
HAL Id: hal-02263389
https://polytechnique.hal.science/hal-02263389

Submitted on 4 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Depth First Forwarding (DFF) Extension for the
LOADng Routing Protocol

Thomas Heide Clausen, Jiazi Yi, Antonin Bas, Ulrich Herberg

To cite this version:
Thomas Heide Clausen, Jiazi Yi, Antonin Bas, Ulrich Herberg. A Depth First Forwarding (DFF)
Extension for the LOADng Routing Protocol. 2013 First International Symposium on Computing
and Networking (CANDAR), Dec 2013, Matsuyama, Japan. pp.404-408, �10.1109/CANDAR.2013.72�.
�hal-02263389�

https://polytechnique.hal.science/hal-02263389
https://hal.archives-ouvertes.fr

A Depth First Forwarding (DFF) Extension
for the LOADng Routing Protocol

Thomas Clausen, Jiazi Yi, Antonin Bas
Laboratoire d’Informatique (LIX) – Ecole Polytechnique, France

Thomas@ThomasClausen.org, jiazi@jiaziyi.com, Antonin.Bas@polytechnique.edu

Ulrich Herberg
Fujitsu Laboratories of America

ulrich@herberg.name

Abstract—This paper explores the cooperation between the
new standards for “Low Power and Lossy Networks” (LLNs):
IETF RFC 6971, denoted “Depth-First Forwarding in Unreliable
Networks” (DFF) and the ITU-T standardised routing protocol
“LOADng” (Lightweight On-demand ad hoc Distance-vector
Routing - next generation). DFF is a data-forwarding mechanism
for increasing reliability of data delivery in networks with
dynamic topology and lossy links, using a mechanism similar to
a “depth-first search” for the destination of a packet. LOADng
is a reactive on-demand routing protocol used in LLNs. The
purpose of this study is to evaluate the benefit of using DFF
conjointly with a routing protocol. To this end, the paper
compares the performance of LOADng and LOADng+DFF using
Ns2 simulations, showing a 20% end-to-end data delivery ratio
increase at expense of expected longer path lengths.

I. INTRODUCTION

Low-power and Lossy Networks (LLNs) are composed
of devices with strictly limited computational power and
storage (1-2MHz CPUs and a couple of KB of memory),
communicating over a channel characterised by a high risk
of packet losses, (typically) very small frame sizes, and very
limited throughput. Transiting data across such a network,
especially when multiple hops are present between the source
and the destination, is a challenging task: routing protocols
finding paths must be frugal in their control traffic and state
requirements, as well as in algorithmic complexity – and
even once paths have been found, these may be usable only
intermittently (e.g., not all packet gets through successfully)
or for a very short time due to changes on the channel such
as persistent interference (requiring rediscovery of an usable
path). Channel failures, resulting in link failures in a routing
path can result from a variety of factors such as heterogeneity
of sender and receiver hardware, power supply or power
control algorithms (leading to different transmission ranges,
unidirectional links, or simply that devices are power-cycled
asynchronously), the presence of noise or interferences, or
even device failure causing a previously selected intermediary
router to no longer be available.

The limitations of the devices and the channel capacity
in LLNs suggest a routing protocol of extreme simplicity
– yet the fragility and transient nature of links suggest the
requirement to be able to quickly discover and establish alter-
native paths when faced with a link failure. These requirements
are, seemingly, contradictory. A “standard” proactive routing
protocol, such as OSPF (Open Shortest Path First) [1] or

OLSR (Optimized Link State Routing) [2], maintaining a
network topology graph would remove a “broken” link from
its graph and re-run a shortest path algorithm – incurring the
requirement of each routing device being able to store (up
to) the complete network topology, as well as being able to
re-run the shortest path algorithm on a whim. A “standard” on-
demand routing protocol would in the similar situation incur
route re-discovery, with additional (flooded) control signals
being imposed on the network, as well as additional delays
on data packet delivery whilst route re-discovery is ongoing,
and either buffering of data packets for that duration or
retransmission once a path has been re-discovered.

Different proposed and standardised routing protocols for
LLN exist, including RPL (Routing Protocol for Low-power
and lossy networks) [3] and LOADng (Lightweight On-
demand Ad hoc Distance-vector Routing Protocol – Next
Generation) [4], making different trade-offs and being of
different philosophies – yet being united in the fact that when
a link, used actively as part of a routing path, fails, then it is
up to the routing protocol to recover by discovering alternative
paths, with data traffic being either buffered or dropped for the
duration of this recovery.

“Depth-First Forwarding in Unreliable Networks” (DFF)
[5] is an experimental standard which proposes a mechanism
for recovery in case of link failure. Colloquially speaking,
if a device fails in its attempt to forward a packet to its
intended next-hop, then DFF suggests a heuristics for “trying
another of that devices neighbours”, while keeping track of
(and preventing) packet loops. Thus, DFF operates on the
“forwarding plane”. While DFF can operate independently,
i.e., without a routing protocol (which amounts to simply doing
a depth-first exploration of the network), it can also be used
conjointly with a routing protocol: the routing protocol can
provide an “order of priority” of the neighbours of a device,
in which data delivery should be attempted – and DFF can also
signal to a routing protocol when data delivery to a destination
has (possibly repeatedly) failed via a neighbour but (possibly
repeatedly) succeeded via another neighbour.

A. Statement of Purpose

This paper explores the cooperation between DFF and the
routing protocol LOADng [4], with the purpose of uncovering
the benefit of using DFF conjointly with a routing protocol. To
this end, the paper compares the performance of LOADng and

LOADng+DFF. RPL is not further studied in this paper due to
the fact that the predominant mode of operation of RPL (“non-
storing mode” [6]) employs source routing – which lends itself
poorly1 to on-the-path autonomous routing decisions causing
deviations from the established source route and, as such, is
incompatible with DFF.

B. Paper Outline

The remainder of this paper is organized as follows: sec-
tion II briefly describes the routing protocol LOADng, and
section III presents an overview of DFF. Section IV outlines
how LOADng and DFF are integrated – how the routing
protocol provides information for DFF’s forwarding decisions,
as well as how DFF signals to the routing protocol. It should
be noted that there are many different possible ways in which
LOADng and DFF (or, indeed, any routing protocol and DFF)
can be integrated, and this section outlines only the one studied
in this paper. Section V presents a performance evaluation of
LOADng with and without DFF. Finally, section VI concludes
this paper.

II. LOADNG

LOADng [7], [8] is a simplified reactive routing protocol,
targeting routing in low-power and lossy networks. It has been
standardised by the ITU (International Telecommunication
Union) [4] for routing in the “Smart Grid”, between electricity
meters and other equipment for electricity grid management.

As a reactive protocol, the basic operations of LOADng
include generation of Route Requests (RREQs) by a LOADng
Router (originator) for when discovering a route to a desti-
nation. These RREQs are flooded through the network, each
forward of a RREQ installing temporary routing table entries
towards the originator of the RREQ. Once an RREQs has has
been received the sought the destination LOADng Router, that
device will generate a Route Reply (RREPs), which is unicast
hop-by-hop towards the originator using the temporary route
installed by the received RREQ. This forwarding of an RREP
installs routing table entries towards the destination.

If a route is detected broken, i.e., if forwarding of a data
packet to the recorded next hop on the route towards the
intended destination is detected to fail, a Route Error (RERR)
message is returned to the originator of that data packet. The
LOADng specification stipulates that when the transmission of
a data packet fails, that data packet is dropped and a RERR is
sent back to its source – which can, then, trigger a new route
discovery.

Extensions to and options for LOADng exist [9], [10] for
trying to reduce the impact on the network load of route dis-
covery – but fact remains that in networks where transmission
failures are frequent, this behaviour can result in low delivery
ratios and possibly high network loads [7].

1Among other things, it would be difficult to use IPSec or similar mecha-
nisms.

III. DEPTH-FIRST FORWARDING

DFF [5] is a forwarding mechanism for improving the data
delivery success ratio across unreliable multi-hop networks. It
operates solely on the forwarding plane, i.e., does not assume
any specific routing protocol to be in operation (or, indeed, that
any routing protocol is in operation) – but can, as appropriate
and as indicated in section I, interact with a routing protocol.
DFF relies on an external mechanism providing each router
with a list of its neighbours.

Schematically, the basic operation of DFF is as follows,
when a data packet for a destination arrives at the forwarding
plane of a router:

1) The router temporarily creates an ordered Candidate
Next Hop list for that packet, which does not contain
the neighbour from which the data packet was received
(if any), from among the neighbours in the routers’
neighbour list.

2) The router attempts to forward the data packet to the
first neighbour in the resulting Candidate Next Hop list.

3) There are five possible outcomes from this attempt:
• The Candidate Next Hop list is empty, in which case

the data packet is returned to the neighbour from
which it was initially received, and the process for
this router stops.

• Delivery to that neighbour succeeds (e.g., as con-
firmed by an L2 acknowledgement), and that neigh-
bour is the destination for the data packet. The L2
acknowledgement indicates successful data packet
delivery to the destination. The process for this
router stops.

• Delivery to that neighbour fails (e.g., detected by
lack of an L2 acknowledgement), in which case that
neighbour is removed from the Candidate Next Hop
list, and the process resumes at item 2 above.

• Delivery to that neighbour succeeds (e.g., as con-
firmed by an L2 acknowledgement), but the data
packet is returned from the neighbour as “undeliv-
erable”, in which case that neighbour is removed
from the Candidate Next Hop list, and the process
resumes at step 2 above, with the resulting Candi-
date Next Hop list.

• Delivery to that neighbour succeeds (e.g., as con-
firmed by an L2 acknowledgement), the neighbour
is not the destination for the data packet. That neigh-
bour will, now, execute this very same procedure
(create its own Candidate Next Hop list, and execute
this process, starting at step 1).

The initial Candidate Next Hop list for a data packet, by
default, contains all the neighbours of a router, except for
the neighbour from which the data packet was received, but
may be smaller. The list is ordered, section 11 in [5] suggests
several criteria to take into account when ordering that list,
including that if a routing protocol is in operation, then the
neighbour on the shortest path (as indicated by that routing
protocol) must be part of the initial Candidate Next Hop list

– and is recommended to be first in that initial Candidate
Next Hop List. Link quality, historical information on “good
and bad neighbours as next hop” is suggested to be used for
ordering remaining neighbours.

DFF contains mechanisms for detecting looping data pack-
ets, encoded as flags and sequence numbers in IPv6 Hop-by-
Hop header options, carried in each data packet, and specifies
processing here. This incurs a small, but fixed, per-data-
packet overhead of 8 octets. This paper does not discuss this
signalling and processing in further details.

IV. INTEGRATION OF LOADNG AND DFF
DFF requires that a router has a list of all its neighbours

available for constructing the Candidate Next Hop list for
a data packet. [5] specifies that an external mechanism is
to be in place to provide that list, and suggests the use of
NHDP (Neighborhood Discovery Protocol) [11] – which is
implemented and used for the purpose of the performance
studies in this paper.

The routing protocol LOADng provides, at most, one entry
in the routing table for each destination, thus the integration
of the requirements for ordering the entries in the Candidate
Next Hop list for a data packet is met simply by, if a routing
table entry for the destination is present, inserting this first in
that list. The remainder of the entries in the Candidate Next
Hop list are, simply, all the other neighbours discovered by
NHDP (and with status SYMMETRIC), excluding of course
the neighbour from which the data packet was received.

Additionally, the two following rules govern the integration
of LOADng and DFF, for the purpose of the studies in this
paper, specifically when the protocol operations for each are
activated:

• When a router receives a data packet from another router,
for which it does not have a corresponding entry in the
routing table:

– Send data packet according to the DFF forwarding
rules, as described in section III

– Send an RERR message to the originator of that data
packet, as described in section II

An RERR message is sent since while DFF will ensure
data delivery, this may be by way of an excessively long
path; by sending an RERR message, the routing protocol
is instructed to “try to find a better path” whilst DFF
concurrently attempts delivery of data in transit (thus
reducing delays, retransmissions and/or buffer of data
traffic).

• If forwarding of a data packet to the next hop, indicated
by LOADng (i.e., the first entry in the Candidate Next
Hop list) fails (either by way of the packet being returned
by DFF, or by an L2 acknowledgement being absent):

– Send data packet according to the DFF forwarding
rules, as described in section III

– Send an RERR message to the originator of that data
packet, as described in section II

In this case, an RERR message is sent since, in addition
to the reasons listed above, this is indicative of the routing

information being inconsistent with the network topology,
and therefore needs to be updated.

Figure 1 gives an example of DFF with LOADng. Node A
is the data source, and node D is the destination. The route
originally found by LOADng protocol was A-B-F-D (one of
the shortest paths). However, when a data packet arrived at
node B, the link B-F was detected broken. By using DFF,
a neighbour node from Candidate Next Hop list, node G,
for example, is chosen as next hop. The data packet is thus
forwarded to node G, which will handle the packet according
its routing table information or DFF, and forward it to the
destination node D. In the meantime, node B will send an
RERR message to node A, to notify the route failure.

A B

D

F

G

E H

Figure 1. An example of DFF. Node A is the source, node D is the destination.

V. EVALUATION

In order to evaluate and compare the performance of
LOADng with and without DFF, network simulations by way
of NS2 are employed. While network simulations are, at
best, an approximation of real-world performance (particularly
due to the fidelity of their lower layers to reality), they do
provide a baseline for comparison and, generally, best-case
results, i.e., real-world performance is expected to be no better
than that which is obtained through simulations. The reason
for using network simulations is, that such allow running
experiments with different protocols under identical conditions
and parameters (MAC layer, distribution, number of nodes,
etc.).

Simulations were conducted using the TwoRayGround prop-
agation model and the IEEE 802.11 MAC. Although there are
various low-layer technologies more commonly (and, perhaps,
more viably) used for LLNs (power line communication,
802.15.4, low-power wifi, bluetooth low energy, etc.), general
behaviour of a protocol can be inferred from simulations using
802.11.

To discover bi-directional links in the network, NHDP is
used. For NHDP, a HELLO message interval must be chosen.
The shorter the HELLO message interval, the more accurate a
list of neighbours can be acquired (and so, the better can DFF
do their jobs) but at the expense of increased control traffic
overhead. For the purpose of these simulations, a HELLO
interval of 1s was (arbitrarily) chosen as it represents a “very
frequent HELLO message exchange and therefore a good
“worst case” example. In a real deployment, the HELLO

interval should be selected so as to correspond to the expected
local network topology change rate.

A. Network Topology and Traffic Characteristics

The general network topology of a scenario is as follows: n
(from 63 to 500) devices are placed randomly (while ensuring
that the network is still connected) in a square field, so that to
maintain a constant device density. A (random) device in the
network then creates n− 1 Constant Bit Rate (CBR) streams,
one to each other device and sends one packet of 512 octets
every 5 seconds to each of them. As DFF is supposed to
be particularly beneficial in lossy networks, the simulations
enforce that a packet is lost with a probability of 20%.
Simulations were run for 100s each, and for each datapoint 20
different and randomly generated scenarios – all corresponding
to the same abstract parameters – were simulated, with the
results presented below representing averages from among
these.

B. Simulation Results

Figure 2 depicts the data delivery ratios obtained for the
two protocols. While neither protocol obtains a perfect data
delivery ratio, DFF+LOADng introduces a constant ∼20%
improvement over LOADng. This improvement comes with
an increased control traffic overhead, as shown in figure 3 –
this is due to the fact that DFF+LOADng includes operation
of NHDP which incurs periodic signalling within each neigh-
bourhood.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 50 100 150 200 250 300 350 400 450 500

D
el

iv
er

y
ra

tio

Number of nodes

LOADngDFF
LOADng

Figure 2. Delivery Ratio

Figure 5 and 4 depict average end-to-end data delivery
delays and path lengths for data traffic. While it may appear be
intuitive that DFF incurs longer path lengths (after all, a depth-
first search for a destination will rarely yield the shortest path),
section IV introduced the use of DFF as a way of reducing
delays. This, therefore, must be balanced with what happens
without DFF: data packets are dropped, and not included in
the delay or path length statistics, during the time needed by
LOADng to recover.

 0

 50000

 100000

 150000

 200000

 250000

 50 100 150 200 250 300 350 400 450 500

O
ve

rh
ea

d
(b

yt
es

/s
ec

)

Number of nodes

LOADngDFF
LOADng

Figure 3. Overhead

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 50 100 150 200 250 300 350 400 450 500

Av
er

ag
e

pa
th

 le
ng

th
 (h

op
s)

Number of nodes

LOADngDFF
LOADng

Figure 4. Path lengths

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250 300 350 400 450 500

D
el

ay
 (s

)

Number of nodes

LOADngDFF
LOADng

Figure 5. Delays

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 50 100 150 200 250 300 350 400 450 500

N
um

be
r o

f c
ol

lis
io

ns

Number of nodes

LOADngDFF
LOADng

Figure 6. Collisions

Figure 6 depicts the number of collisions incurred (including
collisions between control and data traffic). The overhead (see
figure 3 of NHDP, necessary for LOADng+DFF, causes an
increased number of collisions as compared to LOADng –
yet this the data packet loss incurred through this is more
than offset through the benefits of using DFF, as depicted in
figure 2.

VI. CONCLUSION

This paper introduces DFF as a forwarding mechanism
for LLNs, and its application to the LOADng routing pro-
tocol. The implementation of DFF is about 200 lines of
additional code, compared to about 5000 lines of code for
the LOADng prototype. Because DFF requires the information
of bi-directional neighbors, NHDP is employed in this study
(an additional 200 lines of code). It is important to note that
NHDP is not mandatory if external mechanisms can provide
the neighborhood information, such as link layer protocols.

Simulation is performed to study the performance of DFF
in harsh lossy networks. Simulation results show that with the
DFF extension, up to 20-25% of improvement in data delivery
ratio can be achieved compared to LOADng, with little cost

in delay and path length. This makes DFF an interesting
mechanism for scenarios where the data delay is not critical.

In the implementation tested, a basic (or “naive”) mech-
anism is used – DFF treats every bi-directional neighbor
equally, without considering which may be the best candidate
“next hop” to the final destination. This, however, is inten-
tional, so as to be able to observe what is the worst case
when DFF is employed. With this benchmark, it would be
interesting to explore more efficient mechanisms for choosing
the “best next hop” in the future.

REFERENCES

[1] J. Moy, “OSPF Version 2,” RFC 2328, IETF, April 1998.
[2] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol

(OLSR),” RFC 3626, IETF, October 2003.
[3] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,

R. Struik, and J. Vasseur, “RPL: IPv6 Routing Protocol for Low power
and Lossy Networks,” RFC 6550, IETF, March 2012.

[4] ITU, “ITU-T G.9903: Narrow-band orthogonal frequency division mul-
tiplexing power line communication transceivers for G3-PLC networks:
Amendment 1,” May 2013.

[5] U. Herberg, A. Cardenas, T. Iwao, M. Dow, and S. Cespedes, “Depth-
First Forwarding (DFF) in Unreliable Networks,” RFC 6971, IETF, June
2013.

[6] T. Clausen, A. C. de Verdiere, J. Yi, U. Herberg, and Y. Igarashi,
“Observations of RPL: IPv6 Routing Protocol for Low power and
Lossy Networks,” Internet Draft, work in progress, draft-clausen-lln-
rpl-experiences, IETF, February 2013.

[7] T. Clausen, J. Yi, and A. C. de Verdiere, “LOADng: Towards AODV
Version 2,” in VTC Fall. IEEE, 2012, pp. 1–5.

[8] T. Clausen, A. C. de Verdiere, J. Yi, A. Niktash, Y. Igarashi, H. Satoh,
U. Herberg, C. Lavenu, T. Lys, and J. Dean, “The Lightweight On-
demand Ad hoc Distance-vector Routing Protocol - Next Generation
(LOADng),” Internet Draft, work in progress, draft-clausen-lln-loadng,
IETF, July 2013.

[9] J. Yi, T. Clausen, and A. Bas, “Smart Route Request for On-demand
Route Discovery in Constrained Environments.” Proceedings of the
IEEE International Conference on Wireless Information Technology and
Systems, September 2012.

[10] A. Bas, J. Yi, and T. Clausen, “Expanding Ring Search for Route
Discovery in LOADng Routing Protocol.” Proceedings of The 1st
International Workshop on Smart Technologies for Energy, Information
and Communication, September 2012.

[11] T. Clausen, C. Dearlove, and J. Dean, “Mobile Ad Hoc Network
(MANET) Neighborhood Discovery Protocol (NHDP),” RFC 6130,
IETF, April 2010.

[12] T. Clausen, C. Dearlove, and B. Adamson, “Jitter Considerations in
Mobile Ad Hoc Networks (MANETs),” RFC 5148, IETF, February
2008.

