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ABSTRACT

Routing protocols for sensor networks are often designed
with explicit assumptions, serving to simplify design and re-
duce the necessary energy, processing and communications
requirements. Different protocols make different assump-
tions — and this paper considers those made by the designers
of RPL — an IPv6 routing protocol for such networks, de-
veloped within the IETF. Specific attention is given to the
predominance of bi-directional traffic flows in a large class
of sensor networks, and this paper therefore studies the per-
formance of RPL for such flows. As a point of comparison,
a different protocol, called LOAD, is also studied. LOAD
is derived from AODV and supports more general kinds of
traffic flows. The results of this investigation reveal that
for scenarios where bi-directional traffic flows are predomi-
nant, LOAD provides similar data delivery ratios as RPL,
while incurring less overhead and being simultaneously less
constrained in the types of topologies supported.

Categories and Subject Descriptors

C.2.2 [Network Protocols]: Routing protocols —RPL,
LOAD, IETF, LLN, evaluation, simulation, comparison, bi-
directional traffic, sensor networks

General Terms

Performance, Standardization

1. INTRODUCTION

Sensor networks differ from more “traditional networks” in
that the devices making up a sensor network have connec-
tivity maintenance and data forwarding as auxiliary tasks
to their primary raison d’étre, such as data acquisition. Ig-
noring the applications, the network itself can be described
by (i) the devices being many thousands in number, (ii)
with very limited internal (memory, CPU), external (com-
munications capacity) and energy resources, and that (ii)
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the communications channel between devices typically has
unattractive characteristics: low-bandwidth, high loss-rates
and volatile links with limited persistency over time. The
term Low-power Lossy Networks (LLN) is therefore com-
monly used for describing such networks.

Yet, despite these challenges, routing protocols are re-
quired for establishing and maintaining multi-hop connec-
tivity in LLNs, for situations where it is unfeasible or impos-
sible to provision a sensor network deployment such that all
devices, necessitating communication between each other,
are within direct connectivity.

1.1 Background

The Internet Engineering Task Force (IETF) [8] has a long
tradition of developing and standardizing routing protocols.
Initially, for fixed Internet infrastructures, where the condi-
tions are more lenient than in LLNs: routers generally have
abundance of computational capacity and few energy con-
straints, links are predominantly “good” with few losses —
and while Internet routing protocols such as OSPF are able
to handle some network topology changes, these are gener-
ally rare, and generally occur only as a result of relatively
catastrophic events: a cable being cut, for example.

In the late 1990’es, the IETF started investigating MA-
NETs [9] — Mobile Ad hoc NETworks. Generally thought
of as multi-hop wireless networks of mobile devices, a crop
of routing protocols were developed and standardized, no-
tably OLSR [5] and AODV [17]*. Able to manage more dy-
namic topologies and the characteristics of wireless network
interfaces, this work introduced a new dichotomy in rout-
ing protocol classification: OLSRv2 [3] being a classic link-
state routing protocol, optimized for MANETS, it maintains
paths to all destinations at all times, and this even before
such paths are needed — proactively. AODV [17] approached
the same problem in a different fashion, by discovering and
maintaining paths to destinations only as needed by applica-
tion traffic — reactively. For both, however, the assumption
was that while the network topology might be dynamic and
the wireless connectivity volatile, the devices in the network
still had a relative abundance of both computational power
and energy.

With the emergence of sensor networks, so did the chal-
lenge to the assumption of an abundance of computational
power and energy — even transmitting an IPv6 packet with
128-bit long addresses was considered a strain in terms of

'And their successors, OLSRv2 [3] and DYMO [1], which
are currently being specified by the IETF.



energy consumption, and so the IETF started investigating
adaptations of IPv6 for LLNs: compressing addresses, re-
moving options considered rarely used, simplifying packet
processing etc. Routing protocols, even those developed
for MANETS, were considered too heavy and work started
around 2005 on IPv6-based routing protocols, adapted for
LLNs — formalized by the IETF with the creation of a ROLL
(“Routing Over Low-power and Lossy networks”) Working
Group [10] specifically for managing this development work.

This Working Group produced a protocol denoted RPL (“Rout-

ing Protocol for Low-power and lossy networks®) [19].

1.2 Sacrifices

While the development from fixed Internet infrastructure
routing protocols such as OSPF and BGP to MANET rout-
ing protocols such as OLSR and AODV was accomplished
by way of algorithmic optimizations e.g., on the overhead in-
curred by sharing link-state information network-wide, MA-
NET protocols remained relatively general routing protocols
— in particular, MANET routing protocols provide full IP
support and adhere to the “anybody can communicate with
anybody” paradigm.

The development towards LLN routing protocols, on the
other hand, came with sacrifices in generality: assumptions
as to which options in IPv6 headers were to be supported,
as well as optimization of routing protocol operation for spe-
cific traffic patterns, considering certain such esoteric enough
so as to not merit special attention. The ROLL Working
Group, in its design of RPL, made a set of such assump-
tions, notably that sensor-to-controller traffic (multipoint-
to-point) is predominant, controller-to-sensor traffic (point-
to-multipoint) is rare and sensor-to-sensor traflic (point-to-
point) is somewhat esoteric. RPL in its design, therefore,
optimizes for multipoint-to-point traffic, supports in a less
optimized fashion point-to-multipoint and provides some ba-
sic mechanisms for point-to-point traffic — essentially tran-
siting such point-to-point traffic between two sensors via the
controller.

1.3 Motivation

The traffic patterns for which RPL optimizes are, unques-
tionably, reasonable in some scenarios: data acquisition net-
works, for example, where sensors monitor an environment
and transmit their findings towards a central controller, and
where traffic from the controller to a sensor is a rare occur-
rence. They are, however, not universal. There are scenarios
in which sensor-to-sensor traffic is assumed to be the more
common pattern, such as [14]. Another example is in utility
metering, where a utility company may wish to have a con-
troller inquire household meters as to their consumption —
send a request and expect a reply — or even may use the net-
work to change parameters in household meters (expecting
a confirmation). An example hereof is for load management
on a power-grid, where a controller may wish to instruct in-
dividual households to reduce (or increase) their consump-
tion according to the overall load on the grid. Even data
acquisition type networks may have this characteristics: a
sensor detecting an abnormal condition may signal this —
needing to be certain that the signal has been received and
thus expecting a confirmation.

Thus, even if assuming that point-to-point between sensors
inside the network is relatively rare, bi-directional commu-
nication between sensors and a controller should be assumed

common. In terms of the assumptions on traffic patterns,
made in the design of RPL [19], this entails that equal im-
portance should have been given to point-to-multipoint and
multipoint-to-point traffic.

1.4 Statement of Purpose

Thus, one purpose of this paper is to explore the per-
formance of LLN routing protocols for scenarios where bi-
directional traffic is prevalent, in particular understanding
the behavior of RPL, and the viability of the sacrifices made
in generality by the design of that protocol, when exposed
to this common traffic pattern. A second purpose is to
explore how a more general protocol, LOAD [11], behaves
when exposed to the same traffic patterns — both as a point
of comparison, and as a way of exploring the viability of
that protocol for LLNs. LOAD is a protocol, derived from
AODV [17] by simplifying some mechanisms (detailed in
section 3) while retaining the generality of supporting all
traffic patterns equally and provisioning all paths to be bi-
directional.

The rationale for choosing RPL and LOAD for a perfor-
mance comparison is that RPL is a new protocol just stan-
dardized by the IETF as the standard routing protocol for
LLNs, whereas LOAD is closely derived from AODV. AODV
has been standardized by the IETF in 2003, and since then,
researchers and engineers have gained a profound experience
with the protocol. Comparing RPL with LOAD can there-
fore help to discover weaknesses of either of the protocols
and possibly to improve them in a future work.

1.5 Paper Outline

Section 2 presents a functional overview of RPL [19]. Sec-
tion 3 similarly provides a functional overview of LOAD [11].
Section 4 performs a comparative study of these. Section 5
concludes this paper.

2. RPL OVERVIEW

The basic construct in RPL is a “Destination Oriented Di-
rected Acyclic Graph” (DODAG), depicted in figure 1. In
a converged LLN, each RPL router has identified a stable
set of parents, each of which is a potential next-hop on a
path towards the “root” (or “controller”) of the DODAG, as
well as a preferred parent. FEach router, which is part of a
DODAG (i.e. has selected parents) will emit DODAG In-
formation Object (DIO) messages, using link-local multicast,
indicating its respective rank in the DODAG (i.e. distance
to the DODAG root according to some metric(s), in the sim-
plest form hop-count). Upon having received a number of
such DIO messages, a router calculates its own rank such
that it is greater than the rank of each of its parents, select
a preferred parent and then start emitting DIO messages.

The DODAG formation thus starts at the DODAG root
(initially, the only router which is part of a DODAG), and
spreads gradually to cover the whole LLN as DIOs are re-
ceived, parents and preferred parents are selected and fur-
ther routers participate in the DODAG. The DODAG root
also includes, in DIO messages, a DODAG Configuration
Object, describing common configuration attributes for all
RPL routers in that network — including their mode of op-
eration, timer characteristics etc. RPL routers in a DODAG
include a verbatim copy of the last received DODAG Config-
uration Object in their DIO messages, permitting also such
configuration parameters propagating through the network.



Figure 1: RPL Basic Construct: DODAGs

A Distance Vector protocol, RPL [19] restricts the ability
for a router to change rank. A router can freely assume a
smaller rank than previously advertised (i.e. logically move
closer to the root) if it discovers a parent advertising a lower
rank, and must then disregard all previous parents of higher
ranks. The ability for a router to assume a greater rank
(i.e. logically move farther from the root) than previously
advertised is restricted, to avoid count-to-infinity problems.
The root can trigger “global recalculation” of the DODAG
by increasing a sequence number, DODAG version, in DIO
messages.

The DODAG so constructed is used for installing routes:
the “preferred parent” of an RPL router can serve as a de-
fault route towards the root, or the root can embed in its
DIO messages the destination prefixes, included by DIOs
generated by RPL routers through the LLN, to which con-
nectivity is provided by the root. Thus, RPL by way of DIO
generation provides “upward routes” or “multipoint-to-point
routes” from the sensors inside the LLN and towards the
root.

“Downward routes” are enabled by having sensors issue
Destination Advertisement Object (DAO) messages, prop-
agating as unicast via parents towards the DODAG root.
These describe which prefixes belong to, and can be reached
via, which RPL router. In a network, all RPL routers must
operate in either of storing-mode or non-storing-mode, spec-
ified by way of a “Mode of Operation” (MOP) flag in the
DODAG Configuration Object from the root. Depending
on the MOP, DAO messages are forwarded differently to-
wards the root:

e In non-storing-mode, an RPL router originates DAO mes-
sages, advertising one or more of its parents, and unicasts
it to the DODAG root. Once the root has received DAOs
from an RPL router, and from all routers on the path be-
tween it and the root, it can use source routing for reach-
ing advertised destinations inside the LLN.

e In storing-mode, each RPL router on the path between
the originator of a DAO and the root records a route to
the prefixes advertised in the DAO, as well as the next-
hop towards these (the router from which the DAO was
received), then forwards the DAO to its preferred parent.

“Point-to-point routes”, for communication between de-
vices inside the LLN and where neither of the communicat-
ing devices are the DODAG root, are as default supported
by having the source sensor transmit via its default route
to the DODAG root (i.e., using the upward routes) which
will then, depending on the “Mode of Operation” for the
DODAG, either add a source-route to the received data for
reaching the destination sensor (downward routes in non-
storing-mode) or simply use hop-by-hop routing (downward

routes in storing-mode). In the case of storing-mode, if the
source and the destination for a point-to-point communica-
tion share a common ancestor other than the DODAG root,
a downward route may be available (and used) before reach-
ing the DODAG root.

2.1 RPL Message Emission Timing — Trickle

RPL message generation is timer-based, with the root
able to configure back-off of message emission intervals using
Trickle [13], specified in [12]. Trickle, as used in RPL, stip-
ulates that a RPL router transmits a DIO “every so often” —
except if receiving a number of DIOs from neighbor routers,
enabling the router to determine if its DIO transmission is
redundant.

When an RPL router transmits a DIO, there are two pos-
sible outcomes: either every neighbor router that hears the
message finds that the information contained is consistent
with its own state (i.e., the received DODAG version num-
ber received corresponds with that which the RPL router has
recorded and no better rank is advertised than that which
is recorded in the parent set) — or, a recipient RPL router
detects that either the sender of the DIO or itself has out-of-
date information. If the sender has out-of-date information,
then the recipient RPL router schedules transmission of a
DIO to update this information. If the recipient RPL router
has out-of-date information, then it updates based on the
information received in the DIO.

With Trickle, an RPL router will schedule emission of a
DIO at some time, ¢, in the future. When receiving a DIO
containing information consistent with its own information,
the RPL router will record that “redundant information has
been received” by incrementing a redundancy counter, c. At
the time ¢, if ¢ is below some “redundancy threshold”, then it
transmits its DIO. Otherwise, transmission of a DIO at this
time is suppressed, c is reset and a new t is selected to twice
as long time in the future — bounded by a pre-configured
maximum value for ¢. If, on the other hand, the RPL router
has received an out-of-date DIO from one of its neighbors,
t is reset to a pre-configured minimum value and c is set to
zero. In both cases, at the expiration of ¢, the RPL router
will verify if ¢ is below the “redundancy threshold” and if so
transmit — otherwise, increase ¢ and stay quiet.

3. LOAD OVERVIEW

LOAD [11] is a protocol, derived from AODV [17] and
adapted for LLNs. Thus, the basic operation of LOAD is
identical to that of AODV: a device with a packet to de-
liver to a destination, and which does not have a valid entry
in its routing table for that destination, will issue a route-
request (RREQ) message, diffused through the network so
as to reach all other devices. When a device forwards this
route-request, it records an entry in its routing table towards
the originator of that route-request — a reverse route indi-
cating the eventual path from the destination to the origi-
nator. If the destination is present in the network, it will
eventually receive the route-request — and will respond by a
route-reply (RREP), unicast to the originator of the route-
request along the previously installed reverse route. As that
route-reply is being forwarded along this reverse route, the
devices forwarding it will instill a forward route towards the
destination. Once the route-reply arrives at the originator
of the corresponding route-request, a bi-directional path is
installed, available for use.



When a link is detected to be broken (typically through a
link-layer notification of a data-packet failing to be delivered
to a next hop), the detecting router may engage in a route-
repair operation — essentially a new route-request / route-reply
cycle to discover a path to the destination — and if that fails,
issue a route-error (RERR) message to inform the source of
the failed data-packet of the error.

While this route discovery is performed, any IP-packets
to the destination are buffered in the source router. When
a route is established, these packets are transmitted — and
if no route can be established, they are dropped.

The main differences between AODV and LOAD are:

1. LOAD simplifies the protocol behavior by disallowing
that intermediate devices respond with a route-reply —
even if they have an active route to the intended des-
tination — thereby eliminating the need for destination
sequence numbers.

2. Where in AODYV, in case a device detects a link break-
age, that device will attempt to transmit the route-
error message to all neighbors which have recently
used it as a next-hop on a path to the destination of
the undelivered package, LOAD disables that — thereby
eliminating the need to a device to maintain a precur-
sor list.

Other, minor, differences include simplification of the packet

format, support for compressed IPv6 addresses [15] etc.

LOAD does not impose any specific roles on any specific
devices, notably has no controller or root with specific re-
sponsibilities for the network operation. Thus, the default
traffic pattern supported by LOAD is bi-directional point-
to-point traffic. The one sacrifice that LOAD makes with
respect to data traffic, in simplifying from AODV, is, that
it assumes that a given destination typically is in communi-
cation with only a single source at a given time — hence, the
suppression of the precursor list.

4. EVALUATION

In order to understand the performance of both RPL and
LOAD in LLNs with bidirectional traffic, a simulation study
using the Ns2 simulator has been conducted. Standard eval-
uation metrics, such as data traffic delivery ratio, control
traffic overhead, number of collisions, network convergence
time etc. are compared between the two protocols. Energy
consumption of the two protocols was out of the scope of this
paper, as the energy consumption largely depends on the un-
derlying hardware, and can therefore hardly be quantified in
network simulations. As in particular receiving and sending
messages on the network interfaces drains energy from the
device, the energy consumption is related to the quantity of
the control traffic overhead of the routing protocol, as well
as data traffic. Section 4.1 describes the simulation settings
and section 4.2 presents the results of the evaluation.

4.1 Simulation Settings

The specific settings of the scenarios studied are detailed
in table 1. For each datapoint, the values have been averaged
over 10 runs.

3As both RPL and LOAD are agnostic of the underlying
link layer, any other link layer, such as IEEE 802.15.4 could
be used, with expected similar behavior of the routing pro-

Table 1: Ns2 parameters
Parameter | Value |

Mobility scenarios No mobility, random distri-
bution of routers

variable

Grid size
Router density 50 / km®

Number of routers 63 / 125 / 250 / 500 / 1000
Communication range 250m

Radio propagation model | Two-ray ground

Simulation time RPL: 270 secs/LOAD: 1 day
Interface type 802.11b ? (2.4 GHz)

Both LOAD and RPL have been implemented in Java,
using the AgentJ framework [6] to hook the Java code into
Ns2. The routers were placed randomly in a square area of
variable size, with a density of 50 routers per km?. Only
scenarios were selected where all routers are in the same
connected component.

The bidirectional traffic patterns consisted of a “reading
scenario”, where the controller collects information from all
sensors in the network, within 24 hours. Delay of the replies
was considered irrelevant, as long as all sensors have replied
within the 24 hours. In the Ns2 simulation, the controller
sends a single request to each sensor (one datagram, 11
octets payload), to which the sensor replies with a single
data packet (100 octets payload).

The settings for RPL are listed in table 2, and for LOAD
in table 3.

Table 2: RPL parameters

| Parameter | Value
Mode of operation non-storing
Rank metric hop count
DIOIntervalMin 2s
DIOIntervalDoublings 20
DIORedundancyConstant | oo
DAOInterval 15s

Table 3: LOAD parameters

| Parameter | Value |
RREQ jitter 0-05s
Route lifetime 5s

Address compression 2 octets per IPv6 address

The simulation time was 24 hours for LOAD, and 270
seconds for RPL. The reason for not choosing 24 hours for
RPL as well is the required amount of time for conduct-
ing the simulation: as DAO messages are sent periodically
in the simulation, even if no data traffic occurs in the net-
work, the required amount of time to conduct the simulation
would take several days for a single simulation run. More-
over, trace files would grow to hundreds of Gigabytes per
simulation. As in LOAD no control traffic is sent when no
data traffic is sent, the simulation runs considerably faster,

tocols. One possible difference, however, could be fragmen-
tation when using smaller MTUs, such as in 802.15.4, as
described in [4].



allowing to simulate the 24 hours interval. Despite this dif-
ference of simulation time, the results are comparable, as the
transmitted data traffic stays the same. The control traffic
overhead of RPL can be extrapolated from 270s to 1 day, as
DAO messages are sent periodically.

For RPL, the first traffic request from the controller is
sent at 60s after the the start of the simulation, allowing
RPL to converge (i.e., to construct the DODAG) before.
Once the sensor receives the data request, it replies imme-
diately. The following data request from the controller to
the next sensor is sent 0.1 seconds after the previous data
request. For simulations with 1000 routers, the last data
request from the controller will thus be sent at 160 seconds
after the simulation start (60s 4 999 -0.1s).

For LOAD, the traffic requests are sent every 30 seconds,
starting at 100 seconds after simulation start, i.e., the last
request is sent at 30070 seconds or 8.35 hours after the sim-
ulation start. In order to reduce the amount of collisions of
frames, a random jitter has been added before forwarding
a RREQ on a router, as specified in [2]. While this is not
specified in the current revision of LOAD, it could be added
in a future revision, similar to other current ad hoc routing
protocols like OLSRv2 [3].

During the simulation, only a single traffic flow from the
controller towards a sensor or vice verse is active, i.e., only a
single route has to be maintained on a router running LOAD
(assuming that routes expire before the next data packet is
transmitted). In the investigated “reading scenario”, this
does not represent an unrealistic setting, since every sensor
is only contacted once in 24 hours by the controller. As
a consequence, both RPL in non-storing mode and LOAD
require minimal state on the routers.

4.2 Simulation Results

This section describes the results of the simulation.

Figure 2 shows the maximum and average rank of routers
in the DODAG, where the number represents the distance of
a router to the controller in terms of hops (i.e. the maximum
rank represents the diameter of the network, the average
rank represents the average over all routers). The maximum
and average ranks grow logarithmically with the number of
routers in the network.

30
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Figure 2: Maximum and average rank of routers

Figure 3 depicts the average number of parents of each
router in the DODAG. Keeping the density of the network

constant with increasing number of routers, the average num-
ber of parents grows logarithmically.
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Figure 3: Average number of parents per router

Figure 4 displays the convergence time of the network, i.e.
the time that is needed for all routers that are in the same
connected component as the controller to join the DODAG.
Since each router starts sending DIOs two seconds after the
last change to its Candidate Neighbor Set, the convergence
time is roughly two seconds times the maximum rank of the
DODAG. The convergence time grows logarithmically with
the number of routers in the network.
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Figure 4: Network convergence time

Figure 5 depicts the cumulative control traffic overhead
over the simulation time, i.e., in 270 s for RPL and in 1 day
for LOAD. Each forwarding of a broadcast packet is counted
separately, e.g., a RREQ in LOAD that is flooded from the
controller to n other sensors, counts for n - sizeof(RREQ)
bytes. It can be observed that for both protocols, the control
traffic overhead increases polynomially with the amount of
routers, and that RPL leads to more than twice the amount
of the control traffic as LOAD. For RPL, the periodic DAOs
account for the majority of the control traffic, whereas the
overhead of DIOs is much lower due to the exponentially
growing emission intervals of the Trickle timer. For LOAD,
the broadcast RREQs lead to a much higher overhead than
the unicast RREPs.
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Figure 5: Control traffic overhead

It has to be noted that the control traffic overhead of
LOAD, as for any reactive routing protocol, depends on the
data traffic in the network (as well as the validity time of the
routes and the dynamicity of the network topology). The
control traffic overhead of RPL, as a proactive protocol, does
not depend on the data traffic.

Since the simulation time was much lower for RPL, and
DAOs are sent periodically, the expected amount of control
traffic for a duration of 1 day can be easily extrapolated.
Figure 6 depicts the extrapolated control traffic amount of
DAOs and RREQs (which account for the majority of the
control traffic, as described above). The overhead for the
RREQs is the same as in figure 5, as the emission of RREQs
only depends on the data traffic.
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Figure 6: Extrapolated control traffic overhead for
24 hours

The overhead of RPL is two orders of magnitude higher
than the overhead of LOAD.

Figure 7 shows the data traffic in number of frames that
is sent from the controller to each sensor. Evidently, as one
single frame is sent per router, the total overhead consists
of n — 1 frames for n routers.

However, as shown in figure 8, the cumulative amount of
data traffic in terms of bytes is different for RPL and LOAD,
where each forwarding of a packet is counted. The overhead
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Figure 7: Traffic sent in frames

for the 11-octet request downward from the controller to the
sensors differs, as RPL (in non-storing mode) includes source
routes for each data packet, which are included in the count
of this figure. Therefore, even though a single data request
packet is nine times smaller than the data reply, the data
requests account for almost half as much overhead as the
replies in RPL. The upward data replies in LOAD consume
more bandwidth than in RPL, which can be explained with
suboptimal choice of paths in the basic version of LOAD, as
explained in the following.
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Figure 8: Traffic sent in bytes

Figure 9 shows the path length of the data traffic, for both
RPL and LOAD, as well as for a protocol called “God”. The
God routing protocol uses the “God” object of Ns2, in order
to calculate routes to all destinations based on their position
and radio range, without any control message exchange and
zero convergence time. The expected performance of the
GodRP is close to the best possible routing protocol, which
helps to understand how well a routing protocol could the-
oretically perform. It can be observed that LOAD chooses
longer paths than RPL, which itself is close to the optimum.
Two reasons can explain the longer paths of LOAD:

1. When a router receives a RREQ that is destined to
itself, it will reply to the first incoming RREQ and set
the reverse route towards the last hop of that RREQ.
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Figure 9: Path length

However, it may happen that shorter paths are avail-
able, but that the RREQ for that shorter path arrives
only later (and since only a single data packet is sent,
the better path will not be used). If the router had
waited longer, before replying with a RREQ), it could
have chosen a shorter path, at the expense of a higher
delay.

2. As LOAD in its basic form applies “Classic Flooding”
for distributing the RREQs throughout the network,
longer paths occur than e.g., when using MPR flood-
ing, which leads to optimal paths ([18]).

An observation concerning the path length can be made
for RPL in non-storing mode, which uses source routes for
the downward traffic: the maximum length of the source
routing header [7] is limited to 136 octets, including an 8
octet long header. As each IPv6 address has a length of 16
octets, not more than 8 hops from the source to the des-
tination are possible for “raw IPv6”. Using address com-
pression [15], the maximum path length may not exceed 64
hops. This excludes scenarios with long “chain-like” topolo-
gies. The size of the header with increasing length of the
source route is depicted in figure 10.
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Figure 10: Source route overhead

Figure 11 depicts the delivery ratio of the data traffic.

For both protocols, it is close to 100%, which is due to the
two-ray ground model applied in the simulations. Unless
there are collisions on the MAC layer, no packets are lost.
This does, of course, not reflect experience from real wireless
communication, and has to be considered when interpreting
the simulation results. Simulating realistic channel behavior
and propagation models is non-trivial, and better observed
in real testbeds than in network simulations. Still, the simu-
lation results allow to validate whether the routing protocol
choose correct paths.
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Figure 11: Delivery ratio

Figure 12 shows the end-to-end delay of a data traffic
transmission. Data traffic is buffered in LOAD when no
route is available, until a RREP from the destination has
been received (or is dropped after a timeout if no RREP
is received). The waiting time depends on the number of
hops the RREQs and RREPs have to traverse as well as the
time required for relaying a packet at a router, and therefore
increases with the number of routers in the network. As
no buffering is applied in RPL, the delay is much lower.
However, in scenarios where delay is negligible — such as the
evaluated “reading” scenario within 24 hours — the higher
delay may be acceptable.
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Figure 12: Delay

Finally, figure 13 depicts the number of collisions of frames
for both RPL and LOAD. As LOAD applies Classic Flooding



for the RREQ), the well-known broadcast storm [16] leads to
a higher collision rate in LOAD. A more efficient flooding
mechanism could reduce the amount of collisions (as well as
the control traffic overhead).
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Figure 13: Collisions

S. CONCLUSION

RPL and LOAD represent two different philosophies for
routing protocols in LLNs. RPL is optimized for specific
topologies and traffic patterns — a central controller with
specific responsibilities for topology formation and mainte-
nance, and towards which the majority of traffic flows. Thus,
the strength of RPL is proactive construction of a collection
tree for forwarding such traffic. LOAD represents a perhaps
less optimized protocol, however one wherein the philosophy
is an entirely distributed mode of operation, where paths are
discovered on demand and so as to be bi-directional.

Observing that a large set of deployment scenarios for sen-
sor networks imply the need of bi-directional traffic flows —
utility metering, building automation and data acquisition
networks where possible alarm signals need be acknowledged
— this paper studies the performance of these two protocols
in such scenarios. While both protocols are able to provide
reasonably high and definitely comparable data delivery ra-
tios, LOAD yields a consistently lower control traffic over-
head than does RPL — all the while being less constrained
both in terms of traffic types and topologies supported.

While generalizing from simulation studies always is to be
done with utmost care — the adage of “show me a protocol,
and I will construct a scenario wherein it performs badly”,
the results presented in this paper nonetheless suggest that
for deployments in which bi-directional traffic flows predom-
inate, LOAD is a more evident candidate routing protocol
for LLNs than is RPL.
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