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Abstract—Network load-balancers generally either do not take
application state into account, or do so at the cost of a central-
ized monitoring system. This paper introduces a load-balancer
running exclusively within the IP forwarding plane, i.e. in an
application protocol agnostic fashion – yet which still provides
application-awareness and makes real-time, decentralized deci-
sions. To that end, IPv6 Segment Routing is used to direct data
packets from a new flow through a chain of candidate servers,
until one decides to accept the connection, based on its local
state. This way, applications themselves naturally decide on how
to share incoming connections, while incurring minimal network
overhead, and no out-of-band signaling.

Tests on different workloads – including realistic workloads
such as replaying actual Wikipedia access traffic towards a set
of replica Wikipedia instances – show significant performance
benefits, in terms of shorter response times, when compared to
a traditional random load-balancer.

I. INTRODUCTION

Virtualization and containerization has enabled scaling of
application performance by way of (i) running multiple in-
stances of the same application within a (distributed) data
center, and (ii) employing a load-balancer for dispatching
queries between these instances.

For the purpose of this paper, it is useful to distinguish
between two categories of such load-balancers:

1) Network-level load-balancers, which operate at Layer-4 –
a simple approach being to rely on Equal Cost Multi-
Path (ECMP) [1] to homogeneously distribute network
flows between the application instances. These approaches
generally do not take application state into account, which
can lead to suboptimal server utilization.

2) Application-aware load-balancers, which are bound to a
specific type of application or application-layer protocol,
and make informed decisions on how to assign servers to
incoming requests. These approaches generally incur a cost
from monitoring the state of each application instance, and
sometimes also terminate network connections (such as an
HTTP proxy).

A desirable load-balancer would combine the best of these
two categories: be application or application-layer protocol
agnostic (i.e. operate at Layer-4) and incur no monitoring
overhead – yet be able to make informed dispatching decisions
depending on the state of the applications.

A. Statement of Purpose

The purpose of this paper is to propose SRLB, a load-
balancing approach that provides application-state awareness,
yet is both application and application-layer protocol in-
dependent and does not rely on centralized monitoring or
transmission of application state.

A key philosophical argument behind this design goal is
that an application instance itself is best positioned to know
if it should be accepting an incoming query, or if doing so
would degrade performance – and, thus, SRLB discards the
traditional design by which queries are unconditionally as-
signed to an application instance by the load-balancer. Rather,
SRLB offers a received query to several application instance
candidates, only one of which accepts and processes the query.

What enables this is IPv6 Segment Routing (SR) [2] –
which allows specifying to the network that it should do more
than just forward a data packet towards its destination: SR
permits directing data packets through an (ordered) set of
intermediaries, and instructing these intermediaries what to do
with a received data packet. For example, one instruction could
be “process the contained query, if you can”. All this within
the IP forwarding plane, i.e. in an application-layer protocol
agnostic fashion.

The role of the load balancer, then, simply becomes to
monitor TCP flows, to ensure that data packets belonging to
the same flow are delivered to the same application instance
as the one which accepted the first packet of the flow.

In this way, SRLB enables that query acceptance decisions
are made strictly locally, based on real-time information on
the state of the application instance.

B. Related Work

Among existing Layer-4 load-balancing approaches, [3]
(Maglev) and [4] (Ananta) aim at being able to scale the
number of load-balancer instances at will, and make use of
ECMP to distribute flows between those instances. They also
make use of consistent hashing, for ensuring that data packets
within a given flow are directed to the same application
instance – regardless of the selected load-balancer instance
forwarding a data packet, and with minimal disruption when
the set of application servers changes. However, flows are
distributed to application instances regardless of their current
load.



Conversely, [5], [6] use Software Defined Networking
(SDN) on a controller, to monitor the application instance load
and network load – and then install network rules to direct
flows to these application instances.

[7] lists three standard load-balancing techniques used for
dispatching queries among Web servers: DNS round-robin,
dispatchers that perform NAT or destination IP rewrite, and
redirect-based approaches. Application-aware load-balancing
includes [8], [9], [10], which assign queries as a function of
their estimated size so that each application instance becomes
equally loaded. In [11], a feedback approach is used to
estimate the parameters of a queuing model representing the
system, before making a load-balancing decision.

Layer-7 (application-layer protocol aware) load-balancers,
e.g. [12] (HAProxy), also propose application-awareness by
estimating the load on each application instance and assigning
new queries accordingly. Load estimates are obtained by
tracking open connections through the load-balancer to the
backend servers, thus do not take other generated loads into
account – e.g. internal traffic or traffic coming from other load-
balancers.

C. Segment Routing

In IPv6 Segment Routing (SR) [2], each data packet in-
dicates not only the destination to which the network is
expected to carry the packet, but also an ordered sequence of
instructions or operations (called segments), that the network is
expected to execute on that packet. When a segment is “com-
pletely processed”, that segment is (conceptually) discarded
and the next segment (if any) is processed by the network,
before the data packet is delivered to the final destination.

As SR is a network layer service, segments are expressed
by way of IPv6 addresses, and the simplest possible sequence
of segments interprets into “forward the packet to A, then B,
then C” – i.e. source routing – but SR enables also traffic
engineering, service chaining, etc. The SR information is
expressed as an IPv6 Extension Header, comprising a list
of segments and a counter SegmentsLeft – indicating the
number of remaining segments to be processed.

D. Paper Outline

The remainder of this paper is organized as follows. Sec-
tion II describes how Segment Routing can be used to perform
Service Hunting, that is, in-network service selection. Sec-
tion III describes two simple example connection acceptance
policies. SRLB is then evaluated: section IV describes the ex-
perimental platform that has been used, section V provides an
evaluation with a synthetic workload, and a realistic workload
consisting of a Wikipedia replica is analyzed in section VI.
Finally, section VII concludes this paper.

II. SERVICE HUNTING

This section introduces a new general concept, Service
Hunting, which uses SR to direct network packets from a new
flow through a set of candidate servers until one accepts the
connection.
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Figure 1. Service Hunting from client c to application a with 3 servers
s1, s2, s3. The path (source, segments, destination) is indicated between curly
braces. The active segment is underlined.

A. Overview

Service Hunting assumes an IPv6 data center, in which
applications are identified by virtual IP addresses (VIPs), and
can be replicated among several servers, identified by their
physical addresses. Servers run a virtual router (for instance,
VPP [13]), which dispatches packets between physical NICs
and application-bound virtual interfaces. Located at the edge
of the data center, the load-balancer advertises routes for the
VIPs.

When a query (typically, a TCP SYN packet as part of a
connection request) for a VIP arrives at the load-balancer, the
load-balancer will select a set of candidate servers which host
an instance of the sought-after application, and insert an SR
header into the IPv6 data packet accordingly. The SR header
will contain a list of segments, each indicating that the query
can be processed by either of these instances, and with the
VIP as the last segment.

When the query reaches a candidate server, the correspond-
ing segment in the SR header indicates that the virtual router
may either forward the packet (i.e. start processing the next
segment), or may directly deliver it to the virtual interface
corresponding to the application instance. This is a purely local
decision to accept or not the query, and is based on a policy
shared only between the virtual router and the application
instance, running on the same compute node. To guarantee
satisfiability, however, the penultimate segment indicates that
the application must not refuse a query.

In order to ensure that packets part of the same flow are
treated by the same application instance, upon having accepted
a query, the server hosting the application instance must signal
this to the load balancer. This is done by inserting an SR
header containing its own IP address, and the IP address of the
load-balancer, in the connection acceptance packet (typically,
a TCP SYN-ACK). An example of the whole procedure with
3 servers is given in figure 1.

B. Server Selection Policy

When the load-balancer receives a query, different policies
can be used to select the list of candidate servers to include
in the SR header. Parameters of importance for this selection
include the number of candidate servers to include, and the



Algorithm 1 Static Connection Acceptance Policy SRc

for each packet with SegmentsLeft = 2 do
b← number of busy threads
if b < c then
SegmentsLeft← 0
forward packet to application

else
SegmentsLeft← 1
forward packet to second server in SR list

end if
end for
for each packet with SegmentsLeft = 1 do
SegmentsLeft← 0
forward packet to application

end for

scheme according to which they are selected. Possibilities for
such schemes include random selection and consistent hashing.

A simple and lightweight approach consists of selecting
server addresses at random. While any number of random
server addresses can be inserted in the SR segment list, [14]
demonstrates a decreased marginal benefit from more than two
servers, when the goal is load balancing. Thus, for the purpose
of the experimental verification in this paper, two servers will
be chosen at random from among all servers hosting a given
application instance.

C. Connection Acceptance Policy

To perform Service Hunting, SRLB assumes an application
agent, locally available to the virtual router in each server,
which in real time informs the virtual router as to if the appli-
cation instance wishes to accept queries. The application agent
may make this decision based on coarse-grained information
(e.g. CPU load, memory footprint) available from the operating
system; or on more fine-grained information, if the application
exposes real-time metrics about its load state (idle threads,
etc.). Done through shared memory, this incurs no system calls
or synchronization, thus imposes a negligible run-time cost.

III. EXAMPLE CONNECTION ACCEPTANCE POLICIES

This section describes two simple policies that can be used
to decide whether or not to accept new connections. These
policies assume a standard master-slave threading model for
the application. Section IV will then show how these policies
can be applied in the case of an HTTP server such as Apache.

A. Static policy

Let n be the number of worker threads of the application,
and c a threshold parameter between 0 and n + 1. In Al-
gorithm 1, we introduce a simple policy, SRc, whereby the
first server accepts the connection if and only if less than c
worker threads are busy (recall that the second server always
accepts the connection). When c = 0, all requests are satisfied
by the second servers in the SR lists; when c = n + 1, all
requests are satisfied by the first ones. These two cases reduce
to a standard random load-balancing scheme. All choices of
c between these two extremes yield an improvement over
random load-balancing. Indeed, a server with c or more busy
threads will be assigned a connection only if both itself and

Algorithm 2 Dynamic Connection Acceptance Policy SRdyn

c← 1 {or other initial value}
accepted← 0
attempt← 0
windowSize← 50 {or other window size}
for each packet with SegmentsLeft = 2 do
attempt← attempt+ 1
if attempt = windowSize then
{end of window reached, adapt c if needed and reset window}
if accepted/windowSize < 0.4 and c < n then
c← c+ 1

else if accepted/windowSize > 0.6 and c > 0 then
c← c− 1

end if
attempt← 0
accepted← 0

end if
{use SRc policy with current value of c}
b← number of busy threads
if b < c then
accepted← accepted+ 1
SegmentsLeft← 0
forward packet to application

else
SegmentsLeft← 1
forward packet to second server in SR list

end if
end for
for each packet with SegmentsLeft = 1 do
SegmentsLeft← 0
forward packet to application

end for

the first server in the SR list have more than c busy threads.
The chance for this to happen is the square of the probability
that one server has more than c busy threads, thus allowing
for a better repartition of the load between all servers.

The choice of the parameter c has a direct influence on the
behavior of the global system. Small values of c will yield
better results under light loads, and high ones will yield better
results under heavy loads. Indeed, if the chosen value is too
small as compared to the load, the second server will receive
almost all connections, and vice-versa. If the load pattern
is known by the operator, the parameter c can be manually
selected so as to maximize the load-balancing efficiency. If
this is not the case, a dynamic policy can be used in order to
automatically tune the value of the parameter.

B. Dynamic policy

This section introduces a dynamic policy, SRdyn, that
can be used when the typical request load is unknown. The
underlying intuition is the following: if the rejection ratio of
the connection acceptance function is 0 (or 1), only the first (or
second) candidates in SR lists serve requests, falling back to
standard randomized load-balancing. To maximize utility, this
policy aims to maintain a rejection ratio of 1

2 , by dynamically
adapting the value of c so that this ratio stays close to 1

2 .
The detailed procedure is described in Algorithm 2. Previous
acceptance decisions are recorded over a fixed window of
queries. When the end of the window is reached, if the number
of accepted queries is significantly below (or above) 1

2 , the
value of c is incremented (or decremented).
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Figure 2. Average page load time for the Poisson workload as a function of
the normalized request rate ρ: RR vs different SRc policies (4, 8, 16, and
dynamic).
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IV. EXPERIMENTAL PLATFORM

The experimental platform used for evaluating SRLB is
composed of a load-balancer, a server agent for the Apache
HTTP server, and an overall system.

A. Load-Balancer

The load-balancer performing SR header insertion and flow
steering is implemented as a VPP plugin [13]. While this
choice is not significant to the performance results presented
in this paper, it is convenient as VPP embeds an IPv6 Segment
Routing stack and is kernel-bypass virtual routing capable.

B. Apache HTTP Server Agent

A server agent for the Apache HTTP server [15] has been
implemented as a VPP plugin, accessing Apache’s scoreboard
shared memory1 to allow the virtual router to access the state
of the application instance. Apache uses a worker thread
model: a pool of worker threads is started in advance, and
received queries are dispatched to those threads. Thus, a simple
exposed metric is the state of each worker thread, allowing to
count the number of busy/idle threads, and use this to decide
on connection acceptance, using one of the policies described
in section III.

1This shared memory, internal by default, can be exposed as a named file
by specifying the ScoreBoardFile directive in the server configuration.
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C. System Set-up

The experiments, described in sections V and VI, are con-
ducted on a common platform. A traffic generator and a load
balancer reside in one physical machine. Twelve application
instances of an Apache HTTP server reside each in a 2-core
VM, all of which are hosted in another physical machine,
running a 24-core Intel Xeon E5-2690 CPU. VPP instances
running in the load-balancer and on the 12 application servers
were bridged on the same link, with routing tables statically
configured.

Finally, the Apache servers were configured to
use the mpm_prefork module, each with 32
worker threads and with a TCP backlog of 128. The
tcp_abort_on_overflow parameter of the Linux kernel
was enabled, triggering a TCP RST when the backlog of
TCP connections exceeds queue capacity, rather than silently
dropping the packet and waiting for a SYN retransmit. This
allows that, under heavy load, the application response delays
are measured, and not possible TCP SYN retransmit delays.

V. POISSON TRAFFIC

A. Traffic and Workload Patterns

To evaluate the efficiency of the connection acceptance poli-
cies from section III under different loads, SRLB was tested



against a simple CPU-intensive web application, consisting
of a PHP script running a for loop, and whose duration
follows an exponential distribution of mean 100 ms. The traffic
generator sends a Poisson stream of queries (HTTP requests),
with rate λ. A bootstrap step consisted of identifying λ0, the
max rate sustainable by the 12-servers swarm, i.e. the smallest
value of λ for which some TCP connections were dropped.

B. Connection Acceptance Policies Tested

With ρ = λ/λ0 as the normalized request rate, for 24 values
of ρ in the range (0, 1), a Poisson stream of 20000 queries with
rate ρ was injected in the load-balancer, using the policies
SR4, SR8, SR16, SRdyn. As baseline, the same tests were
run with a policy RR where queries are randomly assigned
to one server, without Service Hunting.

C. Experimental Results

Figure 2 depicts mean response times for each tested request
rate and for each policy, and show that, among those, SR4

yields the best response time profile, up to 2.3× better than
RR for ρ = 0.88. SR8 and SR16 likewise perform better
than RR for all loads, but with a lesser impact. SRdyn

offers results close to the best static policy, SR4, showing
that a manual policy tuning is not needed to obtain good
performance.

Figure 3 shows the CDF of the page response time for
the 20000 queries batch with ρ = 0.88, for each policy.
RR exhibits a very dispersed distribution of response times,
whereas the different SRc policies yield lower, and less
dispersed, response times.

This can be explained by inspecting the evolution of the
mean instantaneous load (the number of busy worker threads),

as well as the corresponding fairness index:
(
∑12

i=1
xi(t))

2

12
∑12

i=1
xi(t)2

(where xi(t) is the load of server i at time t) of each server,
depicted in figure 42. As SR4 better spreads queries between
all servers (the fairness index is closer to 1), and servers are
individually less loaded, better response times result.

For lighter loads, the same kind of behavior can be observed,
except that high SRc policies exhibit no benefits as compared
to RR. Figure 5 shows the CDF of the page load time for
an experiment where ρ = 0.61: SR16 yields no improvement
over RR, and SR8 yields a relatively small improvement,
however the SR4 policy provides a substantial improvement
in response times - and SRdyn remains able to successfully
match SR4, the best static policy.

VI. WIKIPEDIA REPLAY

A. Traffic and Workload Patterns

To evaluate the performance of SRLB when exposed to a
realistic workload, an experiment was constructed to reproduce
a typical Web-service. Thus an instance of MediaWiki3 (ver-
sion 1.28), as well as a MySQL server and the memcached

2These values have been smoothed through an Exponential Window Moving
Average filter, of parameter α = 1 − exp(−δt) where δt is the interval of
time in seconds between two successive data points.

3https://www.mediawiki.org/wiki/Download
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cache daemon, were installed on each of the 12 servers. The
wikiloader tool from [16], and a dump of the database of the
English version of Wikipedia from [17], were used to populate
the MySQL databases, resulting in each server containing an
individual replica of the English Wikipedia.

A traffic generator, able to replay a MediaWiki access trace
with millisecond granularity and to record response times, was
developed, and experiments were run using 24 hours of traces
from [17]. These traces correspond to 10% of all queries
received by Wikipedia during this timeframe, from among
which only traffic to the English Wikipedia was extracted and
used for the experiment.

A first experiment was to identify the maximum achievable
rate for the testbed. Using RR, the testbed could sustain 50%
of the peak load while exhibiting reasonable response times
(smaller than one second).

B. Connection Acceptance Policies Tested

Given the superior performance of SR4 in the experiments
from section V-C, 50% of the 24-hour trace was replayed
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against both SR4 and RR, and client-side response times
were collected.

C. Experimental Results

The experiment allowed classifying queries into two groups:
(i) requests for static pages, which are not CPU-intensive, and
for which response times were of the order of a millisecond,
and (ii) requests for wiki pages, that trigger memcached or
MySQL and thus are more CPU-intensive.

Static page response times were found to be equivalent, re-
gardless of if SR4 or RR were used. However, the load times
of wiki pages, identifiable by the string /wiki/index.php
in their URL, exhibited interesting differences.

Figure 6 depicts the wiki page request rate and the median
wiki page load time for both RR and SR4 during the 24h
replay4. It can be observed that at the off-peak period around
8:00 UTC, when the system was lightly loaded and subject
to a request rate of around 60 pages per second, RR and
SR4 yielded very similar performance. However as the request
rate increased, when using the application-unaware RR policy
observed page load times increased notably – whereas when
using SR4, a comparably much smaller increase in page load
times incurred.

To understand the variability of the response times along
the 24 hours, figure 6 depicts deciles 1-9 of the wiki page
load time distribution, for each 10 minutes bin. Again, SR4

shows less variability under higher loads than does RR.
Finally, as an indicator of “global good behavior”, figure 8

depicts the CDF of the wiki page load times over the whole
day. Overall, the median response time went from 0.25s
with RR to 0.20s with SR4. Furthermore, the tail of the
distribution is steeper with the application-aware SR4 scheme,
with the third quartile going from 0.48s to 0.28s.

VII. CONCLUSION

This paper has introduced SRLB, a distributed load
balancing system which, while remaining application and
application-layer protocol agnostic, is able to perform
application-instance state aware query assignment by way
of Service Hunting within the IP forwarding plane. This
allows SRLB to offer — not impose — queries to application

4Data has been binned in 10 minutes slots.

instances, leaving the decision to accept (or not) a query to
those. SRLB thus does not employ any out-of-band signaling,
nor requires any central monitoring, nor imposes any load
balancing policy. As a flexible framework, SRLB is able to
accommodate a broad spectrum of policies. As a baseline,
this paper has tested a naive random query dispatch policy
– and has compared with a static and a dynamic query
acceptance policy, enabled by the Service Hunting features of
SRLB developed in this paper. Evaluation of those policies,
conducted using a simulated Poisson workload, as well as on
a Wikipedia replica, shows that SRLB is able to better spread
the load between all servers than a random load-balancer.
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