Hashin-Shtrikman upper bound 
for both an isotropic porous matrix (solid lines) and a 
matrix with soft inclusions (dashed lines) are also shown 
for each modulus using identical colors. 
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representative porosity c = 0.6. Following the method described in Section 2.2.1, we 

realize different cubic cells with decreasing diameter Dmax (Figure 4a), whereas the 

effective elastic moduli are obtained from the FE simulations by applying KUBC and 

PBC (see Section 2.2.1).  The computed bulk (κ/κm), shear (G/Gm) and Young’s 

(E/Em) moduli normalized by the corresponding matrix moduli are plotted as 

functions of Dmax in Figure 4b-d. In these figures, the diameter of the smallest voids 

Dmin is used as secondary horizontal axis. For illustration purposes, we report in the 

inset of Figure 4b the evolution of the ratio Dmax/Dmin as a function of Dmax. To ensure 

statistical representativeness, each data point is the average of five simulations onto 

different realizations.  

Collectively, the data in Figure 4b-d exhibit similar trends with values of the 

KUBC estimates converging rapidly to the predictions of periodic unit-cell 

simulations (PBC) as Dmax of the spherical voids decreases. Note that the decrease of 

the largest pore diameter Dmax in the RSA algorithm leads to an increase of the total 

number of pores in the RVE (see Figure 4a), which leads to a rapidly increasing size 

of calculations. For every porosity analyzed in this study, we choose the value of Dmax 

for which the difference in the KUBC and PBC moduli estimates is within a 2% 

deviation, as the largest pore size that leads to a representative cubic cell. 

In Figure 4e, we summarize the results of the convergence study conducted for 

porosities in the range of 0 ≤ c ≤ 0.82. Specifically, we show the evolution of both 

Dmax/Dmin and Dmin (blue and red curves respectively) as a function of the matrix 

volume fraction, i.e. 1 - c. At small porosities, i.e. 0 ≤ c ≤ 0.35, and in agreement with 

our earlier study on monodisperse voided RVEs [44], the ratio Dmax/Dmin remains 

constant and equal to Dmax/Dmin = 1 (with Dmin = 1.24 mm), thereby revealing that a 

single size of voids (i.e. a monodisperse distribution) is sufficient to deliver 
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converged RVEs. This finding is also in agreement with earlier studies [43],[49], 

where the effective elastic properties for monodisperse and polydisperse spherical 

inclusions at equal volume fraction were found to be nearly identical. On the other 

hand, for c ≥ 0.4, polydispersity is essential to achieve high values of porosity.  

 

 
Figure 4: (a) Realizations of microstructures containing a random distribution of polydisperse 
spherical voids at porosity c=0.6. Geometrical parameters for these microstructures (from left to right) 
are: (i) Dmax=8.4mm and Dmax/Dmin= 4 (ii) Dmax=6.0mm and Dmax/Dmin = 4.5, (iii) Dmax= 4.8mm and 
Dmax/Dmin= 5, (iv) Dmax=2.3mm and Dmax/Dmin= 6.5. (b-d) Results for the (b) bulk, (c) shear and (d) 
axial normalized moduli obtained from FE simulations with periodic (PBC) and kinematically uniform 
(KUBC) boundary conditions. Data points are the average of five realizations. The inset in figure (b) 
shows the evolution of the ratio between the diameters of the biggest and smallest pores. (e) Results of 
the convergence study for a large range of porosity, 0 ≤ c ≤ 0.82 showing the ratio Dmax/Dmin  and  Dmin 
as a function of the porosity. Recall that the smallest 3D-printable diameter is Dlim=0.25mm. 
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In fact, Figure 4e shows a rapid decrease of the converged Dmin accompanied by a 

simultaneous increase of the ratio Dmax/Dmin. This last result indicates that, at large 

porosities, the material under study is inherently multiscale and with a very large 

number of different sizes. Moreover, values of Dmax within the range of porosities 

explored can be readily inferred from Figure 4e. Specifically our study shows that, the 

size ratio of the largest to smallest inclusion, Dmax/Dmin, increases rapidly with 

increasing porosity when c becomes larger than 60% (or 1-c < 0.4).  In turn, our 

analysis reveals that at very large porosities (i.e. c > 0.75) the ratio of the minimal 

inter-void ligament t (with t = 150µm) to Dmax is very small, namely t/Dmax < 1/60. 

Finally, we clarify here that for c > 0.75 the convergence of the RVE is mainly 

statistical and is achieved by analysing a large number of different realizations. The 

reason is that at c = 0.82, we reach the smallest sphere diameter, Dmin = Dlim = 250µm, 

which is attainable by our 3D printer (see highlighted orange region in Figure 4e). 

3.3 Experimental results for the effective Young’s modulus and Poisson’s ratio 

In Figure 5a and Figure 5b, we show the experimental Young’s modulus E and 

Poisson’s ratio ν of porous materials with matrix volume fraction 0.18 ≤ 1-c ≤ 1 (or 0 

≤ c ≤ 0.82). The results are obtained as the average of at least four specimens and are 

reported together with their error bar. The latter corresponds to the standard deviation 

on the data. For comparison, the HS upper bounds for an isotropic porous solid (solid 

lines) alongside the FE estimates (solid symbols) are also reported. The latter are 

computed from data in Fig. 3 using the standard linear elastic isotropic Hooke’s law, 

i.e., E = 9 κ G/ (3κ +G) and ν = (3κ-2G)/(2(3κ-2G)). 

The experimental data are in very good quantitative agreement with the numerical 

FE predictions and lie very close to the HS bounds. Notably, the maximum deviation 

of the experimental Young’s modulus E from the theoretical HS bound is observed at 
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moderate porosity (c = 0.5), where the data exhibit the highest variability (see the 

error bar). On the other hand, the measured values of the Poisson’s ratio exhibit an 

increasing deviation from the average as the volume fraction of voided inclusions 

increases (see Figure 5b). The observed sensitivity for the measurements of the 

transverse strain at large volume fraction of inclusions is consistent with an earlier 

study on highly loaded particulate composites [54]. Moreover, data in Figure 5b 

display a small departure from the HS curve (here not a bound) for c ≥ 0.4.  

An important aspect of the experimental study (similar to the numerical one) is the 

isotropy of the 3D-printed RVEs. It is noted here that this is a non-trivial analysis 

since the RVEs under study do not exhibit any symmetry planes, as is the case in 

highly periodic trusses and lattices. Moreover, from the corresponding numerical 

 
Figure 5: Experimental (a) Young’s modulus and (b) Poisson’s ratio as a function of 1-c. Results of the 
FE simulations (solid symbols) together with the Hashin-Shtrikman bounds (solid lines) are also 
included for comparison. (c) Numerical estimates (top) and experimental measurements (bottom) of the 
Young’s moduli along three different directions for moderate-to-high porosity volume fractions. (d) 
Normalized bulk and shear moduli calculated using the average values of the experimental Young’s 
modulus and Poisson ratio values in (a) and (b) respectively. 
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study, we observe that if such RVEs exhibit similar moduli along the three cubic 

directions they also have similar values for the effective simple shear moduli as a 

consequence of the random dispersion of the inclusions. Therefore, in order to probe 

the degree of isotropy in our 3D-printed composites, we measure the Young’s 

modulus along the three orthogonal axes of the cubic RVE at selected volume 

fractions of void-like inclusions, e.g., c = 0.65, 0.7, 0.75, where the RVEs comprise a 

very large number of void sizes. This is achieved by first rotating the generated cubic 

cell along its three axes and then by using each rotated cell to construct the virtual test 

sample. The latter is then 3D-printed and tested. Attention is here limited to the axial 

stiffness, since measurements of the Poisson’s ratio along different directions are 

likely to be clouded by the larger scatter of data (see Figure 5b). For comparison, we 

repeat exactly the same process with the numerical RVEs. Results are reported in 

Figure 5c and are averages of three samples. As observed, the measured experimental 

degree of anisotropy is small. Specifically, the difference between the largest and 

smallest average experimental moduli is equal to 12, 9 and 6% for c = 0.75, 0.7 and 

0.65, respectively. These deviations are in the order of the experimental scatter of data 

for the pure matrix response (see Section 4 in Ref. [44]). On the other hand, 

differences in the numerical predictions are negligible. This is consistent with the 

results in Section 3.1, where a deviation of isotropy below 0.6% is reported. 

4. Discussion 

Random distributions of finitely polydisperse spherical voids (gel-like inclusions) 

embedded into a homogeneous elastic matrix produce microstructures with elastic 

moduli that lie close to the corresponding HS bounds within the range of porosity 

explored (see Figure 3 and Figure 5a). Moreover, these microstructures are isotropic 
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as revealed by both experiments and simulations (see Figure 5c and Section 3.1). As 

for most of open-cells foams produced by replication process [13],[15], isotropy in 

our materials is a direct consequence of the microstructural randomness. This feature 

is in contrast with the periodicity of most of lattices and trusses composed of webs or 

trusses [9],[25]. To guide the discussion that follows, in Figure 5d, we compare the 

experimental and numerical normalized bulk (κ/κm) and shear (G/Gm) moduli for a 

large range of porosity, i.e., 0 ≤ c ≤ 0.82. Specifically, we evaluate the experimental 

bulk and shear moduli via the linear elastic Hooke’s law (i.e. κ = E/(3(1-2ν)) and G = 

E/(2(1+ν))) using the average value of E and ν in Figure 5a,b (i.e. data points without 

the error bar). Figure 5d clearly shows that the microstructures realized in this study 

are near-optimal under hydrostatic loading but are not maximally stiff under shear 

loading. Yet, the difference between the data points for G/Gm and the theoretical HS 

bound remains small over the entire range of porosities explored, and decreases 

rapidly for small and large c. Moreover, the strong agreement between FE and 

experiments for all porosities analyzed suggests that the FE analysis accurately 

captures the underlying local deformation mechanisms.  

In turn, the small differences between the FE and the experiments can be attributed 

to two different distinct features. The first is directly linked to the experimental 

uncertainty in the elastic moduli of the base polymer matrix as these differences are in 

the same order. The second feature is related to the local nonlinear strains that are 

developed in the experimental material, whereas the FE study is carried out only in 

linear elasticity. Instead, it is highly unlikely that those small differences are a 

consequence of other factors such as the non-uniformity of the cell walls as observed 

for most of truss-lattices [25][27]), and internal damage (as reported for metallic 

open-cell foams [13], [55] at strains larger than 0.02). In fact, the present study, in 
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agreement with prior investigations [44], shows that the size and shape of the 

spherical void-like inclusions are 3D-printed with very high accuracy (Figure 1). 

Moreover, the elastic constants in Figure 5 are measured at very low strains (well 

below 0.01, see Section 2.4) to prevent damage of the thin matrix ligaments.  

In order to rationalize further the underlying mechanism for the observed deviation 

of data from the theoretical predictions (Figure 5d), we use the results of FE 

simulations. Specifically, in Figure 6, we show local strain fields for selected 

porosities, c = 0.4, 0.5, 0.65, 0.75 and 0.82, under macroscopic hydrostatic (upper 

row) and shear (lower row) PBC loading. We study, in particular, the deviation of the 

hydrostatic and shear local strains from their average counterparts. As observed in this 

figure, the strain deviations are much higher at moderate porosities, e.g., c = 0.4, 0.5, 

whereas the fields near the internal boundaries of the voids are found to become more 

uniform with increasing porosity (i.e., c > 0.6) (or decreasing porosity, c < 0.3, not 

shown here but see [44]). Furthermore, the highest strain concentration occurs in the 

regions between voids reaching, more often than not, values that exceed significantly 

(more than two times) the applied macroscopic strain in agreement with numerous 

previous studies on porous microstructures [44] and foams [56]-[57]. Those local 

 
Figure 6: Strain contours of selected porous microstructures under hydrostatic and shear loadings. 
Here the bar notation is used to denote the macroscopic applied average strain 𝜀 in the RVE. 
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Figure 7. Simulated porous microstructures at c = 0.2, 
0.5 and 0.82 alongside the numerical strain contours 
under hydrostatic loading. For the definition of the bar 
notation see Figure 6. 

strain fluctuations in random closed-cell porous solids are a direct consequence of the 

interaction between the closely packed spherical voids [44], [56]. At very high 

porosity however, i.e. at c > 0.65, the matrix ligament between the voids becomes 

very thin leading to gradually more uniform strain fields. Similar observations have 

also been made in the context of muscle geometries [58],[59] and close-cell random 

foams produced by Voronoi tessellation [60]. For these microstructures, Roberts and 

Garboczi [60] have shown, using FE simulations, that a simple scaling relation of the 

elastic moduli with relative density lacks clear physical significance. 

To correlate the observed local strain fields with the porous microstructure, we 

report in Figure 7 the simulated microstructures at porosity c = 0.2, 0.5 and 0.82 

together with the numerical strain contours for hydrostatic loading. In agreement with 

the analysis in Figure 4e, with 

increasing porosity the 

microstructure evolves from a 

random monodisperse to a finitely 

polydisperse distribution of spheres. 

As discussed earlier, the largest void 

diameter is observed to increase as 

the porosity increases from c = 0.2 to 

c = 0.82 (Figure 7). Collectively, the numerical micrographs in Figure 7 reveal 

microstructural features similar to those reported for other random closed-cell foams 

produced by conventional foaming process. Prior studies on foamed polymers 

[56],[61]-[62], glass [63] and ceramics [64] with porosity between 0.3 and 0.75, show 

that the microstructure of these materials consists of a homogeneous (random) 

distribution of nearly spherical bubbles. These bubbles are found to be uniform both 
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in size and shape at low porosity [56],[61], but gradually become polydisperse as the 

porosity increases [61]-[62]. Interestingly, similar to random closed-cell foams 

[56],[61]-[64], the present porous composites (see the magnifications in the bottom 

row of Figure 7) clearly show that there is no unique minimal thickness for the inter-

inclusion ligament t. This is a direct consequence of the void polydispersity and 

randomness. At high porosity, e.g. c = 0.82 (Figure 7), the matrix ligament between 

two neighbouring large voids contains a number of smaller inclusions as is the case 

also for foamed polymers and ceramics at low density in Refs. [61]-[62],[64]. 

Finally, in Figure 8 we compare, at equal matrix volume fraction 1-c, the measured 

normalized axial stiffness of the present closed-cell random porous materials with 

recent porous materials as well as with fully-stochastic foams produced by more 

conventional manufacturing processes (e.g. foaming and replication). As seen, the 

3D-printed porous solids of this work exhibit normalized Young’s modulus values 

that rival those of closed-cell stochastic foams. The study on the porous glass [63] 

(whose moduli are reported in Ref. [60] and in Figure 8) alongside experimental 

investigations on other foamed polymers [56],[61]-[62] indicate that the 

microstructure of these materials comprises similar geometrical features to those of 

the present composites. More interestingly, our materials are almost twice stiffer than 

most open-pore microcellular foams [15] and two to five times stiffer than two of the 

most performing metamaterials demonstrated today. The latter are the nano- and 

macroscale octet-truss lattices fabricated by 3D laser writing [65].  Hence, the present 

random 3D-printed porous materials are promising candidates in terms of relative 

stiffness per unit-volume. 
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The advantages they 

offer over other fully 

stochastic cellular solids, 

i.e. foams, produced by 

conventional processing 

routes (for which data in 

Figure 8 are taken from 

[60]) are many. These 

notably are the precision 

of the size and shape of 

the pore-inclusions as well as the ability to reach very large and precise volume 

fractions in a straightforward and controlled manner. 

Moreover, by virtue of their fully random architecture the proposed materials offer 

the added benefit of being fully isotropic, whereby most of today’s lightest and 

stiffest metamaterials of the same porosity are not [10], [24]-[29],[65]. On the other 

hand, the present materials are not cellular in the sense of relative density (but behave 

as such in the mechanical sense). As explained before, the reason is that the inclusions 

are made of a gel-like material that, despite having low axial stiffness and behaving 

mechanically as a porous-like phase as shown in section Section 3.3, it has almost the 

same density of the matrix material. In order to overcome this issue, several ideas are 

currently being explored such as introducing a minor connectivity between the 

inclusions and using a chemically soluble support material. Nonetheless, this is an 

effort at the very early stages and is left to a future study.  

 
Figure 8: Property space map of the Young’s modulus versus matrix 
volume fraction, 1-c, comparing the present isotropic 3D-printed 
porous polymers (red solid squares) with other closed-cell and open-
cell foams as well as with nano- and macro lattices of similar 
porosity.  
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5. Conclusions 

In this study, we probe the elastic deformation of 3D-printed random porous 

architectures consisting of non-overlapping, finite polydisperse spherical void-like 

inclusions embedded in a polymer matrix. The void-like spherical inclusions are built 

by the 3D-printer using a gel-like support material, whose measured elastic moduli 

are in high contrast (1:1000) with those of the glassy polymer matrix. Specifically, we 

explore volume fractions of porosity that extend from c = 0 to 0.82. The 

microstructures are generated using a modified random sequential adsorption 

algorithm, where the spherical voided inlusions, with a gradually decreasing size, are 

added sequentially and randomly in a cubic cell. Using 3D-printed dog-bone 

specimens comprising five converged representative volume elements (RVE), we 

measure the elastic Young’s modulus and the Poisson’s ratio during tensile multi-step 

relaxation testing at room temperature.  

The major finding of this study is that our microstructures provide effective elastic 

moduli that lie very close to the theoretical Hashin-Shtrikman upper bound for all 

range of porosities considered. Moreover, the proposed composites are isotropic. 

Experiments (for selected values of porosity) reveal that the differences in the axial 

stiffness measured along the three main axes of the cubic cell are higher for 

intermediate porosities, for instance in the order of 10% for c = 0.65. Since our results 

show a very good quantitative agreement between experiments and simulations, we 

use the results of FE to rationalize the observed deviation of the moduli from the 

theoretical predictions. Notably, we analyze the local strain field for selected porous 

microstructures under macroscopic hydrostatic and shear loadings. Our analysis 

confirms that strain localization is higher at moderate porosity, whereas the fields 

become progressively more uniform as porosity increases.   
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Finally, a detailed comparison of the normalized Young’s modulus of our porous 

microstructures with available data in the literature highlights their structural 

advantage. Due to the fact that our microstructures are generated using a highly 

versatile random generation algorithm, the size, shape and orientation of the voided-

inclusions can be precisely controlled during the material design. This capability 

engenders a virtually unbounded potential for the design of novel (meta)materials, 

where architecture can be efficiently optimized to achieve a target objective at 

minimal weight. Indeed, the diversity of microstructures that can be produced by this 

route is high. This attribute, coupled with the wide latitude in selection of the material 

from which the porous architecture can be printed (including metals, glass and 

ceramics), makes our approach ideally suited to explore a wealth of microstructures 

that cannot be synthetically reproduced in any other way, from rocks and biomaterials 

to even foamed food. 
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