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Abstract—Leveraging the performance opportunities offered
by programmable hardware, stateless load-balancing architec-
tures allowing line-rate processing are appealing. Moreover, it
has been demonstrated that significantly fairer load-balancing
can be achieved by an architecture that considers the actual load
of application instances when dispatching connection requests.
Architectures which maintain per-connection state for resiliency
and/or track application load state for fairness are, however,
at odds with hardware-imposed memory constraints. Thus, a
desirable load-balancer for programmable hardware would be
both stateless and able to dispatch queries to application instances
according to their current load.

This paper presents SHELL, a stateless application-aware
load-balancer combining (i) a power-of-choices scheme using
IPv6 Segment Routing to dispatch new flows to a suitable
application instance from among multiple candidates, and (ii) the
use of a covert channel to record/report which flow was assigned
to which candidate in a stateless fashion. In addition, consistent
hashing versioning is used to ensure that connections are main-
tained to the correct application instance, using Segment Routing
to “browse” through the history when needed. The stateless
design of SHELL makes it suitable for hardware implementation,
and this paper describes the implementation of a P4-NetFPGA
prototype. A performance evaluation of this SHELL imple-
mentation demonstrates throughput and latency characteristics
comparable to other stateless load-balancing implementations,
while enabling application instance-load-aware dispatching and
significantly increasing per-connection consistency resiliency.

I. INTRODUCTION

In data-center and cloud architectures, workload virtualisa-
tion has become the norm, with applications replicated among
multiple application instances, each capable of independently
serving incoming queries [1], [2], [3]. An important func-
tional part in these architectures is the load-balancer (LB),
dispatching incoming queries amongst application instances.
To make the load-balancer “invisible”, a Virtual IP Address
(VIP), shared by all application instances providing the same
service, is advertised to the Internet in place of the address of
the load-balancer, requiring the load-balancer to provide per-
connection consistency (PCC), i.e. ensuring that traffic from a
connection (typically identified by its network 5-tuple: source
& destination addresses, L4 protocol, source & destination
port) is always directed to the same application instance.
Naive load balancing use Equal Cost Multi-Path (ECMP) [4]
mapping connections to application instances, using a hash
function and a modulo operation.

A. Challenges

A drawback of using ECMP for load-balancing is the lack
of resiliency to changes to the application instance set, which

causes the modulus in the ECMP operation to change and most
connections to be redistributed across application instances,
thus breaking PCC and causing connection resets. Consistent
hashing [5], [6], [7] attempts to address this, by providing
a more resilient mapping of connections across application
instances [8], [9] through maintaining an intermediate table
which, with high probability, yields a persistent mapping of
the 5-tuple space to the set of application instances, even when
faced with changes in the application instance set. Maglev [8]
uses consistent hashing with per-connection state to maximize
the probability of PCC: a connection breaks only when both
(i) per-connection state is removed (if memory is exhausted –
e.g. due to a denial-of-service attack – or if traffic is rebalanced
to a new LB instance) and (ii) consistent-hashing changes the
mapping of the connection to a different application instance
(if there is a change in the set of application instances, which
should affect only a small number of connections).

The pseudo-random nature of consistent hashing assigns
queries to application instances regardless of their actual load
state [8]. While this does not pose any problem for non-
CPU-intensive applications (e.g. serving static Web pages),
performance may degrade for CPU-intensive applications (e.g.
data processing), for which the number of concurrently served
queries per application instance must be minimized. Assign-
ing queries to the least loaded from among two randomly
chosen application instances (rather than to one randomly
chosen application instance) was shown in [10] to improve
load-balancing fairness. Based on this, 6LB [11] combines
a Maglev-like consistent hashing with assigning connections
to set of two application instances, which decide amongst
themselves which will accept the connection. This is achieved
by forwarding connection request (SYN) packets using IPv6
Segment Routing (SR) [12] and then by maintaining state in
the LB as to which server has accepted the connection.

The need to keep connection-state make Maglev and 6LB
difficult to implement on programmable hardware devices,
whereas it is known that hardware-based load-balancers offer
a potential performance benefit [13], [14], [15]. Beamer [15]
circumvents this state requirement, by calling on assistance
from servers hosting application instances to maintain PCC.
When the set of application instances changes, and consis-
tent hashing maps a flow to a different application instance,
Beamer directs packets from that flow to that new application
instance, while also embedding the address of the previously
used application instance in the packet header. This allows the
new application instance, in case it does not have connection
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Figure 1. SHELL overview. (a) A SYN packet is steered through c = 2 candidate servers (c1, c2), in this example (s2, s1). Here, the second candidate
c2 = s1 accepts the connection. This choice c2 is reported in the covert channel of the SYN-ACK packet. (b) Subsequent packets from the client are steered
by the LB to the correct server s1, by looking up the covert channel value c2 in a consistent hashing table. (c) Upon server reconfiguration, with high
probability the assigned server is not modified due to consistent hashing. (d) A server reconfiguration modifies the candidate list to (cT1 , c

T
2 ) = (s3, s2).

SHELL then uses the history matrix to go through previous servers that were c2 for this bucket – here, (cT2 , c
T−1
2 ) = (s2, s1).

state for a received packet, to forward it to the previous
instance.

A shared requirement of [11], [15] is that an application
instance is able to direct packets to a second application in-
stance, when needed. For 6LB, only connection establishment
packets are proposed to two application instances, allowing
load sharing – at the expense of state in the LB for forwarding
subsequent packets directly to the correct application instance.
Beamer offers packets to two application instances only when
there is a change in consistent hashing – but, then, does so for
all packets in a flow, to avoid keeping state in the LB.

Thus the question: is it possible to provide a stateless load-
balancer that dispatches queries according to the state of
the applications? This requires the LB to be able to (i) send
connection requests through a chain of “candidate” application
instances for local connection acceptance decisions, and (ii)
statelessly direct packets in an established flow to the one
application instance which accepted the connection request.

B. Statement of Purpose

This paper introduces SHELL, an application-agnostic,
application-load-aware, stateless load-balancer, which (i) pro-
poses new connections to a set of pseudo-randomly-chosen
application instances, each making a local acceptance decision,
and (ii) “marks” subsequent packets in a flow so as to allow
the load-balancer to direct them to the appropriate application
instance without requiring the load-balancer to maintain per-
connection-state.

The statelessness of the load-balancer makes it a candidate
for an implementation in a hardware platform. Thus, this
paper proposes a prototype P4-NetFPGA [16] implementation
of SHELL targeting the NetFPGA SUME [17] platform,
as well as an extensive performance evaluation of the P4
implementation and of the stable hashing algorithm.

C. Paper Outline

The remainder of this paper is organized as follows: sec-
tion II provides an overview of SHELL, with section III de-

tailing key design aspects. The P4-NetFPGA implementation
of the load-balancer is detailed in section IV, followed by a
performance evaluation in section V. Resiliency of consistent
hashing is evaluated in section VI, before section VII con-
cludes this paper.

II. OVERVIEW

SHELL consists of 3 main components: a control plane, a
P4-based load-balancing data-plane, and a server agent. An
exemple execution is illustrated in figure 1.

The control-plane constructs two tables (see section III-B):
(i) a consistent hashing table, used to direct new connection
request packets (e.g. TCP SYNs) to a set of candidate appli-
cation instances, which improves fairness, and (ii) a choice
history table, for directing subsequent packets in a flow (e.g.
TCP ACKs), which improves resiliency.

The P4 load-balancer uses 5-tuple hashing to map each new
connection request to a set of candidate application instances
from the consistent hashing table provided by the control-
plane. Segment Routing (SR) [12] is then used to direct such
packets through the selected set of application instances, until
one accepts the connection (note that the last application
instance in the set must always accept), as in [11]. The
position in the list of the application instance which accepted
the connection, ci, is communicated back to the client (see
section III-C), which in turn includes it in all further packets
from the client to the load-balancer. This enables the P4
load-balancer to send these packets directly to the application
instance handling the connection. When a change in the set
of application instances causes modifications to some of the
consistent hashing buckets, changes are saved in a history. The
P4 load-balancer then directs (using SR) subsequent packets to
the current and previous application instances associated with
the value ci received in the packets.

Finally, the server agent (i) accepts new connection requests
or forwards them to the next candidate application instance,
and (ii) forwards further packets until reaching the application
instance that accepted the connection. This server agent is



Algorithm 1 Consistent hashing history table construction
. update version numbers
for b ∈ {0, . . . , B−1}, i ∈ {h−1, h−2, . . . , 1}, j ∈ {0, . . . , c−1} do

t[b][i][j]← t[b][i− 1][j]
end for
. build new consistent hashing table
for b ∈ {0, . . . , B−1}, j ∈ {0, . . . , c−1} do

t[b][0][j]← consistentHashing(b, j)
end for
. remove duplicates
for b ∈ {0, . . . , B−1}, j ∈ {0, . . . , c−1} do

if t[b][0][j] = t[b][i][j] for some i 6= 0 then
delete t[b][i][j] and shift t[b][i+ 1, . . . , h− 1][j] upwards

end if
end for

Table I
EXAMPLE ENTRY OF THE HISTORY MATRIX, FOR A GIVEN BUCKET

Choice 1 . . . Choice c
Epoch t s3 . . . s4
Epoch t− 1 s2 . . . s13

...
...

...
...

Epoch t− h+ 1 s13 . . . s10

implemented as a Linux kernel module; the details hereof are
out-of-scope for this paper.

III. DESCRIPTION

In this section, c is the number of candidate application
instances, through which connection requests are directed,
B the number of buckets used in consistent hashing, h the
“depth” of the consistent hashing “history matrix” maintained
for a bucket t[b] (an example of t[b] for a bucket b is shown
in table I).

A. Data Plane

The behavior of the P4 load-balancer and of the application
instance depends on which packet is received:

1) A connection request (TCP SYN) received at LB is
hashed, on its 5-tuple, into a bucket with index b. The first
row of the history matrix for b, t[b][0][:], is then used for
generating an IPv6 SR header [18] with a segment list of
(t[b][0][0], . . . , t[b][0][c−1]) followed by V IP – in the example
from table I: (s3, . . . , s4, V IP ).

2) A connection request (TCP SYN) received at application
instance is processed by the server agent – which examines its
local state (e.g. its CPU load), and determines to either accept
the request, or to forward the packet to the next segment in
the SR header. Note that the last candidate in the list must
always accept the connection.

A server agent having accepted a connection will record,
for the connection lifetime, its own index ci in the segment
list received with the connection request.

3) When an application instance accepts a connection,
it will embed the recorded ci for that connection in the
TCP SYN-ACK – and in all future outgoing packets for that
connection, using a covert channel – how this is accomplished
is discussed in section III-C.

4) All subsequent (i.e. TCP non-SYN) packets sent by the
client will also encode ci, again using a covert channel.

5) All subsequent (i.e. TCP non-SYN) packets received at
the LB are hashed, on their 5-tuple, identifying a bucket b. The
LB also extracts the value ci from the covert channel. The ci-
th colum of t[b] is then used to generate an IPv6 SR header
with segment list (t[b][0][ci], . . . , t[b][h−1][ci]) followed by the
VIP – in the example from table I: (s3, s2, . . . , s13, V IP ).

6) All subsequent (i.e. TCP non-SYN) packets received at
the application instance will be examined, and if correspond-
ing connection-state is found, will be processed locally –
otherwise, are forwarded to the next segment1.

B. Control Plane - Consistent Hashing Table Computation

The algorithm described in [11, algorithm 3] is used to
generate, for each bucket b, a candidate list of application
instances ` = (s1, . . . , sc). This list is recorded as the first
row of the history matrix for the bucket: t[b][0][:] = `.

When the set of application instances is modified, all entries
in the history matrix are offset by one (i.e. ∀b, t[b][i+1][:]←
t[b][i][:]), and the new mapping of candidate application in-
stances for each b is calculated, as per [11, algorithm 3].

Since consistent hashing will leave most bucket entries
unmodified after server reconfigurations [8, figure 12] [11,
figure 7], i.e. t[b][0][:] = t[b][1][:] for most b, duplicate history
entries are removed as per algorithm 1.

C. Possible covert channels

The server-state-aware and stateless load-balancing ap-
proach described in this paper relies on the application instance
being able to inform clients to include ci (the position of the
application instance in the segment list at time of connection
establishment) in all packets subsequent to the connection
request. This ci is used by the load balancer to direct these to
the appropriate application instance.

If it is possible to modify the client networking stack so as to
cooperate with the load-balancing architecture, a simple option
would be to embed the identifier (rather than the value of
ci) of the application instance having accepted the connection
in packets sent from the application instance, then reflect
this identifier in the packets sent by the client. This can be
achieved with transport protocols such as QUIC, which embed
a connection identifier chosen by servers and reflected by
clients.

However, for TCP connections, it is necessary to convey
ci from the application instance to the client, and make
the client relay ci in subsequent packets, without client-side
modification. This requires using a covert channel from the
application instance, through the client, and to the application
instance, which the client neither inspects nor interferes with.
Approaches accomplishing this include:

TCP sequence numbers, which are reflected by endpoits in
the acknowledgement field. For connections shorter than 1/c

1In the unlikely event that there is no next segment, the packet is dropped –
this corresponds to the case where the history was not long enough to include
the application instance that had accept the connection in the first place.
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header tcp_opts_24_t {
bit<32> nopnoptypelength1; bit<63> value1; bit<1> potential_cov_channel1;
bit<32> nopnoptypelength2; bit<63> value2; bit<1> potential_cov_channel2;

}
state parse_tcp_opts_24 {
packet.extract(hdr.tcp_opts_24);
transition select(hdr.tcp_opts_24.nopnoptypelength1) {
32w0x0101080a : set_covert_channel_24_1; /* NOP NOP TS (type=08, length=0a) */
32w0x0101050a : parse_tcp_opts_24_2; /* NOP NOP SACK10 (type=05, length=0a) */
default: accept;

}
}
state set_covert_channel_24_1 {

user_metadata.covert_channel = hdr.tcp_opts_24.potential_cov_channel1;
transition accept;

}
state parse_tcp_opts_24_2 {

transition select(hdr.tcp_opts_24.nopnoptypelength2) {
32w0x0101080a : set_covert_channel_24_2; /* NOP NOP TS (type=08, length=0a) */
default: accept;

}
}
state set_covert_channel_24_2 {
user_metadata.covert_channel = hdr.tcp_opts_24.potential_cov_channel2;
transition accept;

}

Figure 3. Example TCP TLV parsing in the P4 LB, for doff = 11.

of the sequence number space (i.e. 232/c bytes), this allows
implementing the covert channel through the high-order bits
of the sequence number. For longer connections, a flow table
will be however required.

TCP timestamps, which are also reflected by TCP end-
points. The covert channel can be carried in the low-order bits
of the TCP timestamp, as is done in [19] – and according
to [20], [21] is resilient to middlebox processing. Modifying
the timestamp by at most c− 1 units (c = 2 usually [10]) will
have a negligible effect on RTT estimation.

To avoid using a flow table, SHELL uses TCP timestamps
as covert channel for TCP connections: the server agent of
the accepting application instance encodes its index ci in the
low-order bits of the TCP timestamp – and the LB inspects
TCP timestamp sent by clients.

IV. P4 LOAD-BALANCER IMPLEMENTATION

The workflow of the P4 implementation of the LB data-
plane of SHELL is illustrated in figure 2. It uses three match-
action tables, corresponding to (i) segment lists to be inserted
into SYN packets, as given by the first row of the history
matrix, (ii) segment lists to be inserted in non-SYN packets,
as given by columns of the history matrix, and (iii) a Layer-2
lookup for output packets.

Processing a packet starts with parsing its headers. If
they do not match the expected format (e.g. the packet uses

UDP), the packet is dropped; otherwise, they are processed
by the match-action pipeline. Both (i) the 5-tuple hash of the
packet, computed by way of an external function from the P4-
NetFPGA framework, and, (ii) in case of a non-SYN packet,
the covert channel value as found in the TCP timestamp field
(see below), are used as keys to the match tables, to access the
corresponding segment list. The segment list is then fed to an
action, which builds the SR header. To complete the match-
action pipeline, a match is performed on the newly-added
destination address of the packet (i.e. the first SR segment),
which calls an action making the packet egress through the
correct interface. Finally, the de-parsing stage emits the packet
with the newly-built headers.

For want of a lookahead function and of variable-length
header support in the compiler, only a set of “reasonable
options” is parsed (specifically, SACKs and timestamps, i.e.
those that can be found in non-SYN packets according to [20]).
Depending on the length of the TCP header found in the “data
offset” (doff ) field, an option header of suitable type is parsed,
corresponding to lengths doff ∈ {8, 11, 13, 15}. Figure 3
depicts an example of such a parsing, when doff = 11. The
bits of the covert channel are then stored into a meta-data
field2. A parameter of interest to the performance of the data-
plane is the maximum size of the parsed TCP header dmax

off :
its influence on the performance is evaluated in section V.

V. P4-LB IMPLEMENTATION PERFORMANCE

A key element to the performance of SHELL is the per-
packet latency, incurred in the P4-dataplane of the LB. It
depends primarily on two factors: (i) the latency incurring
when receiving a packet over an ingress interface, inserting an
SR header, and transmitting this (now larger) packet over an
egress interface (section III-A), and (ii) the latency incurring
from extracting ci from within a TCP option (TCP timestamp,
section III-C).

These factors are evaluated using the P4-NetFPGA frame-
work and the Xilinx Vivado software suite, simulating packets
going through one interface of a 10G NetFPGA-SUME, and
are documented in this section.

2To ensure compatibility with clients not using TCP timestamps, if a SYN
packet is missing the TCP timestamp option (detected by doff ≤ 8), an SR
header with only one candidate will be inserted. Lack of a TCP timestamp in
non-SYN packets is then interpreted as a covert channel value of c1 = 1.
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Table II
P4-NETFPGA DATAPLANE PERFORMANCE

Throughput (Mpps) 59.8
Worst-case latency (µs) 8.96

Table III
P4-NETFPGA DATAPLANE RESOURCE USAGE

Max TCP size LUT LUTRAM FF BRAM
dmax
off = 8 36.9% 19.4% 33.3% 59.3%

dmax
off = 11 40.1% 22.0% 36.4% 63.2%

dmax
off = 13 43.8% 24.9% 40.2% 67.7%

dmax
off = 15 48.7% 28.6% 45.8% 74.1%

A. Effect of SR Header Insertion on Latency

For the purpose of the simulations, c = 2 choices were
used for SYN packets, and a history of h = 2 was used for
ACK packets, thus SR headers with 3 segments were inserted,
increasing the packet size by 56 bytes between ingress and
egress. Feeding ingress packets at maximum line-speed fills
the egress interface queue over time, thus progressively in-
creasing packet forwarding latency – as depicted in figure 4,
showing stable results from above 1500 packets. When the
egress buffer is empty, the latency is 2.1 µs, and when the
buffer is full it oscillates between 8.2 µs and 9.0 µs. Thus, for
subsequent simulations, batches of 4800 packets are injected
at line-rate on the ingress interface.

Table II reports the throughput and worst-case latency
obtained: SHELL, comparable to Beamer [15], can sustain
60 Mpps, i.e. 22× as much as what is reported for the
single-core software implementations of Maglev [8], while
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also providing application instance load-awareness.

B. Effect of TCP Parsing on Latency and FPGA Resources

As explained in section IV, the TCP timestamp option is
parsed by matching a predefined set of option headers, thus
the greater dmax

off (maximum admissible size of parsed TCP
headers), the more program branches – and the greater the
latency. This is evaluated by testing dmax

off ∈ {8, 11, 13, 15},
and depicted in figure 5. The latency varies from 1.8 µs
(dmax

off = 8) to 2.1 µs (dmax
off = 15) for an empty egress queue,

and its average after the egress queue has filled up goes from
7.7 µs (dmax

off = 11) to 8.5 µs (dmax
off = 15).

This allows noting that, in a controlled environment (e.g.
a data-center, where SHELL typically would be deployed),
where a strict set of TCP options can be enforced, it is possible
to trade off parsing safety against reduced latency. However,
parsing more potential options increases the amount of logic
consumed on the FPGA. As reported in table III, which depicts
the resource usage on the FGPA for different values of dmax

off ,
this can increase LUT usage by up to one third.

VI. CONSISTENT HASHING RESILIENCY

Long-lived connections are particularly vulnerable to ap-
plication instance reconfigurations – thus, as a worst-case
scenario, simulations using infinite-length connections, and
subject to successive application instance removal/insertions,
are performed; each simulation is repeated 5 times.

For a random connection, assuming that it was uniformly
drawn from among the B × c buckets and choices possible,
the probability that it is reset3 after n application instance
reconfigurations, is depicted in figure 6 (top), which shows
the impact of the history depth h, and figure 7 (top), which
shows the impact of the number of buckets B.

3A connection assigned to a bucket/choice pair is deemed reset after n
reconfigurations if the application instance to which it was initially assigned
no longer appears in the corresponding history table.
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Figure 7. SHELL consistent hashing evaluation: probability for a connection
started at time t = 0 to be reset after n server reconfigurations. 500
servers, c = 2 choices, h = 3, different number of buckets B. Top:
infinite connections. Bottom: connection duration and server reconfiguration
rate model from [13], [22].

In realistic scenarios, application instance reconfigurations
are expected to be rare, and connections are unlikely to last
for more than a few application instance reconfigurations – at
most. The bottom graphs of figures 6 and 7 depict the connec-
tion reset probability using the connection duration distribution
model from [22, Figure 7.a], and with the application instance
reconfiguration rate distribution taken as the highest 1% rates
over a month for 100 clusters from [13, Figure 2] – with a
median reconfiguration rate of 13.5 min−1.

In these conditions, less than 1% of the connections were
lost when using SHELL with a non-void history (h > 1).
Without history (i.e. h = 1, as would be the case in [8], [11]),
more than 5% of the connections were lost.

VII. CONCLUSION

This paper has introduced SHELL, an application-agnostic
load-balancing architecture which combines application load
awareness (by using a power-of-choices scheme upon connec-
tion establishment), statelessness (by using a covert channel to
indicate which of the candidates had accepted the connection),
and resiliency (by using consistent hashing and versioning).
Being stateless makes SHELL suitable for a hardware imple-
mentation, as demonstrated in this paper through prototype de-
velopment using the P4-NetFPGA framework. An evaluation
of throughput and latency of this prototype implementation
shows that the attainable performance is equal to that of
other hardware implementations, while providing application-
awareness and therefore improving load-balancing fairness.
Further, simulation of the consistent hashing resiliency shows
that the number of long-lived connections dropped, even in
worst-case scenarios, is negligible.
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