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6LB: Scalable and Application-Aware
Load Balancing with Segment Routing
Yoann Desmouceaux, Pierre Pfister, Jérôme Tollet, Mark Townsley, Thomas Clausen

Abstract—Network load-balancers generally either do not take
application state into account, or do so at the cost of a central-
ized monitoring system. This paper introduces a load-balancer
running exclusively within the IP forwarding plane, i.e. in an
application protocol agnostic fashion – yet which still provides
application-awareness and makes real-time, decentralized deci-
sions. To that end, IPv6 Segment Routing is used to direct data
packets from a new flow through a chain of candidate servers,
until one decides to accept the connection, based solely on its local
state. This way, applications themselves naturally decide on how
to fairly share incoming connections, while incurring minimal
network overhead, and no out-of-band signaling. A consistent
hashing algorithm, as well as an in-band stickiness protocol, allow
for the proposed solution to be able to be reliably distributed
across a large number of instances.

Performance evaluation by means of an analytical model and
actual tests on different workloads (including a Wikipedia replay
as a realistic workload) show significant performance benefits in
terms of shorter response times, when compared to a traditional
random load-balancer. In addition, this paper introduces and
compares kernel bypass high-performance implementations of
both 6LB and a state-of-the-art load-balancer, showing that the
significant system-level benefits of 6LB are achievable with a
negligible data-path CPU overhead.

Index Terms—Load-balancing, Segment Routing (SR), IPv6,
Application-aware, Consistent hashing, Performance evaluation.

I. INTRODUCTION

Virtualization and containerization has enabled scaling of
application performance by way of (i) running multiple in-
stances of the same application within a (distributed) data
center, and (ii) employing a load-balancer for dispatching
queries between these instances.

For the purpose of this paper, it is useful to distinguish
between two categories of load-balancers:

1. Network-level load-balancers, which operate below the
application layer – a simple approach being to rely on Equal
Cost Multi-Path (ECMP) [1] to homogeneously distribute
network flows between application instances. This type of
load-balancer typically does not take application state into
account, which can lead to suboptimal server utilization.

2. Application-level load-balancers, which are bound to a
specific type of application or application-layer protocol, and
make informed decisions on how to assign servers to incoming
requests. This type of load-balancer typically incurs a cost
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from monitoring the state of each application instance, and
sometimes also terminates network connections (such as is
the case for an HTTP proxy).

A desirable load-balancer combines the best of these cate-
gories: (i) be application or application-layer protocol agnos-
tic (i.e. operate at below the application layer) and (ii) incur
no monitoring overhead – yet (iii) make informed dispatching
decisions depending on the state of the applications.

Furthermore, data centers are more and more utilized to
run virtualized network functions alongside traditional ap-
plications. In light of this, network load-balancers are more
and more running as virtual functions (running e.g. in virtual
machines). This allows for the load-balancers themselves
to take full advantage of the flexibility and redundancy of
a virtualized data center: for resiliency, to allow a faulty
load-balancer instance to be safely removed and replaced,
without incurring a service outage, or for scalability, by
growing (and shrinking) the number of load-balancers to be
able to accommodate different daily traffic demands and/or
unexpected traffic peaks. The resulting architecture will thus
distribute incoming flows between an edge router and several
load-balancer instances, each of which will redistribute the
flows to application instances [2], [3]. A challenge arising
from this architecture is to provide a consistent service when
traffic for a given flow is directed by the edge router to a
different load-balancer instance. This can happen e.g. when
a load-balancer instance is added or removed, causing the
corresponding ECMP mapping between the edge router and
the load-balancers to be updated correspondingly.

Thus in addition to the three desired properties exposed
above can be added: (iv) be able to be fully distributed,
providing the same service regardless of whether traffic is
directed to different load-balancer instances within the lifetime
of a flow.

These four objectives may appear irreconcilable: operating
below the application layer makes it hard to take application
state into account, and balancing by state rather than deter-
ministically ties a flow to a given load-balancer instance. This
paper aims at providing a solution satisfying these four objec-
tives, by challenging the traditional network paradigm wherein
a packet is deterministically assigned only one destination.

A. Statement of Purpose
The purpose of this paper is to propose 6LB, a load-

balancing approach that is application server load aware, yet
is both application and application-layer protocol independent
and does not rely on centralized monitoring or transmission
of application state.
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Figure 1. 6LB architecture: load-balancers assign a flow to a set of candidate
instances, through which the connection is passed until one accepts the
connection (section II). The flow is then pinned to the server having accepted
the connection (section IV).
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Figure 2. 6LB consistent hashing: when a flow is rebalanced to another load-
balancer instance by the edge router, consistent hashing (section III) allows
the flow to re-browse the same set of candidate instances, then to be re-pinned
to the one that had accepted the connection (section IV).

A key argument behind this design goal is that an applica-
tion instance itself is best positioned to know if it should be
accepting an incoming query, or if doing so would degrade
performance. Thus, 6LB disregards any design by which
queries are unconditionally assigned to an application instance
by the load-balancer. Rather, 6LB offers a received query to
several candidate application instances, ensuring that exactly
one instance accepts and processes the query.

The architecture behind 6LB is as follows, and as illustrated
in figure 1: the edge router receives and uses ECMP to assign
each incoming flow to a load-balancer. Each load-balancer
selects a set of candidate application instances, to which it
forwards (in order) the flow, using IPv6 Segment Routing
(SR) [4], which permits directing data packets through an
(ordered) set of intermediaries (see section I-C). In this way,
6LB enables that flow acceptance decisions are made strictly
locally by an application instance, based on its real-time state
information about itself, only – i.e. without any centralized
monitoring.

Once a flow is accepted by an application instance, it is
“pinned” to it by the load-balancer: subsequent packets in that
flow are all forwarded directly to that application instance. As
depicted in figure 3, this is accomplished by the load-balancer
inspecting the TCP handshake and establishing a mapping
between a flow and the application instance serving it. A
mechanism is provided to permit a load-balancer to recover
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Figure 3. TCP Connection pinning from client c to application a with 3
instances s1, s2, s3. The path (source, segments, destination) is indicated
between curly braces. The active segment is underlined.

this mapping, if for some reason it is lost1.
The final mechanism in 6LB is consistent hashing, as

illustrated in figure 2: a given flow will be assigned to the
same set of candidate application instances, regardless of by
which 6LB instance (past, current, or future, in case the pool
of instances changes) it is assigned.

While the algorithms developed in this paper are generally
applicable for any number of candidate application instances,
the concept of power of two choices [5] applies: selecting
two candidate application instances ensures a low network
footprint while providing a significant load-balancing improve-
ment – with diminishing returns beyond that. Building on the
work of [6], the novel contributions of this paper are fivefold:
(i) a consistent hashing algorithm, (ii) an in-band stickiness
protocol (the union of which allows to scale the number
of load-balancer instances for reliability and performance),
(iii) an analytic model analyzing the performance of SR-
based load-balancing, (iv) experiments with the combined
6LB load-balancing architecture conducted on a larger testbed,
and finally (v) kernel-bypass implementations of 6LB and a
state-of-the-art load-balancer (Maglev [2]) with performance
comparison of the two implementations.

B. Related Work

Among existing load-balancing approaches below the ap-
plication layer, Maglev [2] and Ananta [7] aim at providing
a software load-balancer instance that can be scaled at will,
and make use of ECMP to distribute flows between those
instances. In addition to a flow stickiness table, they also
make use of consistent hashing [8], [9], [10], for ensuring
that data packets within a given flow are directed to the same
application instance – regardless of the selected load-balancer
instance forwarding a data packet, and with minimal disruption
when the set of application servers changes. However, flows
are distributed to application instances regardless of their
current load. This is taken one step further in Duet [11]
and Rubik [12], by moving the load-balancing function to
hardware instances, while handing traffic over to software
instances in case of failure. Conversely, [13], [14] use Software
Defined Networking (SDN) on a controller, to monitor the

1For example, if a load-balancer is removed, and another load-balancer
takes over the active flows it was serving.
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Figure 4. IPv6 Segment Routing Header

application instance load and network load – and then install
network rules to direct flows to these application instances.
Other frameworks, such as [15], can be used to gather precise
monitoring information on the network load.

Simple application-aware load-balancing policies (random,
shortest queue, threshold) have been introduced in [16]; in [5],
[17], it is shown that performing a load-balancing decision
based on two random servers is sufficient to exponentially
decrease the response time as compared to a random strategy.
This concept has been used by [18] for peer-to-peer applica-
tions. Another similar idea, proposed in [19], [20], consists
of duplicating queries among several replicas, and serving the
quickest reply to the client. In [21], SR is used to duplicate
traffic through two different disjoint paths, so as to decrease
latency and packet loss.

In [22], three load-balancing techniques are listed, which
can be used for dispatching queries among Web servers:
DNS round-robin, dispatchers that perform NAT or destination
IP rewrite, and redirect-based approaches. Application-aware
load-balancing mechanisms for static Web content include
[23], [24], [25], which assign queries as a function of their es-
timated size so that each application instance becomes equally
loaded. In [26], a feedback approach is used to estimate the
parameters of a queuing model representing the system, before
making a load-balancing decision.

Application-layer protocol aware load-balancers, e.g.
HAProxy [27], also propose application-awareness by esti-
mating the load on each application instance and assigning
new queries accordingly. Load estimates are obtained either
by tracking open connections through the load-balancer to the
backend servers (and thus do not consider other loads), or by
periodically probing the backends for load information (and
thus suffer from polling delay and incur network overhead).
Another issue with application-level load-balancers is that
network connection is reset when a failure causes a flow to be
migrated from one load-balancer instance to another. The load-
balancer introduced in [28] aims at solving this by keeping
per-flow TCP state information in a distributed store.

C. Segment Routing

IPv6 Segment Routing (SR) [4] permits directing data pack-
ets through an (ordered) set of intermediaries, and instructing
these intermediaries to perform a specific function [29]. For
example, one instruction could be “process the contained
query, if you are not too busy”. As SR is a network layer
service, segments are expressed by way of IPv6 addresses,
and the simplest possible sequence of segments interprets into
“forward the packet to A, then B, then C” – i.e. source routing.
The SR information is expressed as an IPv6 Extension Header,
defined in [30] (figure 4), comprising a list of segments
and a counter SegmentsLeft – indicating the number of
remaining segments to be processed. Although [30] specifies

that the last segment in the header is the first segment to be
processed (i.e. the order of segments in the packet is reversed),
for the purpose of readability this paper will use the convention
that (s1, . . . , sn) represents an SR header indicating s1 as a
first segment to be traversed.

D. Paper Outline
The remainder of this paper is organized as follows. Sec-

tion II describes the use of Segment Routing for performing
load-balancing. Section III describes a consistent hashing algo-
rithm, which allows to distribute the load-balancing function
into different instances, for scalability. Section IV describes
how “stickiness” can be established and recovered between
load-balancer instances and server instances, using an in-band
channel. An analytical performance model of 6LB is derived in
section V. 6LB is then experimentally evaluated in section VI,
by means of a synthetic workload and a realistic workload
consisting of a Wikipedia replica; and the performance of the
implementation in terms of packet forwarding capabilities is
evaluated. Finally, section VII concludes this paper.

II. SERVICE HUNTING WITH SEGMENT ROUTING

A. Description
Service Hunting uses SR to direct network packets from

a new flow through a set of candidate application instances
until one accepts the connection. It assumes that applications
are identified by virtual IP addresses (VIPs), and can be repli-
cated among several servers, identified by their topological
addresses. Servers run a virtual router (e.g. VPP [31]), which
dispatches packets between physical NICs and application-
bound virtual interfaces. Finally, a load-balancer within the
data center advertises routes for the VIPs.

When a new flow2 for a VIP arrives at the load-balancer, it
will select a set of candidate application instances from a pool,
and insert an SR header identifying this set into the IPv6 data
packet. The SR header will contain a list of segments, each
indicating that the query can be processed by either of these
application instances, and with the VIP as the last segment.
Different policies can be used to select the list of candidate
application instances to include in the SR header. It has been
shown in [5] that selecting two random candidate application
instances is enough to greatly improve load-balancing fairness,
with a decreasing marginal benefit when using more than
two instances. Thus, 6LB assigns each new flow to two
pseudo-randomly chosen application instances – by way of
a consistent hashing scheme, described in section III.

When the flow reaches a candidate application instance,
the corresponding segment in the SR header indicates that
the virtual router may either forward the packet (i.e. start
processing the next segment), or may directly deliver it to
the virtual interface corresponding to the application instance.
This purely local decision to accept query, or not, is based
on a policy shared only between the virtual router and the
application instance, running on the same compute node.
To guarantee satisfiability, however, the penultimate segment
indicates that the application instance must not refuse a query.

2Typically, a TCP SYN packet as part of a connection request.
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Algorithm 1 Static Connection Acceptance Policy SRc

for each SYN packet do
b← number of busy threads
if b < c or SegmentsLeft = 1 then

SegmentsLeft← 0, forward packet to application
else

SegmentsLeft← SegmentsLeft− 1
forward packet to next application instance in SR list

end if
end for

Algorithm 2 Dynamic Connection Acceptance Policy SRdyn

accepted← 0, attempt← 0
c← 1 . or other initial value
ε← 0.1 . or other increment value
windowSize← 50 . or other window size
for each SYN packet with SegmentsLeft = 2 do

attempt← attempt+ 1
if attempt = windowSize then

. end of window reached, adapt c if needed and reset window
if accepted/windowSize < 1

2
− ε and c < n then

c← c+ 1
else if accepted/windowSize > 1

2
+ ε and c > 0 then

c← c− 1
end if
attempt← 0, accepted← 0

end if
SRc policy() . use SRc policy with current value of c
if SRc succeeded then

accepted← accepted+ 1
end if

end for
for each SYN packet with SegmentsLeft = 1 do

SegmentsLeft← 0, forward packet to application
end for

B. Connection Acceptance Policies

An application agent informs the virtual router if the local
application instance wishes to accept a flow. The application
agent may make this decision based on whatever information
it has locally available – from the operating system, or from
real-time application metrics, if exposed. If information is
exchanged through shared memory, this incurs no system calls
or synchronization, thus imposes a negligible run-time cost.

This section describes two simple policies for deciding if
to accept new flows, or not. They assume that the application
uses a standard master-slave thread architecture. Section VI-A
will illustrate the application of these policies, in case of an
HTTP server such as Apache. Table I summarizes the notation
used throughout this paper to designate the different policies.

1) Static: With n worker threads in the application instance,
and a threshold parameter c between 0 and n+1, Algorithm 1
describes a policy, SRc, where an application instance accepts
the flow if and only if strictly less than c worker threads are
busy (except for the last in the SR list, which must always
accept). Thus, an application instance which is “too busy”
will be assigned a connection only if all previous application
instances in the list are also “too busy”. The choice of the
parameter c directly influences the global system behavior:
small values of c yield better results under light loads, and
high values yield better results under heavy loads. As extreme
examples, when c = 0, all requests are satisfied by the last
application instance of their SR lists; when c = n + 1, all
requests are satisfied by the first: both cases reduce to a random

SC Single-Choice policy (baseline)

SRc
Static acceptance policy (Algorithm 1) with threshold c

e.g. SR4 is the policy of Algorithm 1 with c = 4
SRdyn Dynamic acceptance policy (Algorithm 2)

Table I
NOTATION

Protocol new flow pinned flow
IPv6 SR insert 72 56
IPv6 SR encap 96 80

IPv6 GRE Tunnel 88 44
IPv6 VXLAN Tunnel 140 70

Figure 5. Protocol overhead (in bytes) for different steering mechanisms,
towards two (new flow) or one (pinned flow) application instances.

load-balancing scheme. If the chosen value of c is too small
as compared to the load, almost all connections are treated by
the last application instance of their SR lists, and vice-versa.

If the typical load is known, the value of c can be configured
statically – otherwise, a dynamic policy can be employed.

2) Dynamic: When the typical load is unknown, the policy
SRdyn adapts c to maintain a rejection ratio of each appli-
cation instance of 1

2 , as detailed in Algorithm 2. Previous
acceptance decisions are recorded over a fixed window of
queries. When the end of the window is reached, if the number
of accepted queries is significantly below (or above) 1

2 , the
value of c is incremented (or decremented).

C. Protocol Overhead

Inserting an IPv6 SR header to steer a connection through
multiple application instances has an impact in terms of packet
size overhead. To quantify this, figure 5 depicts the number
of extra bytes needed to steer a packet through two (new
flow) or one (pinned flow) servers, for different protocols.
As compared to other equivalent solutions allowing to steer
a request through a set of instances (by sticking several
successive tunneling headers), the proposed approach has the
lowest overhead. After flow pinning, the overhead incurred by
using SR to steer packets is of 12 bytes as compared to GRE.

D. Reliability

The solution described in this section (and more generally
in this paper) focuses on the data-plane: it is assumed that
a controller takes care of installing the mapping between a
VIP and the set of addresses of servers capable of serving that
VIP. Notably, as in other distributed load-balancing approaches
[2], [7], the controller should take care of health-checking the
backend servers, and removing them from the set of available
servers if unresponsive.

Since connection establishment packets go through a chain
of servers rather than a single one, the properties of 6LB
when facing failures need to be considered. Two scenarios
can be distinguished. First, if a whole machine goes down
(critical failure), new flows whose first candidate application
instance is hosted on this machine will fail to be established,
and new flows whose second candidate application instance
is hosted on this machine will fail only if the first instance
rejected them. This incurs a pR% failure overhead as compared
to single-choice load-balancing approaches, where pR is the
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percentage of connections being rejected by a first instance
(e.g. 50% with SRdyn). However, this happens only during
the short amount of time before the controller detects that
the machine is down and updates the backend pool on load-
balancers accordingly3. Second, if an application instance goes
down (crashes or becomes unresponsive) but the machine
hosting it still remains up (non-critical failure), the virtual
router on that machine will be able to forward connection
establishment packets to the next instance in the SR list, for
new flows whose first candidate instance is failing. Thus, for
non-critical failures, 6LB increases the reliability of the system
as compared to single-choice approaches, with a (100−pR)%
failure reduction.

III. HORIZONTAL SCALING WITH CONSISTENT HASHING

Elastic scaling of the number of load-balancer instances is
required, in order to accomodate dynamic data center loads
and configurations. When a load-balancer instance is added or
removed, the ECMP function (see figure 1) performed by the
edge router(s) may rebalance existing flows between remaining
load-balancer instances. Thus, it is necessary to ensure that the
mapping from flows to lists of candidate application instances
is consistent across all load-balancers. This is achieved by the
use of consistent hashing, depicted in figure 2 – which must
also be resilient to modifications to the set of applications
instances: adding or removing an application instance must
have minimal impact on the mapping of existing flows.

Consistent hashing for load balancing is used e.g. in [2],
which proposes an algorithm mapping an incoming flow to one
application instance. This section introduces a new consistent
hashing algorithm (generalizing the one from [2]) to allow
each flow to map to an ordered list of application instances.
Although 6LB uses 2 choices, the mechanism presented in this
section is agnostic to this value, and is therefore presented for
lists of C instances.

A. Generating Lookup Tables

With M buckets and N application instances, and where
N �M , a pseudo-random permutation p[i] of {0, . . . ,M−1}
is generated for each application instance i ∈ {0, . . . , N − 1}
– e.g. by listing the multiples of the i-th generator of the group
(ZM ,+). These permutations are then used to generate a
lookup table t : {0, . . . ,M−1} → {0, . . . , N−1}C , mapping
each bucket to a list of C application instances, following the
procedure described in Algorithm 3. This table t is then used to
assign SR lists of application instances to flows: each network
flow will be assigned an SR list by hashing its network 5-tuple
into a bucket j and taking the corresponding list t[j].

Generating the lookup table t is done by browsing through
the set of application instances in a circular fashion, making
them successively “skip” buckets in their permutation until

3A simple way to improve the reliability of the system during this short
amount of time would be to monitor, in-band, the responsiveness of the servers
(e.g. by gathering information about packet retransmissions or return traffic),
and to rotate the order of SR lists for packets whose first instance is deemed
unresponsive. This would increase reliability while ensuring that the browsed
set of instances remains the one returned by consistent hashing.

Algorithm 3 Consistent Hashing
nextIndex← [0, . . . , 0]
C ← 2 . or another size for SR lists
t← [(−1,−1), . . . , (−1,−1)]
n← 0
while true do

for i ∈ {0, . . . , N − 1} do
if nextIndex[i] =M then . permutation exhausted

continue
end if
c← p[i][nextIndex[i]] . advance in i’s permutation
. skip buckets for which the SR list is already filled
while t[c][C−1] ≥ 0 do

nextIndex[i]← nextIndex[i] + 1
if nextIndex[i] =M then . permutation exhausted

continue 2 . continue the upper loop
end if
c← p[i][nextIndex[i]]

end while
. c is now the first bucket with SR list not filled
choice← 0
while t[c][choice] ≥ 0 do

choice← choice+ 1
end while
. choice is now the first available position in the SR list
t[c][choice]← i
nextIndex[i]← nextIndex[i] + 1
n← n+ 1
if n =M × C then return t
end if

end for
end while

finding one that has not yet been assigned C application
instances. Once each bucket has been assigned C application
instances, the algorithm terminates. This process is illustrated
in figure 6a, for C = 2 choices, with N = 4 application
instances and M = 7 buckets. For each application instance
i, the corresponding permutation table p[i] is shown, where
a circled number j©n means that bucket j has been assigned
to that application instance at step n. For each bucket j, the
lookup table t[j] returned by the algorithm is also shown. For
instance, bucket 3 is assigned to instance 1 (at step 5) and
instance 2 (at step 6), thus the lookup table for bucket 3 is
(1, 2). The “skipping” behavior occurs e.g. at step 9, where
bucket 5 is skipped in p[1][j] because it was already assigned
two application instances.

B. Analysis

1) Resiliency: Figure 6b illustrates how this scheme is
resilient to changes to the pool of application instances, by
showing how removing application instance 0 modifies the
tables t[j] from the example of figure 6a. Assuming that flows
are assigned to the first or second application instance in their
SR lists with equal probability (as with the SRdyn policy), the
question is how flows mapped to a non-removed application
instance (1, 2, 3 in this example) are affected by the table
recomputation. For each bucket, one failure is counted for
each non-removed application instance appearing in the lookup
table before recomputation, but not after. In the example of
figure 6, the only failure is induced by bucket 4, as the second
entry of its lookup table, 1, does not appear in its newly
computed lookup table, (3, 2). With 10 non-removed flows,
the failure rate in this example is 10%.
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Permutation tables p[i] for each Application Instance i:
j 0 1 2 3 4 5 6

p[0][j] 4©0 5©4 6©8 0 1 2©12 3
p[1][j] 1©1 3©5 5 0©9 2 4©13 6
p[2][j] 5©2 3©6 1©10 6 4 2 0
p[3][j] 6©3 0©7 1 2©11 3 4 5

and lookup table t:
Bucket j 0 1 2 3 4 5 6

SR list t[j] (3,1) (1,2) (3,0) (1,2) (0,1) (2,0) (3,0)

(a) Before removal of Application Instance 0

Permutation tables p[i] for each Application Instance i:
j 0 1 2 3 4 5 6

p[1][j] 1©0 3©3 5©6 0©9 2©12 4 6
p[2][j] 5©1 3©4 1©7 6©10 4©13 2 0
p[3][j] 6©2 0©5 1 2©8 3 4©11 5

and lookup table t:
Bucket j 0 1 2 3 4 5 6

SR list t[j] (3,1) (1,2) (3,1) (1,2) (3,2) (2,1) (3,2)

(b) After removal of Application Instance 0

Figure 6. Example permutation tables p[i] and lookup table t (C = 2,M =
7, N = 4), before and after removal of application instance 0
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Figure 7. Resiliency of consistent hashing to application instance removals:
1 choice (no SR) vs 2 choices (6LB)

Intuitively, mapping flows to two application instances,
instead of just to one, increases resiliency: it is less likely
that the SR lists of a bucket before and after recomputation
have empty intersection – for this to happen, a single bucket
would need to be re-assigned twice.

The resiliency of algorithm 3 is studied by way of a simula-
tion. An initial lookup table was computed. Then, k application
instances were removed and the lookup table was recomputed
– which allowed computing the previously introduced failure
rate. The parameters were N = 1000 servers, M = 65537
buckets, and 20 experiments were performed, for each value
of k from 0 to 30.

Figure 7 reports the failure rate as a function of the number
of removed instances. First, with C = 1 (i.e. mapping each
flow onto a single application server), results identical to
figure 12 in [2] are obtained, confirming that the algorithm
reduces to the algorithm from [2] in this case. Using algo-
rithm 3 for mapping each flow to two application instances
(C = 2) shows up to 44% fewer failures (when k = 8) – or,
to put it differently, 44% fewer TCP connections being reset.

2) Fairness: Each application instance picks the same num-
ber of buckets (as first or second entry), except potentially one
in the last round. Assuming a probability of acceptance of 1

2
(as with SRdyn), this guarantees that traffic is equally spread
between application instances. Note that a given application in-
stance is not assigned the same number of first-choice buckets
and second-choice buckets; this is nonetheless compensated by

the fact that application instances do balance the load between
themselves – this is evaluated in section VI-B4.

3) Complexity: If permutations p[i] are randomly dis-
tributed, this algorithm is a variant of the coupon collector’s
problem, and is expected to terminate in M logM + O(M)
steps for C = 1 [32], and in M logM+M log logM+O(M)
steps for C = 2 [33]. Hence, choosing two, rather than one,
application instances requires only 1+ log logM

logM ≤ 1.368 times
more steps.

In comparison to the naı̈ve algorithm consisting in building
two uncorrelated lookup tables for the first and second appli-
cation instances in the SR list, the benefit of using Algorithm 3
is twofold: the generation time is smaller, and jointly building
the two entries make the scheme more resilient to changes as
shown in figure 7.

IV. IN-BAND STICKINESS PROTOCOL

A load-balancer instance should, for each flow it handles,
have knowledge of the application instance which has accepted
the flow. First, this allows packets to be directly steered to
the handling instance, without hopping through the chain of
candidates. Second, this ensures that, when the consistent
hashing table is recomputed (e.g. due to changes in the pool
of applications), existing connections are protected against
potential changes in the lookup table.

Thus, a signaling mechanism is required between the load-
balancer and the application instances. Four properties should
be satisfied: (i) no external control traffic should be generated,
(ii) deep packet inspection should be minimized, (iii) incoming
packets should go directly to the application instance handling
the flow, and (iv) outgoing packets should not transit through
the load-balancer.

To satisfy (i) and (ii), SR headers are inserted into packets
part of the accepted flow, i.e. a set of SR functions are
used for communicating between the load-balancer and the
application instance. Objective (iii) is accomplished by having
the appliation instance signal to the load-balancer when it has
accepted a flow (i.e. by adding an SR header to, typically, the
TCP SYN+ACK), and (iv) by making other traffic (i.e. packets
other than, typically, the TCP SYN+ACK) bypass the load-
balancer and be sent directly from the application instance to
the client.

A. SR Functions
SR functions are used to encode actions, which are to be

taken by a node, directly in the SR header. This is closely
linked to how IPv6 addresses are assigned: since each compute
node is assigned a (typically, 64 bit [34]) IPv6 prefix, it
is possible to use the lower-order bytes in this prefix to
designate different functions, as recommended by the SR draft
specification [29]. These functions will also depend on the
address of the first segment in the SR list (the “sender” of the
function). In practice, when a node whose physical prefix is
s receives a packet with SR header (x, . . . , s::f, . . . ), it will
trigger a function f with argument x, which will be denoted
by s.f(x). In terms of a state machine, each SR function
will thus (i) move the node from one state to another and (ii)
trigger an action on the packet containing the SR function.
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B. Handshake Protocol

When a (TCP) flow is initiated, SR functions are added
to the TCP handshake, so as to inform the load-balancer
candidate application instance has accepted the flow - thus
establishing a handshake protocol between the load-balancer
and the application instance handling a flow. This handshake
protocol is formally described as state machines in tables II
and III (in the appendix), and detailed below:

1. Upon receipt of a flow (typically, a TCP SYN packet)
from a client c for an application whose VIP is d, the load-
balancer lb will insert an SR header (lb, s1::ca, s2::cf, d)
comprising the physical addresses of the two candidate ap-
plication instances s1, s2 as given by the hashing function,
and the original VIP. The suffix ca in the addresses indicate a
function connectAvail, whereas cf represents a function
connectForce. The first application instance in the list will
make a local decision on whether to accept the flow. In case of
refusal, the packet will be forwarded to the second application
instance, which will have to forcefully accept the flow.

2. The application instance si (i ∈ {1, 2}) that has accepted
the connection enters a waiting state for this flow. While in
this state, it will temporarily steer traffic from the application
towards the load-balancer, so that the latter can learn which
application instance has accepted the connection. To do so, it
inserts an SR header (si, lb::cs, c) in packets coming from the
application, where cs is the createStickiness function.

3. Upon receipt of such a packet, the load-balancer enters
a steering state, during which traffic from the client to the
application is sent using (lb, si::as, d) as an SR header, as
standing for a function ackStickiness. This permits both
steering the traffic directly to the correct application instance,
and acknowledging the creation of a stickiness entry.

4. Then, when si receives such a packet, it enters a direct
return state for this flow. As si has acknowledged the creation
of the stickiness entry on the load-balancer, it thus does not
need to send traffic through it anymore. Subsequent traffic sent
by si will therefore be sent directly towards the client, without
using SR.

5. Finally, when si receives a connection termination packet
from the application (typically, a TCP FIN or RST), it will
insert an SR header (si, lb::rms, c), where rms designates a
removeStickiness function. This allows explicitly sig-
naling connection termination to the load-balancer. When
receiving this packet, the load-balancer will start a small timer,
at the expiration of which it will remove the corresponding
stickiness entry – using a small timer ensures that packets
are correctly steered to the rightful application instance while
the transport layer connection teardown is happening. In ad-
dition to this explicit connection termination process, periodic
garbage collection is used to remove stale entries from the
load-balancer.

C. Failure Recovery

When adding or removing a load-balancer instance, traffic
corresponding to a given flow might be redirected to a dif-
ferent load-balancer instance from the one over which it was
initiated.

In order to recover state, when a new load-balancer instance
receives a flow for which it does not have any state, incoming
data packets corresponding to an unknown flow are added
an SR header (lb, s1::rs, s2::rs, d), where rs is an SR
function recoverStickiness. Consistent hashing ensures
that {s1, s2} is the same instance set as the one used by
the previous load-balancer. When receiving a packet for this
SR function, the application instance that, in the past, has
accepted the flow will re-enter the steering state, so as to
notify the load-balancer. Conversely, an application instance
that has previously not accepted the flow will simply forward
the packet to the next application instance in the SR list.

V. PERFORMANCE ANALYSIS

In this section, an analytic model describing the perfor-
mance of 6LB with the SRc policy (Algorithm 1) is derived.
By way of this model, 6LB is compared to a Single-Choice
random flow assignment approach (SC), which reflects the
behavior of standard consistent-hashing approaches (e.g. [2]).

A. System Model

It is assumed that the system contains N application in-
stances, with N → +∞, and that consistent hashing uses
enough buckets such that the SR list associated with a flow is
uniformly chosen amongst the N2 possible lists.

In this section, the expected response time for the static
acceptance policy SRc described in Algorithm 1 is derived,
for c an integer threshold parameter. While a similar model
has been formulated in [35], the contribution in this paper
is that the model developed allows deriving the associated
expected response time, the fairness index, and the response
time distribution. This paper also validates the model against
a real deployment experiment.

Incoming flows are assumed distributed according to a
Poisson process of rate Λ = Nλ, and each application
instance offers an exponentially distributed response time, with
a processing rate normalized to µ = 1. For stability, the arrival
rate must verify λ < 1. For i ≥ 0, si is the fraction of
application instances for which there are i or more pending
flows (with s0 = 1). This allows writing (as in [35]):{

dsi
dt = λ(1 + sc)(si−1 − si)− (si − si+1),∀1 ≤ i ≤ c
dsi
dt = λsc(si−1 − si)− (si − si+1),∀i > c

(1)
When i ≤ c, the probability of a flow being sent to

an application instance which already handles (i − 1) other
flows (i) directly is (si−1 − si) and (ii) after having being
rejected by an application instance which already handles c
or more flows is sc(si−1 − si). This yields a total proba-
bility of (1 + sc)(si−1 − si). The same reasoning applies
for i > c, where the probability of a flow being sent to
an application instance which already handles (i − 1) flows
(i ≥ 1) is the probability of having been rejected by a first
application instance already handling c or more flows, before
having been sent to an accepting application instance, yielding
sc(si−1−si). The probability of a flow leaving an application
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instance already handling i flows is (si−si+1). Since the per-
application-instance arrival rate is λ and the processing rate is
µ = 1, this yields equation (1).

To study the behaviour of the system once in equilibrium, it
is necessary to find a fixed point to the differential system (1).
Setting dsi

dt = 0 yields the following system of equations
(where s0 = 1):{

0 = λ(1 + sc)(si−1 − si)− (si − si+1),∀1 ≤ i ≤ c
0 = λsc(si−1 − si)− (si − si+1),∀i > c

(2)
For 1 ≤ n ≤ c, summing equation (2) over i = n to +∞

gives sn = λ(1 + sc)(sn−1− sc) + λs2
c , or: sn = λ[sn−1(1 +

sc) − sc]. Since s0 = 1, this gives s1 = λ. More generally,
solving this recursion yields:

sn =
(1− λ)(λ(1 + sc))

n − λsc
1− λ(1 + sc)

,∀1 ≤ n ≤ c (3)

Then, for n > c, summing equation (2) over i = n to +∞
gives sn = λscsn−1, i.e. :

sn = (λsc)
n−csc,∀n ≥ c (4)

Plugging n = c into equation (3) allows formulating an
implicit equation for sc:

sc(1− λsc) = (1− λ)[λ(1 + sc)]
c (5)

This polynomial equation can be solved explicitly for c ≤ 5,
and numerically otherwise. Using this solution in equations (3)
and (4) allows obtaining the value of sn for any n, i.e. the
distribution of the number of flows awaiting being handled by
an arbitrary application instance.

B. Expected Response Time

The expected number X of flows in the system can be com-
puted, given that the probability that an application instance
handles n flows is (sn − sn+1): E(X) = N

∑+∞
n=0 n(sn −

sn+1) = N
∑+∞
n=1 sn.

According to Little’s law [36], the expected time T spent
in the system by a flow is: E(T ) = E(X)

Λ = 1
λ

∑+∞
n=1 sn.

Summing sn, as obtained in equations (3) and (4), and using
equation (5) gives:

c−1∑
n=1

sn =
λ− λsc(c− 1)− sc

1− λ(1 + sc)
,

+∞∑
n=c

sn =
sc

1− λsc

Hence:

E(T ) =
1− csc(1− λsc)− λsc(1 + sc)

(1− λsc)(1− λ(1 + sc))
(6)

Figure 8a depicts the value of E(T ) for different SRc

policies, and for λ ∈ [0, 1). As a reference, this value is
compared to 1

1−λ , the expected response time for SC, when
clients are randomly assigned to one server. It can be observed
that the SRc policies uniformly yield an improvement over
SC. When c is small, lower values of λ yield the highest
gain; when c is important, higher values of λ yield the highest
gain. For example, choosing SR8 offers an improvement over
SR4 only when λ ≥ 0.983, and thus might rarely be suitable.

C. Additional Forwarding Delay

In cases where the server-to-server forwarding delay is
significant as compared to the job duration, forwarding a
query to the second application instance in an SR list incurs
an additional cost. If δ > 0 denotes the network delay,
multiplying this by the probability of being rejected by a first
application instance gives the expected additional delay. Thus,
the response time including delay, T̂ , verifies:

E(T̂ ) = E(T ) + δ × sc (7)

The following theorem states the conditions under which SRc

does not degrade performance as compared to SC:

Theorem 1. As long as the network delay δ is smaller than
the job duration 1/µ, the response time including delay with
SRc is better than with SC: E(T̂ ) ≤ 1

1−λ ,∀δ ≤ 1.

The proof is given in the appendix. Figure 8d gives the
expected response time including delay, in the “worst-case” in
which the network delay equals the job duration (δ = 1).

D. Fairness Index

Jain’s fairness index [37], defined as F = E(X)2

E(X2) ∈ [0, 1], is
a measure for how even a load is distributed in a system: the
closer it is to one, the more evenly is the load distributed.

Computing F requires computing E(X2), the second mo-
ment of the number of flows in the system:

E(X2) = N

+∞∑
n=0

n2(sn − sn+1) = N

+∞∑
n=1

(2n− 1)sn

Using equations (3), (4) and (5), this yields:
c−1∑
n=1

(2n− 1)sn =
1

(1−λ(1+sc))2

[
λ2(sc + 1)((c−1)2sc+ 1)

+ λsc(2csc − 3sc + 2c− c2 − 2)− 2csc + λ+ sc

]
,

+∞∑
n=c

(2n− 1)sn =
sc(c(2− 2λsc) + 3λsc − 1)

(1− λsc)2

Combining those expressions with the expression for E(X)
from section V-B allows to compute F . Figure 8b depicts F ,
for different SRc policies, and for λ ∈ [0, 1) – and compares
with λ

1+λ , the fairness index for the SC policy. It can be
observed that SRc policies provide a better fairness than the
reference SC policy, and that low values of c are more suitable
for a low rate of new flow arrivals whereas high values of c
are preferable for higher rates of new flow arrivals.

E. Wrongful Rejections

As has been shown in section V-C, using the SRc policy
yields better performance than SC, because an overloaded
application instance can offload a query to another random
instance. However, the proposed mechanism is not fully equiv-
alent to the canonical “power-of-two-choices” scheme [5],
wherein the least loaded of two random instances is chosen.
Suboptimal decisions happen when a first instance handling
n ≥ c flows rejects the connection to a second instance
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Figure 8. Performance analysis of 6LB: SC vs SR2, SR4 and SR8.
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Figure 9. Probability of wrongful rejection for different SRc policies.

with strictly more than n flows. It is possible to estimate the
quantity of such wrongful rejections: the probability of hitting
such a pair of instances is (sn−sn+1)sn+1. Using equation (4),
the probability pw of wrongful rejection can be expressed as:

pw =

+∞∑
n=c

(sn − sn+1)sn+1 =
λs3
c

1 + λsc
(8)

In order to quantify this, figure 9 shows the probability of
wrongful rejection for different SRc policies. For example,
with SR4, wrongful rejections happen with probability lower
than 4.5% when λ ≤ 0.9.

F. Response Time Distribution

The model also allows deriving the distribution of the time
that a flow exists in the system. Knowing this distribution
allows, for example, characterizing the performance of 6LB

for Service Level Agreement (SLA) metrics, of the form “No
more than x% of clients experience a response time ≥ y”.

The distribution of the time T a flow waits, will be derived
by computing its characteristic function ϕT (θ) = E(eiθT ) (for
θ ∈ R). Assume that the system is at its equilibrium given
by equation (2), and that application instances use a FIFO
policy with exponential response times. When a flow is being
directed to an application instance that is already handling
(k − 1) flows (k ≥ 1), its waiting time will be distributed
as the sum of k independent and identically distributed (i.i.d.)
exponential random variables (E1, . . . , Ek) of parameter µ = 1.
The characteristic function of one such variable is E(eiθE1) =

1
1−iθ , hence E(eiθT |k − 1 clients) =

(
1

1−iθ

)k
.

When a flow arrives at the system, it will, with probability
(1k≤c + sc)(sk−1 − sk) = 1

λ (sk − sk+1), be directed to an
application instance which is already handling (k − 1) other
flows. Based on this, it is possible to express the characteristic
function of the waiting time of an arbitrary flow:

E(eiθT ) =

+∞∑
k=1

1

λ
(sk − sk+1)

(
1

1− iθ

)k
Using equations (3), (4) and (5), this can be expressed as:

E(eiθT ) =
(1− λ)(1 + sc)

1− λ(1 + sc)− iθ

− sc(1− λsc)
(1− λsc − iθ)(1− λ(1 + sc)− iθ)(1− iθ)c−1

(9)

which can be inverted to find pT , the probability density of
T , using pT (t) = 1

2π

∫ +∞
−∞ e−iθtE(eiθT )dθ.

Figure 8e depicts the CDF of this probability distribution,
for λ = 0.88, and for various SRc policies. At this high load,
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the distribution for the SRc policies exhibit lower response
times and less variance as compared to SC.

Integrating this probability density allows finding πx, the
x-th percentile of response time, defined as the number satis-
fying:

Pr(T ≤ πx) =

∫ πx

0

pT (t)dt =
x

100
(10)

Figure 8c depicts π90, the 90-th percentile of response time,
for various SRc policies and for λ ∈ [0, 1), and is compared
to ln(10)

1−λ , the same metric for the SC policy. Similarly as in
figure 8a, the response time with SRc is lower than with SC,
and small values of c are more suitable for low request rates.

G. Reducing the Number of Servers

The developed model allows estimating the gain, in terms
of how many fewer application instances are required to attain
a certain SLA, when using 6LB as compared to when using
“plain” SC.

Assuming that a system faces a daily request rate profile
with a peek rate Λ0, and the goal is to provide a given SLA
µ0 on the 90-th percentile of response time: no more than 10%
of clients should receive a target response time greater than
µ0 (i.e. π90 = µ0).

With a simple SC load-balancer, the system faces a nor-
malized request rate of λ0 = Λ0/N , and the 90-th percentile
of response time is π90 = ln(10)

1−Λ0/N
– thus, requiring deploying

N = Λ0

1−ln(10)/µ0
application instances to meet the SLA.

As per equation (10), let π(λ) be the function giving the
90-th percentile of response time π90 as a function of λ, when
using 6LB with the SRc policy. In order to meet the SLA,
i.e. to ensure that π(Λ0/N) = µ0, N ′ = Λ0

π−1(µ0) application
instances must be deployed.

Comparing SC and 6LB with SRc yields:

N ′

N
=

1− ln(10)/µ0

π−1(µ0)
(11)

Figure 8f depicts this reduction in number of servers, as a
function of the target SLA µ0, between SC and SR4. If the
SLA requires that no more than 10% of clients experience a
response time greater than e.g. µ0 = 6, then if that is met by a
deployment of e.g. N = 100 application instances when using
SC, only N ′ = 71 application instances are required if using
6LB with the SR4 policy.

VI. EVALUATION

A. Experimental Platform

The experimental platform used for evaluating 6LB is
composed of a load-balancer and a server agent for the Apache
HTTP server.

1) Load-Balancer: The load-balancer performing consis-
tent hashing, SR header insertion and flow steering is imple-
mented as a VPP plugin [31]. Having kernel-bypass capabil-
ities and embedding an IPv6 Segment Routing stack, VPP is
a suitable choice to build a performing implementation. As a
reference, Maglev [2] was also implemented to evaluate the
single-choice consistent hashing flow assignment policy SC.

2) Apache HTTP Server Agent: A server agent for the
Apache HTTP server [38] has been implemented as a VPP
plugin, accessing Apache’s scoreboard shared memory4 to
allow the virtual router to access the state of the application
instance. Apache uses a worker thread model: a pool of
worker threads is started in advance, and received queries are
dispatched to those threads. Thus, a simple exposed metric is
the state of each worker thread, allowing to count the number
of busy/idle threads, and use this to decide on connection
acceptance, using one of the policies described in section II-B.

3) System platform: The experiments, described in sec-
tions VI-B and VI-C, are conducted on a common platform.
An edge router and two load-balancer instances are deployed
as 2-core VMs residing in one physical machine. N = 48
application instances of an Apache HTTP server reside each
in a 2-core VM, all of which are hosted across 4 physical
machines (distinct from the one hosting the edge router/load-
balancers). The edge router is configured to split traffic for the
application across the two load-balancer instances, by way of
ECMP, as in figure 1. VPP instances running in the edge router
VM, in the load-balancer VMs, and in each of the VMs of
the application instances, are on the same Layer-2 link, with
routing tables statically configured. Each physical machine has
a 24-core Intel Xeon E5-2690 CPU.

The size of the consistent hashing table of the load-balancer
instances was set to M = 65536 (except for the experiments
of sections VI-B4 and VI-B5), and the Apache servers were
configured to use the mpm_prefork module, each with 32
worker threads and with a TCP backlog of 128.

The tcp_abort_on_overflow parameter of the Linux
kernel was enabled, triggering a TCP RST when the backlog of
TCP connections exceeds queue capacity, rather than silently
dropping the packet and waiting for a SYN retransmit. Thus
under heavy load, it is application response delays that are
measured, and not possible TCP SYN retransmit delays.

B. Poisson Traffic

1) Traffic and Workload Patterns: To evaluate the efficiency
of the connection acceptance policies from section II-B under
different loads, 6LB was tested against a simple CPU-intensive
web application, consisting of a PHP script running a for loop
with an exponentially distributed number of iterations, and
whose duration is 190 ms in average. Using such a distribution
ensures that job durations exhibit reasonable variance (the
standard deviation of the exponential distribution is equal to its
mean). A traffic generator sends a Poisson stream of queries
(HTTP requests), with rate λ. A bootstrap step consisted of
identifying λ0, the max rate sustainable by the 48-servers farm,
i.e. the smallest value of λ for which some TCP connections
were dropped.

2) Connection Acceptance Policies Evaluation: With ρ =
λ/λ0 as the normalized request rate, for 20 values of ρ in the
range (0, 1), a Poisson stream of 80000 queries with rate ρ was
injected in the load-balancers, using the policies SR4, SR8,
SR16, SRdyn. As baseline, the same tests were run with

4This shared memory, internal by default, can be exposed as a named file
by specifying the ScoreBoardFile directive in the server configuration.
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 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

1.89x

C
D

F

Response time (s)

SC
SR 4
SR 8

SR 16
SR dyn

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

1.29x

C
D

F

Response time (s)

SC
SR 4
SR 8

SR 16
SR dyn

(c) CDF of page load time: ρ = 0.71 (top) and
ρ = 0.89 (bottom).

Figure 10. Connection acceptance policies evaluation: SC vs SR4, SR8, SR16, SRdyn.
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Figure 11. Poisson workload evaluation.

a policy SC where queries are pseudo-randomly assigned to
one server, without Service Hunting, using the single-choice
consistent hashing algorithm of Maglev [2].

Figure 10a depicts mean response times for each tested
request rate and for each policy, and show that, among those,
SR4 yields the best response time profile, up to 2.3× better
than SC for ρ = 0.87. SR8 and SR16 likewise perform better
than SC for all loads, but with a lesser impact. SRdyn offers
results close to the best tested static policy. In order to validate
the analytical model introduced in section V, the response
time as obtained from equation (6) is displayed in dotted lines
alongside the experimental results5: it can be observed that the
model accurately fits the data, as long as ρ < 0.9. After that,

5A fit is performed on SC to rescale the units. The obtained scaling
coefficients are then used for all policies.

the assumptions (steady state, infinite number of servers) do
not hold anymore.

Figure 10c shows the CDF of the page response time for
the 80000 queries batch with ρ = 0.89, for each policy.
SC exhibits a very dispersed distribution of response times,
whereas the different SRc policies yield lower, and less
dispersed, response times. This can be explained by inspecting
the evolution of the mean instantaneous load (the number
of busy worker threads) over all servers, as well as the
corresponding fairness index: (

∑48
i=1 xi(t))

2

48
∑48

i=1 xi(t)2
(where xi(t) is

the load of server i at time t), depicted in figure 10b6. As
SR4 better spreads queries between all servers (the fairness

6These values have been smoothed through an Exponential Window Moving
Average filter, of parameter α = 1 − exp(−δt) where δt is the interval of
time in seconds between two successive data points.
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index is closer to 1), and servers are individually less loaded,
better response times result.

For lighter loads, a similar behavior can be observed, except
that high SRc policies exhibit no benefits as compared to
SC. Figure 10c shows the CDF of the page load time for an
experiment where ρ = 0.71: SR16 yields no improvement
over SC, and SR8 yields a relatively small improvement,
however the SR4 policy provides a substantial improvement
in response times – and SRdyn remains able to successfully
match SR4, the best tested static policy.

3) Reducing the Number of Servers: Previous experiments
have shown how 6LB is able to yield a reduced page response
time, for a given request rate. Conversely, if an SLA on the
target response time is to be satisfied, 6LB can be used to
decrease the number of servers needed to reach that SLA. In
order to quantify this, a simple experiment has been conducted
to find out how many VMs can be shut off while achieving
a pre-defined SLA. Assume that the 48 VMs were deployed
with SC to attain an average response time of 0.58 s, i.e. that
the application faces a total request rate of ρ = 0.71 (values
taken from figure 10a). Using the same request rate, a batch
of 80000 requests was ran against less and less VMs with the
SR4 policy, until the same average response time was reached.
Figure 11a shows the average response time as a function of
the number of VMs: with 6LB 40 VMs are needed to meet
the same SLA as compared to 48 VMs with SC – a reduction
of 17%.

4) Influence of the Consistent Hashing Table Size: Using a
smaller hash table can be beneficial in environments with tight
resources, but at the cost of evenness in the distribution of the
application instances within first segments of the SR lists (as
explained in section III). In order to quantify this, a Poisson
stream of 80000 requests with request rate ρ = 0.71 was sent
to the load-balancers against the SR4 policy, using different
hash table sizes. Figure 11b shows the average response time
as a function of the table size used (tables have sizes 2k for
performance reasons). The response times are almost identical
for high table sizes, with a noticeable influence when M ≤
1024. Also, except when M ≤ 128, the average response time
stays lower than when using the SC policy with the same rate.

5) Consistent Hashing Resiliency: The resiliency of the
consistent hashing mechanism introduced in Algorithm 3 in
real conditions is evaluated through a simple experiment,
where a simultaneous change in the application instances pool
and in the load-balancer pool is introduced. With M = 4096
buckets in the consistent hashing tables, 1000 long-lived flows
are injected in the system and handled by the first 6LB in-
stance. Then, x application instances are removed, while at the
same time the ECMP router is reconfigured to use the second
6LB instance. The number of connection resets is recorded
for SR8 and SC, and depicted in figure 11d for several
values of x (averaged over 10 experiments). 6LB increases
the resiliency over SC (as described in section III-B1): apart
from “unavoidable” resets corresponding to connections that
were pinned to a removed instance, no more than 2% of extra
connections were reset by 6LB, as compared to 4% with SC.

6) SYN → SYN-ACK Latency: In order to quantify the ad-
ditional forwarding latency induced by 6LB, figure 11c depicts

the SYN → SYN-ACK latency as seen by the client for SR4

and SC, for the experiment where ρ = 0.71. As compared to
SC, with 6LB, the SYN packet can be forwarded to an extra
server, and the SYN-ACK packet must be forwarded through
the load-balancer. Overall, this increases the median latency
by 69 µs. Restricted to those connections that are accepted
by the second server in the SR list (corresponding to 38% of
the 80000 queries in this experiment), the median latency is
increased by 57 µs. For connections accepted in first instance,
the median latency is increased by 32 µs.

7) Comparison against Centralized Policies: Centralized
load-balancing policies do not offer the resiliency of consistent
hashing approaches, but in exchange provide more fairness.
In order to position 6LB as compared to this class of load-
balancers, two centralized policies are evaluated: (i) Round-
Robin and (ii) weighted Round-Robin with feedback. With the
latter policy, feedback is obtained by polling the load of each
application instance every 200 ms (over an out-of-band TCP
channel), before adjusting the weight of the instance in the
Round-Robin algorithm accordingly7. Figure 11e depicts the
average page load time as a function of the request rate ρ.
Results show that Round-Robin provides more fairness than
single-choice consistent hash, but is outperformed by SRdyn

(with equivalent results for light loads ρ ≤ 0.7). For heavier
loads, the feedback policy slightly improves performance
over Round-Robin, but remains outperformed by SRdyn: this
shows the benefit of using instantaneous information rather
than relying on periodic feedback.

8) Influence of the Variance of Service Times: To under-
stand the influence of the variability of job service times, an
experiment is conducted, where job CPU times distributions
have different variances. To that purpose, the previously used
exponential distribution is replaced with several log-normal
distributions (a simple class of positive-valued distributions
with a parameter influencing the variance). The response times
are set to have the same median as previously, but different
variance parameters, allowing to evaluate from constant to very
skewed response times. Figure 11f depicts the mean response
time as a function of the standard deviation of service times,
for a Poisson stream of 80000 queries at rate ρ = 0.71, against
SRdyn, SC and Round-Robin.

In the extreme case where response times are constant,
Round-Robin performs the best (as instances will have totally
processed a query before being assigned a new one) and
6LB performs better than SC. Indeed, with single-choice
consistent-hashing queries can be placed on a server that is
already busy (if “unlucky once”), whereas 6LB needs to be
“unlucky twice” for this to happen. When the skewness of
job service times increases, 6LB’s use of local information
becomes a greater and greater advantage, and it eventually
shows the best performance among all approaches.

C. Wikipedia Replay

To evaluate the efficiency of 6LB when exposed to a realistic
workload, an experiment has been constructed to reproduce

7The weight w is adjusted with w = 0.1+0.9 exp(−8× (b/32)2), where
b is the current number of busy worker threads.
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Figure 12. Wikipedia replay: SC vs SR4 and SRdyn policies.

a typical (and, popular) Web-service. Thus an instance of
MediaWiki8 (version 1.28), as well as a MySQL server and
the memcached cache daemon, were installed on each of
the 48 servers. The wikiloader tool from [39], and a dump
of the database of the English version of Wikipedia from
[40], were used to populate the MySQL databases, resulting
in each server containing an individual replica of the English
Wikipedia.

1) Traffic and Workload Patterns: A traffic generator, able
to replay a MediaWiki access trace and to record response
times was developed, and experiments were run using 24
hours of traces from [40]. These traces correspond to 10%
of all queries received by Wikipedia during this timeframe,
from among which only traffic to the English Wikipedia was
extracted and used for the experiment.

A first experiment was to size the server farm, i.e. to identify
the smallest number of VMs necessary to be able to serve
queries while exhibiting reasonable response times. With 28
VMs, the median response time during peak hours is smaller
than 400 ms: the remainder of this section will assume this
size for the server farm.

2) Connection Acceptance Policies Tested: Given the supe-
rior performance of SR4 and SRdyn in the experiments from
section VI-B, the 24-hour trace was replayed against both SR4

and SRdyn, and client-side response times were collected. As
a baseline, the trace was also replayed against the reference
SC policy.

3) Experimental Results: The experiment allowed classi-
fying queries into two groups: (i) requests for static pages,
which are not CPU-intensive, and for which response times
were of the order of a millisecond, and (ii) requests for
wiki pages, that trigger memcached or MySQL and thus
are more CPU-intensive. 6LB was found to offer only a
small improvement over SC for static page response time
(figure 12c, top). However, the load times of wiki pages,
identifiable by the string /wiki/index.php/ in their URL,
exhibited interesting differences.

Figure 12a depicts the wiki page request rate and the
median wiki page load time for the three tested policies
during the 24h replay (data has been binned in 10 minutes
slots). It can be observed that at the off-peak period around
8:00 UTC, when the system was lightly loaded and subject

8https://www.mediawiki.org/wiki/Download
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Figure 13. Upstream packet forwarding rate evaluation: 6LB vs single-choice
consistent-hashing, using a single CPU core.

to a request rate of around 110 pages per second, SC and
SR4 yielded similar performance, and SRdyn exhibited even
lower response times. As the request rate increases, using
the application-unaware SC policy yielded notably increased
page load times – whereas when using SR4 or SRdyn, a
comparably much smaller increase in page load times incurred.

To understand the response time variability over 24 hours,
figure 12b depicts deciles 1-9 of the wiki page load time
distribution, for each 10 minutes bin. Again, SR4 and SRdyn

show less variability under higher loads than does SC. Among
SR4 and SRdyn, the latter has the lower variability under
lighter loads, but is outperformed under higher loads.

Finally, as an indicator of “global good behavior”, figure 12c
(bottom) depicts the CDF of the wiki page load times over
the whole day. Overall, the median response time went from
0.22 s with SC to 0.18 s with SR4 and 0.16 s with SRdyn.
Furthermore, the tail of the distribution is steeper when using
6LB, with the 90-th percentile going from 0.67 s with SC to
0.32 s with SR4 and 0.31 s with SRdyn.

D. Throughput Evaluation

The advantages provided 6LB in load-balancing fairness
come at the cost of some overhead as compared to single-
choice load-balancing approaches, notably due to maintaining
flow state and performing IPv6 SR header insertion. To
understand the impact of 6LB in terms of CPU overhead,
the packet-forwarding performance of the VPP implementation
introduced in this paper is evaluated. Maglev [2] with GRE
encapsulation has also been implemented as a VPP plugin,

https://www.mediawiki.org/wiki/Download
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and serves as a reference point. Evaluation was conducted on
a single core of a machine running an Intel E5-2667 CPU
at 3.2 GHz, with an Intel X710 10 Gbps NIC. The load-
balancer was manually initialized to install a pre-determined
number of flow entries, and a packet generator (sitting on
another machine on the same Ethernet link) was set to send
TCP ACK packets corresponding to these flows, at line rate.
Packets were set to return to the packet generator, and the
number of packets effectively forwarded by 6LB was recorded
– allowing to determine the maximum forwarding capability
of the implementation, for upstream traffic. ACK packets were
used rather than SYN, as they are expected to represent the
majority of the upstream traffic.

Figure 13 depicts the achievable forwarding rate (in millions
of packets per second, Mpps), as a function of the number of
flow entries installed. Two main results are to be noted. First,
the kernel bypass and vectorization capabilities of VPP make it
very efficient for load-balancing (be it single-choice or 6LB),
with a raw forwarding capability of around 8 Mpps with one
CPU core – with [2] reporting 2.7 Mpps with kernel bypass,
and 0.5 Mpps without. When the number of flows reaches
approximatively 105, the performance of both implementations
degrades, as the flow table cannot reside entirely in the CPU
cache. Second, it can be seen that 6LB incurs only 8%
CPU overhead as compared to the load-balancer reference
implementation. This overhead can be explained by the greater
complexity of the per-packet operations, and the fact that the
hash-table for flow state needs to handle collisions – whereas
the one from the reference load-balancing plugin does not.
Yet, this CPU overhead remains relatively negligible, and the
additional 8% resources that might need to be deployed to
use 6LB should be largely compensated by the fact that less
application instances need be deployed, due to the greater
fairness induced (as shown in section VI-B3).

VII. CONCLUSION

This paper has introduced 6LB, an innovative net-
work service offering flexible, scalable, reliable, distributed,
application-aware, but at the same time application-agnostic
and application-protocol-agnostic, load balancing.

This is accomplished by an architecture in which (i) load-
balancers using an extended consistent hashing algorithm
to map incoming flows onto a set of candidate application
instances, (ii) to offer – not impose – these network flows to
the candidate application instances, leaving them the decision
to accept (or not) a flow. Once an application instance has
accepted a flow (iii) data packets of no interest to the load-
balancer are sent directly from the application instance to the
client. When a network flow is reassigned to another load
balancer (e.g. if a load balancer is added to, or removed from,
the system), this will be detected, and in-band signaling will
reestablish the necessary state in this new load-balancer for
continued operation, ensuring (iv) that a traffic flow between
a client and an application instance becomes pinned to that ap-
plication instance, regardless of changes to the load balancing
infrastructure. The use of Segment Routing, specifically SR
Functions, allow defining and implementing this as a network
service, i.e. entirely below the application layer.

This paper has also introduced a simple two-server random
assignment policy (motivated by the concept of power of two
choices), combined with a static or dynamic query acceptance
policy. These policies were compared to a naive one-server
random query dispatch policy, by means of an analytical
model, as well as an evaluation on a 48-servers deployment.
Evaluation of those policies, conducted using a simulated
Poisson workload as well as on a Wikipedia replica, shows that
6LB is able to better spread the load between all servers than
single-choice consistent-hashing load-balancers. Evaluation of
the packet-forwarding performance of the implementation
shows that these benefits are attained at a negligible cost in
terms of CPU overhead.

APPENDIX

Proof of Theorem 1. Let c ≥ 1 a threshold parameter, and
λ ∈ [0, 1). First, it will be shown that sn ≤ λn for all n ≥ 0.
For 1 ≤ n ≤ c, sn = λ[sn−1 − sc(1 − sn−1)] ≤ λsn−1;
for n > c, sn = λscsn−1 ≤ λsn−1. Thus sn ≤ λsn−1 for all
n ≥ 1, and since s0 = 1, it follows by induction that sn ≤ λn.

It remains to show that E(T̂ ) ≤ 1
1−λ . Let δ ∈ [0, 1], then:

E(T̂ ) = 1
λ

∑+∞
n=1 sn + δsc = 1

λ

∑c−1
n=1 sn + 1

λ
sc

1−λsc + δsc.
Using sn ≤ λn, sc ≤ λc and δ ≤ 1 gives: E(T̂ ) ≤
1
λ

∑c−1
n=1 λ

n + 1
λ

λc

1−λc+1 + 1 · λc = 1−λc−1

1−λ + λc−1

1−λc+1 + λc =
1

1−λ+λc−1( 1
1−λc+1− 1

1−λ+λ). Since c ≥ 1, λc+1 ≤ λ2, which
yields: E(T̂ ) ≤ 1

1−λ+λc−1( 1
1−λ2− 1

1−λ+λ) = 1
1−λ−

λc+2

1−λ2 ≤
1

1−λ , which completes the proof.

State
Incoming SR function

SR functions added Next state

LB_LISTEN
SYN from client

s1.connectAvail(lb)
s2.connectForce(lb)

HUNTING

LB_LISTEN
data from client

s1.recoverStickiness(lb)
s2.recoverStickiness(lb)

HUNTING

HUNTING
SYN from client

s1.connectAvail(lb)
s2.connectForce(lb)

HUNTING

HUNTING
createStickiness(s)

remove SR header STEER(s)

STEER(s)
data from client

s.ackStickiness(lb)
STEER(s)

STEER(s)
removeStickiness(s)

remove SR header
LB_LISTEN
after 10 sec

Table II
HANDSHAKE PROTOCOL STATE MACHINE FOR A GIVEN FLOW, AT A

LOAD-BALANCER lb
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