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Abstract—With RPL – the “IPv6 Routing Protocol for Low-
power Lossy Networks” – emerging as a Proposed Standard
“Request For Comment” (RFC) in the Internet Engineering
Task Force (IETF) after a ∼2-year development cycle, this
paper presents a critical evaluation of the resulting protocol and
its applicability and limits. The paper presents a selection of
observations of the protocol characteristics, exposes experiences
acquired when producing a prototype implementation of RPL,
and presents results obtained from testing this protocol – both in
a network simulator, and in real-world experiments on a wireless
sensor network testbed. The paper aims at providing a better
understanding of possible weaknesses and limits of RPL, notably
the possible directions that further protocol developments should
explore, in order to address these.

I. INTRODUCTION

RPL – the “Routing Protocol for Low Power and Lossy
Networks” (RPL) [1] – is a proposal for an IPv6 routing
protocol for Low-power Lossy Networks (LLNs), by the
ROLL Working Group in the Internet Engineering Task Force
(IETF). This routing protocol is intended to be the IPv6 routing
protocol for LLNs and sensor networks, applicable in all kinds
of deployments and applications of LLNs. The unofficial goal,
of the ROLL Working Group, is to prevent fragmentation
in the sensor networking market by providing an IP-based
routing standard, and solicit broad industrial support behind
that standard.

The objective of RPL and ROLL is to target networks
which “comprise up to thousands of nodes”, where the
majority of the nodes have very constrained resources, where
the network to a large degree is “managed” by a (single
or few) central “supernodes”, and where handling mobility
is not an explicit design criteria. Supported traffic patterns
include multipoint-to-point, point-to-multipoint and point-to-
point traffic. The emphasis among these traffic patterns is to
optimize for multipoint-to-point traffic, to reasonably support
point-to-multipoint traffic and to provide basic features for
point-to-point traffic, in that order.

As of early 2011, RPL has been deemed “ready” by the
IETF, for publication as a “Proposed Standard” RFC (Request
for Comments). The implication of a protocol being labeled
“Proposed Standard” is that it is considered generally stable:
well-understood and community reviewed, no known design
issues pending, and with some community support. “Proposed
Standard” is, however, only the first step on what is called the

Standards Track1 – experiences with the protocol, from testing
and operational deployments, as well as detailed studies of its
characteristics and behaviors, may result in protocol changes
or retraction.

It is thus opportune to consider the protocol, at its current
level of specification, in order to understand which aspects
of it necessitate further investigations, and in order to identify
possibly weak points which may restrict the deployment scope
of the protocol. This paper has as objective to provide a critical
evaluation of RPL, in the spirit of better understanding its
characteristics and limits.

A. Paper Outline

The remainder of this paper is organized as follows: sec-
tion II provides an overview of the functional parts of RPL –
the algorithms for constructing the basic forwarding structures,
as well as protocol signaling. Sections III-XII each explore a
specific aspect of RPL, and provide a critical analysis of the
impact of the underlying hypotheses made by the designers
of RPL. Where possible, abstract reflections on the protocol
are complemented by simulation results and results from
experiments in a test-bed with real sensor devices. Section XIII
concludes this paper by providing both a summary of the
observations made, as well as the authors position regarding
the applicability of RPL and the possible directions that
protocol development should take, in order that IPv6 routing
protocols for LLNs can progress – both on the IETF Standards
Track and in wide-scale real world deployments.

II. RPL OVERVIEW

The basic construct in RPL is a “Destination Oriented
Directed Acyclic Graph” (DODAG), depicted in figure 1. In
a converged LLN, each RPL router has identified a stable set
of parents, each of which is a potential next-hop on a path
towards the “root” of the DODAG, as well as a preferred
parent. Each router, which is part of a DODAG (i.e. has
selected parents) will emit DODAG Information Object (DIO)
messages, using link-local multicast, indicating its respective
rank in the DODAG (i.e. distance to the DODAG root accord-
ing to some metric(s), in the simplest form hop-count). Upon
having received a (number of such) DIO messages, a router

1The Standards Track in the IETF consists of “Proposed Standard”, “Draft
Standard”, and “Internet Standard”, in increasing order of maturity.



will calculate its own rank such that it is greater than the rank
of each of its parents, select a preferred parent and then itself
start emitting DIO messages.

The DODAG formation thus starts at the DODAG root
(initially, the only router which is part of a DODAG), and
spreads gradually to cover the whole LLN as DIOs are
received, parents and preferred parents are selected and further
routers participate in the DODAG. The DODAG root also
includes, in DIO messages, a DODAG Configuration Object,
describing common configuration attributes for all RPL routers
in that network – including their mode of operation, timer char-
acteristics etc. RPL routers in a DODAG include a verbatim
copy of the last received DODAG Configuration Object in their
DIO messages, permitting also such configuration parameters
propagating through the network.
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Figure 1. RPL Basic Construct: DODAGs

A Distance Vector protocol, RPL [1] restricts the ability for
a router to change rank. A router can freely assume a smaller
rank than previously advertised (i.e. logically move closer to
the root) if it discovers a parent advertising a lower rank, and
must then disregard all previous parents of higher ranks. The
ability for a router to assume a greater rank (i.e. logically
move farther from the root) than previously advertised is
restricted, to avoid count-to-infinity problems. The root can
trigger “global recalculation” of the DODAG by increasing a
sequence number, DODAG version, in DIO messages.

The DODAG so constructed is used for installing routes:
the “preferred parent” of an RPL router can serve as a default
route towards the root, or the root can embed in its DIO
messages the destination prefixes, included by DIOs generated
by RPL routers through the LLN, to which connectivity is
provided by the root. Thus, RPL by way of DIO generation
provides “upward routes” or “multipoint-to-point routes” from
the sensors inside the LLN and towards the root.

“Downward routes” are enabled by having sensors issue
Destination Advertisement Object (DAO) messages, propagat-
ing as unicast via parents towards the DODAG root. These
describe which prefixes belong to, and can be reached via,
which RPL router. In a network, all RPL routers must operate
in either of storing-mode or non-storing-mode, specified by
way of a “Mode of Operation” (MOP) flag in the DODAG
Configuration Object from the root. Depending on the MOP,
DAO messages are forwarded differently towards the root:

• In non-storing-mode, an RPL router originates DAO
messages, advertising one or more of its parents, and
unicast it to the DODAG root. Once the root has received

DAOs from an RPL router, and from all routers on the
path between it and the root, it can use source routing
for reaching advertised destinations inside the LLN.

• In storing-mode, each RPL router on the path between
the originator of a DAO and the root records a route to
the prefixes advertised in the DAO, as well as the next-
hop towards these (the router, from which the DAO was
received), then forwards the DAO to its preferred parent.

“Point-to-point routes”, for communication between devices
inside the LLN and where neither of the communicating de-
vices are the DODAG root, are as default supported by having
the source sensor transmit via its default route to the DODAG
root (i.e., using the upward routes) which will then, depending
on the “Mode of Operation” for the DODAG, either add a
source-route to the received data for reaching the destination
sensor (downward routes in non-storing-mode) or simply use
hop-by-hop routing (downward routes in storing-mode). In the
case of storing-mode, if the source and the destination for a
point-to-point communication share a common ancestor other
than the DODAG root, a downward route may be available
(and used) before reaching the DODAG root.

A. RPL Message Emission Timing – Trickle Timers

RPL message generation is timer-based, with the root able
to configure back-off of message emission intervals using
Trickle [2], specified in [3]. Trickle, as used in RPL, stipulates
that a RPL router transmits a DIO “every so often” – except if
receiving a number of DIOs from neighbor routers, enabling
the router to determine if its DIO transmission is redundant.

When an RPL router transmits a DIO, there are two possible
outcomes: either every neighbor router that hears the message
finds that the information contained is consistent with its
own state (i.e., the received DODAG version number received
corresponds with that which the RPL router has recorded and
no better rank is advertised than that which is recorded in
the parent set) – or, a recipient RPL router detects that either
the sender of the DIO or itself has out-of-date information. If
the sender has out-of-date information, then the recipient RPL
router schedules transmission of a DIO to update this informa-
tion. If the recipient RPL router has out-of-date information,
then it updates based on the information received in the DIO.

With Trickle, an RPL router will schedule emission of a
DIO at some time, t, in the future. When receiving a DIO
containing information consistent with its own information,
the RPL router will record that “redundant information has
been received” by incrementing a redundancy counter, c. At
the time t, if c is below some “redundancy threshold”, then
it transmits its DIO. Otherwise, transmission of a DIO at this
time is suppressed, c is reset and a new t is selected to twice
as long time in the future – bounded by a pre-configured
maximum value for t. If, on the other hand, the RPL router
has received an out-of-date DIO from one of its neighbors, t is
reset to a pre-configured minimum value and c is set to zero.
In both cases, at the expiration of t, the RPL router will verify
if c is below the “redundancy threshold” and if so transmit –
otherwise, increase t and stay quiet.



III. RPL DATA TRAFFIC FLOWS

RPL makes a-priori assumptions of traffic patterns: sensor-
to-root traffic (multipoint-to-point) is predominant, root-to-
sensor traffic (point-to-multipoint) is rare and sensor-to-sensor
traffic is somewhat esoteric. While not specifically called
out thus in [1], the resulting protocol design reflects these
assumptions in that mechanism constructing multipoint-to-
point paths is efficient in terms of control traffic generated
and state required, point-to-multipoint path construction much
less so – and sensor-to-sensor paths subject to potentially
significant stretch.

An RPL router selects from among its parents a “preferred
parent”, to serve as a default route towards the root (and
to prefixes advertised by the root). Thus, RPL provides “up-
ward routes” or “multipoint-to-point routes” from the sensors
towards the root. An RPL router which wishes to act as
a destination for traffic (“downward routes” or “point-to-
multipoint”) issues DAOs upwards in the DODAG towards the
root, describing which prefixes belong to, and can be reached
via, that RPL router. Sensor-to-sensor routes are supported
by having the source sensor transmit, via its default route,
towards the root. In non-storing mode, the data will reach
the root, which will send the data packet downward towards
the destination sensor. In storing mode, the source and the
destination may have a common ancestor other than the
DODAG root, which may provide a downward route to the
destination.

A. Why This Is A Critical Point

The data traffic characteristics assumed by RPL do not
represent a universal distribution of traffic patterns in LLNs:

• There are scenarios where sensor-to-sensor traffic is a
more common occurrence, documented e.g. in [4].

• There are scenarios, where all traffic is bi-directional,
e.g. in case sensor devices in the LLN are, in majority,
“actively read”: a request is issued by the root to a specific
sensor, and the sensor value is expected returned.

For the former, all sensor-to-sensor paths include the root,
possibly causing congestion on the communications medium
near the root, and draining energy from the intermediate
RPL routers on an unnecessarily long path. If sensor-to-
sensor traffic is common, RPL routers near the root will be
particularly solicited as relays, especially in non-storing mode.
For the latter, all RPL routers are required to generate DAOs,
which generates a considerable control traffic overhead [5].

IV. FRAGMENTATION

Fragmentation of IP packets appears when the size of the
IP datagram is larger than the Maximum Transmission Unit
(MTU) supported by the link layer. When an IP packet is frag-
mented, all fragments of that IP packet must be successfully
received by a router, in order that the IP packet is successfully
received – otherwise, the whole IP packet is lost. Moreover, the
additional link-layer frame overhead for each of the fragments
increases the capacity required from the medium, and may

consume more energy for transmitting a higher number of
frames on the network interface.

RPL is an IPv6 routing protocol, designed to operate on
constrained link layers, such as 802.15.4 [6], with a maximum
MTU of 127 bytes – a deviation from the otherwise specified
minimum MTU of 1280 bytes for IPv6 [7]. Reducing the need
of fragmentation of packets on such a link layer, compression
adaptation layers exist [6], [8], reducing the overhead of the
IPv6 header from at least 40 octets to a minimum of 2
octets. With a physical layer packet size of 127 octets, a
maximum frame overhead of 25 octets and 21 octets for link
layer security [6], 81 octets remain for L2 payload. Further
subtracting 2 octets for the compressed IPv6 header leaves 79
octets for L3 data payload.

The second L in LLN indicating Lossy [9], higher loss rates
than typically seen in IP networks are expected, rendering
fragmentation important to avoid.

DIO messages consist of a mandatory base object, facil-
itating DODAG formation, and additional options for e.g.
autoconfiguration and network management. The base object
contains two unused octets, reserved for future use, resulting
in two bytes of unnecessary zeros, sent with each DIO
message. The Prefix Information option, used for automatic
configuration of address, is even worse: it carries four unused
octets to be compatible with IPv6 neighbor discovery.

A. Why This Is A Critical Point

While 79 octets may seem to be sufficient to carry RPL con-
trol messages, consider the following: RPL control messages
are carried in ICMPv6, and the mandatory ICMPv6 header
consumes 4 octets. The DIO base another 24 octets. If link
metrics are used, that consumes at least another 8 octets2. The
DODAG Configuration Object consumes up to a further 16
octets, for a total of 52 octets. Adding a Prefix Information
Object for address configuration consumes another 32 octets,
for a total of 84 octets – thus exceeding the 79 octets available
for L3 data payload and causing fragmentation of such a DIO.
As a point of reference, the ContikiRPL [10] implementation
includes both the DODAG Configuration option and the Prefix
Information option in all DIO message. Any other options,
e.g. Route Information options indicating prefixes reachable
through the root, worsen this situation.

RPL may further increase the probability of fragmentation
of also user data traffic: for non-storing-mode, RPL employs
source-routing for all downward traffic. [11] specifies the RPL
Source Routing header, which imposes a fixed overhead of
8 octets per IP packet leaving 71 octets remaining from the
MTU – from which must be deducted a variable number of
octets, depending on the length of the route. With fewer octets
available for data payload, RPL thus increases the probability
for fragmentation of also data packets. This, in particular, for
longer paths, e.g. in point-to-point traffic between sensors in-
side the LLN, where data packets transit through the DODAG
root and are then source-routed to the destination.

2Using a hop count metric; other metrics may require more.



V. DAO MECHANISM

RPL specifies two distinct and incompatible “modes of
operation” for downward traffic: storing mode, where each
RPL router is assumed to maintain routes to all destinations
in its sub-DODAG, i.e. routers that are “deeper down” in the
DAG, and non-storing mode, where only the root stores routes
to destinations in the LLN.

A. Why This Is A Critical Point

In addition to possible fragmentation, as discussed in sec-
tion IV, the maximum length of the source routing header [11]
is limited to 136 octets, including an 8 octet long header.
As each IPv6 address has a length of 16 octets, not more
than 8 hops from the source to the destination are possible
for “raw IPv6”. Using address compression [6], the maximum
path length may not exceed 64 hops. This excludes scenarios
with long “chain-like” topologies, such as traffic lights along
a street.

In storing mode, each RPL router has to store routes for
destinations in its sub-DODAG. This implies that, for RPL
routers near the root, the required storage is only bounded by
the number of paths to all other destinations in the network.
As RPL targets constrained devices with little memory, but
also has as ambition to be operating networks consisting
of thousands of routers, the storing capacity on these RPL
routers may not be sufficient. Indeed, [12] argues that practical
experiences suggest that RPL in storing mode should be
limited to networks of less than ∼30 routers. Aggregation /
summarization of addresses may be advanced as a possible
argument that this issue is of little significance – section VI
will discuss why such an argument does not apply.

In short, the mechanisms in RPL force the choice between
requiring all RPL routers to have sufficient memory to store
route entries for all destinations (storing-mode) – or, suffer
increased risk of fragmentation, and thus loss of data packets,
while consuming network capacity by way of source routing
through the DODAG root.

In RPL, the “mode of operation” stipulate that either down-
ward routes are not supported (MOP=0), or that they are sup-
ported by way of either storing or non-storing mode. In case
downward routes are supported, RPL does not provide any
mechanism for discriminating between which routes should or
should not be maintained. In particular, in order to calculate
paths to a given destination, all intermediaries between the
DODAG root and that destination must themselves be reach-
able – effectively rendering downward routes in RPL an “all-
or-none” situation. In case a destination is unreachable, all the
DODAG root may do is require all destinations to re-issue their
DAOs3, possibly provoking a broadcast-storm-like situation.
This, in particular, as [1] does not specify DAO message
transmission constraints, in particular specifies no mechanism
for adapting DAO emission to the network capacity.

A final point on the DAO mechanism: RPL supports point-
to-point traffic only by way of relaying through the DODAG

3By issuing a DIO with an increased DODAG version number.

root. In networks where point-to-point traffic is no rare occa-
sion, this causes unduly long paths (with possibly increased
energy consumption, increased probability of packet losses) as
well as possibly congestion around the DODAG root.

VI. AGGREGATION

As indicated in section V, in storing mode, a RPL router is
expected to be able to store routing entries for all destinations
in its “sub-DODAG”, i.e., routing entries for all destinations
in the network where the path to the DODAG root includes
that RPL router.

In the Internet, no single router stores explicit routing entries
for all destinations – no router has a routing table with 232

entries for IPv4 routing. Rather, IP addresses are assigned
hierarchically, such that an IP address does not only uniquely
identify a network interface, but also its topological location in
the network, as illustrated in figure 2. Colloquially speaking,
all addresses with the same prefix are reachable by way of
the same router – which can, therefore, advertise only that
prefix. Other routers need only record a single routing entry
for that prefix, knowing that as the IP packet reaches the router
advertising that prefix, more precise routing information is
available.

a

b

c d

1.x.x.x/8

1.1.x.x/16 1.2.x.x/16

Figure 2. Addressing hierarchies in the Internet

A. Why This Is A Critical Point

In RPL, each RPL router acquires a number of parents,
as described in section II, from among which it selects one
as its preferred parent and, thus, next-hop on the path to the
DODAG root. RPL routers maintain a parent set containing
possibly more than a single parent so as to be able to rapidly
select an alternative preferred parent, should the previously
selected such become unavailable. Thus expected behavior is
for an RPL router to be able to change its point of attachment
towards the DODAG root. If IP addresses are assigned in a
strictly hierarchical fashion, and if scalability of the routing
state maintained in storing mode is based on this hierarchy,
then this entails that each time a RPL router changes its
preferred parent, it must also change its own IP address – as
well as cause RPL routers in its “sub-DODAG” to do the same.
RPL does not specify signaling for reconfiguring addresses in
a sub-DODAG.

A slightly less strict hierarchy can be envisioned, where
a router can change its preferred parent without necessarily



changing addresses of itself and of its sub-DODAG, provided
that its former and new preferred parents both have the same
preferred parent, and have addresses hierarchically assigned
from that – from the “preferred grandparent”. With reference
to figure 1, this could be e changing its preferred parent
from d to c, provided that both d and c have b as preferred
parent. Doing so would impose a restriction on the parent-set
selection, admitting only parents which have themselves the
same parent – thus, no longer having a DODAG but a simple
tree, loosing redundancy in the network connectivity. RPL
does not specify rules for admitting only parents with identical
grand-parents into the parent set – although such is not
prohibited either, if the loss of redundancy from constructing
a tree is acceptable.

The DODAG root incrementing the DODAG version num-
ber is the mechanism by which RPL enables global recon-
figuration of the network, reconstructing the DODAG with
(intended) more optimal paths. In case of addressing hierar-
chies being enforced, so as to enable aggregation, this will
either restrict the ability for an optimal DODAG construction,
or will trigger global address autoconfiguration so as to ensure
addressing hierarchies.

Finally, with IP addresses serving a dual role of an identifier
of both an end-point for communication and a topological
location in the network, changing the IP address of a device,
so as to reflect a change in network topology, also entails
interrupting ongoing communication to or through that device.
Additional mechanisms (e.g. a DNS-like system) mapping
“communications identifies” and “IP addresses” is required –
a topic investigated, but not resolved, in the Internet4.

VII. BIDIRECTIONALITY HYPOTHESIS

Parents (and the preferred parent) are selected based on
receipt of DIOs, without verification of the ability for a RPL
router to successfully communicate with the parent – i.e.
without any bidirectionality check of links. However, the basic
use of links is for “upward” routes, i.e. for the RPL router
to use a parent (the preferred parent) as relay towards the
DODAG root – in the opposite direction of the one in which
the DIO was received.

A. Why This Is A Critical Point

Unidirectional links are no rare occurrence, such as is
known from wireless multi-hop networks. If an RPL router
receives a DIO on such a unidirectional link, and selects the
originator of the DIO as parent, that would be a bad choice:
unicast traffic in the upward direction would be lost. If the
router had verified the bidirectionality of links, it might have
selected a better parent, to which it has a bidirectional link.

VIII. WHY NUD IS NOT A SOLUTION

[1] suggests using Neighbor Unreachability Detection
(NUD) [13] to detect and recover from the situation of
unidirectional links between a RPL router and its (preferred)

4The IETF LISP working group, https://datatracker.ietf.org/wg/lisp/charter/,
is chartered to address this issue.

parent(s). When, e.g., a router a tries (and fails) to actually use
router b for forwarding traffic, NUD is supposed engaged to
detect and prompt corrective action, e.g. by way of selecting
an alternative preferred parent.

NUD is based upon observing if a data packet is making
forward progress towards the destination, either by way of
indicators from upper-layer protocols (such as TCP)5 or –
failing that – by unicast probing by way of transmitting a
unicast Neighbor Solicitation message and expecting that a
solicited Neighbor Advertisement message be returned.

A. Why This Is A Critical Point

An RPL router may receive, transiently, a DIO from a
router, closer (in terms of rank) to the root than any other
router from which a DIO has been received. Some, espe-
cially wireless, link layers may exhibit different transmission
characteristics between multicast and unicast transmissions6,
leading to a (multicast) DIO being received from farther
away than a unicast transmission can reach. DIOs are sent
(downward) using link-local multicast, whereas the traffic
flowing in the opposite direction (upward) is unicast. Thus,
a received (multicast) DIO may not be indicative of useful
unicast connectivity – yet, RPL might cause this RPL router
to select this attractive router as its preferred parent. This may
happen both at initialization or at any time during the LLN
lifetime, as RPL allows attachment to a “better parent” at any
time.

A DODAG so constructed may appear stable and converged
until such time that unicast traffic is to be sent and, thus, NUD
invoked. Detecting only at that point that unicast connectivity
is not maintained, and causing local (and possibly global)
repairs exactly at that time, may lead to traffic not being deliv-
erable. As indicated in section VI, if scalability is dependent
on addresses being assigned hierarchically, changing point-of-
attachment may entail more than switching preferred parent.

Also, absent all RPL routers consistently advertising their
reachability through DAO messages, a protocol requiring bi-
directional flows between the communicating devices, such as
TCP, will be unable to operate.

Finally, upon having been notified by NUD that the “next
hop” is unreachable, an RPL router must discard the preferred
parent and select another – hoping that this time, the preferred
parent is actually reachable. Also, if NUD indicates “no
forward progress” based on an upper-layer protocol, there
is no guarantee that the problem stems exclusively from the
preferred parent being unreachable. Indeed, it may be a prob-
lem farther ahead, possibly outside the LLN, thus changing
preferred parent will do nothing to alleviate the situation.

5Though not called out in [13], also from lower-layer protocols (such as
Link Layer ACKs).

6Such is the case for some implementations of IEEE 802.11b, where
multicast/broadcast transmissions are sent at much lower bit-rates than are
unicast. IEEE 802.11b is, of course, not suggested as a viable interface for
LLNs, but serves to illustrate that such asymmetric designs exist.



IX. RPL IMPLEMENTABILITY AND COMPLEXITY

RPL is designed to operate on “RPL routers [...] with
constraints on processing power, memory, and energy (battery
power)” [1]. However, the 163 pages long specification of
RPL7, describes complex mechanisms (e.g. the upwards and
downward data flows, a security solution, manageability of
RPL routers, auxiliary functions for autoconfiguration of RPL
routers, etc.), and provides no less than 9 message types, and
10 different message options.

To give one example, the ContikiRPL implementation8,
which provides only storing-mode and no security features,
consumes about 50 KByte of memory. Sensor hardware, such
as MSP430 sensor platforms, does not contain much more
memory than that, i.e. there may not be much space left to
deploy any application on the RPL router.

A. Why This Is A Critical Point

Since RPL is designed to be the routing protocol for LLNs,
which covers all the diverse applications requirements listed
in [4], [16], [17], [18], it is possible that (i) due to limited
memory capacity of the RPL routers, and (ii) due to expensive
development cost of the routing protocol implementation,
many RPL implementations will only support a partial set of
features from the specification, leading to non-interoperable
implementations.

X. RPL UNDERSPECIFICATION

While [1] is verbose in many parts, as described in sec-
tion IX, some mechanisms are underspecified.

While for DIOs, the Trickle timer specifies an efficient
and easy-to-understand timing for message transmission, the
timing of DAO transmission is not explicit. As each DAO may
have a limited lifetime, one “best guess” for implementers
would be to send DAO periodically, just before the life-time
of the previous DAO expires. Since DAOs may be lost, another
“best guess” would be to send several DAOs shortly one after
the other in order to increase probability that at least one DAO
is successfully received.

The same underspecification applies for DAO-ACK mes-
sages: optionally, on reception of a DAO, an RPL router may
acknowledge successful reception by returning a DAO-ACK.
Timing of DAO-ACK messages is unspecified by RPL.

A. Why This Is A Critical Point

By not specifying details about message transmission in-
tervals and required actions when receiving DAO and DAO-
ACKs, implementations may exhibit a bad performance if not
carefully implemented. Some examples are:

1) If DAO messages are not sent in due time before the
previous DAO expires (or if the DAO is lost during
transmission), the routing entry will expire before it is
renewed, leading to a possible data traffic loss.

7Plus additional specifications for routing headers [11], Trickle timer [3],
routing metrics [14] and objective function [15].

8http://www.sics.se/contiki

2) RPL does not specify to use jitter [19] (i.e. small random
delay for message transmissions). If DAOs are sent pe-
riodically, adjacent routers may transmit DAO messages
at the same time, leading to link layer collisions.

3) In non-storing mode, the “piece-wise calculation” of
routes to a destination from which a DAO has been
received, relies on previous reception of DAOs from
intermediate routers along the path. If not all of these
DAOs from intermediate routers have been received,
route calculation is not possible, and DAO-ACKs or data
traffic cannot be sent to that destination.

Other examples of underspecification include the local re-
pair mechanism, which may lead to loops and thus data traffic
loss, if not carefully implemented: a router discovering that
all its parents are unreachable, may – according to the RPL
specification – “detach” from the DODAG, i.e. increase its
own rank to infinity. It may then “poison” its sub-DODAG by
advertising its infinite rank in its DIOs. If, however, the router
receives a DIO before it transmits the “poisoned” DIO, it may
attach to its own sub-DODAG, creating a loop. If, instead, it
had waited some time before processing DIOs again, chances
are it would have succeeded in poisoning its sub-DODAG and
thus avoided the loop.

XI. TRICKLE CONVERGENCE

Trickle [3] is used by RPL to schedule transmission of
DIO messages, with the objective to minimize the amount of
transmitted DIOs while ensuring a low convergence time of
the network. The theoretical behavior of Trickle is well un-
derstood, and the convergence properties are well studied [2].
Simulations of the mechanism, such as [20], confirm these
theoretical studies.

In real-world environments, however, varying link qualities
may cause the algorithm to converge less well: frequent
message losses entail resets of the Trickle timer and more
frequent and unpredicted message emissions. This has been
observed in an experimental testbed: 69 RPL routers9 were
positioned in a fixed grid topology. This resulted in DODAGs
being constructed with an average of 2.45 children per RPL
router and an average rank10 of 3.58.

Figure 3 shows the number of DIO messages that are
emitted (counting each retransmission at intermediate routers)
per interval of 10 seconds, in both the test bed and an identical
scenario simulated in Ns2. The Ns2 simulation parameters
were chosen to match the testbed environment, as far as
possible (80 routers, 1265x1265m area, 1800s simulation time,
802.11, two-ray-ground model, 250m transmission range, no
mobility, JRPL implementation [21]).

While the number of DIOs, emitted per 10 second interval in
the whole network, rapidly drops in the simulation, a constant

9MSP430-based wireless sensor routers with IEEE 802.15.4, using [10]
IPv6 stack and RPL without downward routes; the parameters of the Trickle
timer were set to the implementation defaults (minimum DIO interval: 4 s,
DIO interval doublings: 8, redundancy constant: 10).

10Hop count.
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Figure 3. Trickle convergence for simulation and real world experiment

number of about 70 DIOs per 10 second interval was observed
in the testbed experiment.

A. Why This Is A Critical Point

The varying link quality in real-world environments results
in frequent changes of the best parent, which triggers a reset
of the Trickle timer and thus the emission of DIOs. Therefore
Trickle does not converge as well for links that are fluctuating
in quality as in theory.

The resulting higher control overhead due to frequent DIO
emission, leads to higher bandwidth and energy consumption
as well as possibly to an increased number of collisions of
frames, as observed in [20].

XII. LOOPS

Section 7.1. describes one way in which routing loops can
occur in RPL. [1] states that it “guarantees neither loop free
path selection nor tight delay convergence times, but can detect
and repair a loop as soon as it is used. RPL uses this loop
detection to ensure that packets make forward progress [...]
and trigger repairs when necessary”. This implies that a loop
may only then be detected and fixed when data traffic is sent
through the network.

In order to trigger a local repair, RPL relies on the “di-
rection” information (with values “up” or “down”), contained
in an IPv6 hop-by-hop option header [22] of a data packet.
If an “upward” data packet is received by a RPL router, but
the previous hop of the packet is listed with a lower rank in
the neighbor set, the RPL router concludes that there must
be a routing loop and it may therefore trigger a local repair.
For downward traffic in non-storing mode, the root can detect
loops if the same router identifier (i.e. IP address) appears at
least twice in the path towards a destination.

A. Why This Is A Critical Point

The reason for RPL to repair loops only when detected by a
data traffic transmission is to reduce control traffic overhead.
However, there are two problems in repairing loops only when

so triggered: (i) the triggered local repair mechanism delays
forward progress of data packets, increasing end-to-end delays,
and (ii) the data packet has to be buffered during repair.

(i) may seem as the lesser of the two problems, since in
a number of applications, such as data acquisition in smart
metering applications, an increased delay may be acceptable.
However, for applications such as alarm signals or in home
automation (e.g. a light switch), increased delay may be
undesirable.

As for (ii), RPL is supposed to run on LLN routers with
“constraints on [...] memory” [1]; buffering incoming packets
during the route repair may not be possible for all incoming
data packets, leading to dropped packets. Depending on the
transport protocol, these data packets must be retransmitted
by the source or are definitely lost.

If carefully implemented with respect to avoiding loops
before they occur, the impact of the loop detection in RPL
may be minimized. However, it can be observed that with
current implementations of RPL, such as the ContikiRPL
implementation, loops do occur frequently. During the experi-
ments described in section XI, a snapshot of the DODAG was
taken every ten seconds. In 74.14 % of the 4114 snapshots, at
least one loop was observed. Further investigation revealed that
in all these cases the DODAG was partitioned, and the loop
occurred in the sub-DODAG that no longer had a connection
to the DODAG root. When the link to the only parent of a
router breaks, the router may increase its rank and – when
receiving a DIO from a router in its sub-DODAG – attach
itself to its own sub-DODAG, thereby creating a loop – as
detailed in section X.

While it can be argued that the observed loops are harmless
since they occur in a DODAG partition that has no connection
to the root anyway, they show that the state of the network
is inconsistent. Even worse, when the broken link re-appears,
it is possible that in certain situations the loop is only then
repaired when data traffic is sent, possibly leading to data loss
(as described above). This can occur if the link to the previous
parent is reestablished, but the rank of that previous parent has
increased in the meantime.

Another problem with the loop repair mechanism arises in
non-storing mode when using only downward traffic: while
the root can easily detect loops (as described above), it has no
direct means to trigger a local repair where the loop occurs.
Instead, it can only trigger a global repair by increasing the
DODAG version number, leading to a Trickle timer reset and
increased control traffic overhead in the network caused by
DIO messages, and therefore a possible energy drain of the
routers and congestion of the channel.

XIII. CONCLUSION AND POSITION

Modulo the issues presented regarding bi-directionality of
links and the possibility of loops, DODAG formation, and
so the multipoint-to-point route provisioning mechanism, is
elegant and relatively well understood, although the difference
in convergence between theory/simulation and real-world sen-
sor network behaviors necessitates further exploration. DIO



message generation/processing rules and the Trickle timers [3]
are relatively straight-forward to implement, and the state
required in each router is minimal and bounded.

The DAO mechanism is what enables downward routes,
bi-directional traffic flows and sensor-to-sensor flows by way
of dog-leg-routing through the root, is less elegant. Problems
include “underspecification”, e.g. of the proper behavior with
respect to DAO-ACKs and DAO retransmissions and message
generation intervals, as well as two incompatible modes-of-
operation: storing mode, wherein all LLN routers are expected
to have “unbounded” memory (or, at least, enough to store
complete routing tables), and non-storing mode necessitating
source-routing thus possibly more fragmentation and higher
probability of IP packets being lost. Both of these appear to
be challenging in Low-power Lossy Networks with resource-
constrained devices – as does addressing scalability concerns
by way of address aggregation appear unfeasible in a such
self-forming network.

Loops are a real problem in RPL, confirmed experimentally.
Even in non-storing mode, where the DODAG root performs
source-routing to destinations inside the LLN, loops are a
problem: while they can be detected when constructing the
source route, the only corrective measure that the DODAG root
can take is to trigger global reconstructions of the DODAG –
a complete “reboot” of the LLN.
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