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I. MATHEMATICAL DETAILS OF THE LINEAR STABILITY ANALYSIS

In this section, we provide the details of the derivation of the generalized eigenvalue problem Eq. (9) of the main
text.

A. Mapping of the governing equations onto (0,1)

Using the relations between the partial derivatives of ρn and of ρ̃n, we get
∂tρ̃n =

(
ẋn + (ẋn+1 − ẋn)u

)
∂xρn + ∂tρn,

∂uρ̃n = (xn+1 − xn)∂xρn,

∂uuρ̃n = (xn+1 − xn)2∂xxρn.

(S1)

We then rewrite the step dynamics governing equations (1)–(4) as
s2n∂tρ̃n = ∂uuρ̃n + sn

(
ẋn + (ẋn+1 − ẋn)u

)
∂uρ̃n + s2n

(
− νρ̃n + F

)
,

−snρ̃−n ẋn+1 − (∂uρ̃n)− = snJ̃
−
n+1,

snρ̃
+
n ẋn + (∂uρ̃n)+ = snJ̃

+
n ,

ẋn = Θ(J̃+
n + J̃−n ),

(S2)

with J̃−n and J̃+
n given by {

J̃−n = κ
(
ρ̃−n−1 − 1−Θ(ρ̃+n − ρ̃−n−1) + fn

)
,

J̃+
n = κS

(
ρ̃+n − 1−Θ(ρ̃+n − ρ̃−n−1) + fn

)
,

(S3)

where sn := xn+1−xn and the superscripts plus and minus denote values at 0 and 1, respectively. Hence, ρ̃+n := ρ̃n(0, t),
ρ̃−n := ρ̃n(1, t), (∂uρ̃n)+ := ∂uρ̃n(0, t) and (∂uρ̃n)− := ∂uρ̃n(1, t). Note that the partial differential equation (S2)1 is
defined on (0, 1).

B. Linear perturbation equation

Noting that for the steady-state solution the variable u coincides with the variable x− x∗n(t), the Lagrangian form
of the principal solution reads ρ̃∗(u) = ρ∗(u). To derive the linear perturbation equation, we consider the perturbed
state {

xn(t) = n+ V ∗t+ εδxn(t) + o(ε),

ρ̃n(u, t) = ρ̃∗(u) + εδρ̃n(u, t) + o(ε),
(S4)
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where ε is a small parameter and the perturbation is given by

qn(u, t) :=
(
δxn(t), δρ̃n(u, t)

)
. (S5)

Inserting (S4) in (S2) and collecting all terms of order ε yields a linear system for qn, which can be expressed in
abstract form as

A
(
qn−1,qn,qn+1,qn+2

)
= B

(
∂tqn, ∂tqn+1

)
, (S6)

where A and B denote the linear operators whose complete expressions are:

A
(
qn−1,qn,qn+1,qn+2

)
= A1

1(u) (δxn − δxn+1)
A1

2 δxn +A1
2
′ δxn+1 +A1

2
′′ δxn+2

A1
3 δxn−1 +A1

3
′ δxn +A1

3
′′ δxn+1

A1
4 (δxn−1 − 2δxn + δxn+1)

+


A2

1 δρ̃n(u, t)
A2

2 δρ̃
+
n+1 +A2

2
′ δρ̃−n

A2
3 δρ̃

+
n +A2

3
′ δρ̃−n−1

A2
4 δρ̃

+
n +A2

4
′ δρ̃−n−1

+

V
∗ ∂uδρ̃n(u, t)
(∂uδρ̃n)−

−(∂uδρ̃n)+

0

+

∂uuδρ̃n(u, t)
0
0
0

 , (S7)

with

A1
1(u) =2νρ∗(u)− 2F − V ∗ρ∗′(u), A1

2 = κ(1 + 3α) + κΘρ∗(0)−
(
κ(1 + Θ) + V ∗

)
ρ∗(1),

A1
2
′ =− κ(1 + 6α)− κΘρ∗(0) +

(
κ(1 + Θ) + V ∗

)
ρ∗(1), A1

2
′′ = 3κα, A1

3 = 3Sκα,

A1
3
′ =κS(1− 6α)− κSΘρ∗(1) +

(
κS + Θ− 1 + V ∗

)
ρ∗(0),

A1
3
′′ =− κS(1− 3α) + κSΘρ∗(1) +

(
κS + 1−Θ− V ∗

)
ρ∗(0),

A1
4 =− 3Θκα(1 + S), A2

1 = −ν, A2
2 = −κΘ, A2

2
′ = κ(1 + Θ) + V ∗,

A2
3 =κS(1−Θ)− V ∗, A2

3
′ = ΘκS, A2

4 = Θκ
(
Θ(1 + S)− S

)
, A2

4
′ = −Θκ

(
Θ(1 + S) + 1

)
.

(S8)

where ρ∗′ denotes the first derivative of ρ∗ and

B
(
∂tqn, ∂tqn+1

)
=

(u− 1)ρ∗′(u)δẋn − uρ∗′(u)δẋn+1 + ∂tδρ̃n(u, t)
ρ∗(1)δẋn+1

ρ∗(0)δẋn
δẋn

 . (S9)

C. Floquet-mode analysis

Using the linearity of (S6) and noting that the operators A and B are time independent and independent of n (i.e.,
invariant under a one-terrace translation), the perturbations that solve (S6) can be written as combinations of normal
Floquet modes: {

δxn(t) = δx̂ exp(ikn+ λt),

δρ̃n(u, t) = δρ̂(u) exp(ikn+ λt),
(S10)

with i the imaginary unit, k ∈ (−π, π) the wave number and λ the associated growth rate. Hence, the stability of the
system is obtained from the stability of each one of the modes.

Inserting (S10) in (S6) yields, for a given wavenumber k, a generalized eigenvalue problem of the form

Âkq̂ = λB̂kq̂, (S11)

where q̂(u) :=
(
δx̂, δρ̂(u)

)
and Âk and B̂k are linear operators deriving from A and B, whose complete expressions

are:

Âkq̂ =


Â1

1 (u)δx̂

Â1
2 δx̂

Â1
3 δx̂

Â1
4 δx̂

+


Â2

1 δρ̂(u)

Â2
2 δρ̂(0) + Â2

2
′ δρ̂(1)

Â2
3 δρ̂(0) + Â2

3
′ δρ̂(1)

Â2
4 δρ̂(0) + Â2

4
′ δρ̂(1)

+

V
∗ δρ̂′(u)
δρ̂′(1)
−δρ̂′(0)

0

+

δρ̂
′′(u)
0
0
0

 , (S12)
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where δρ̂′ and δρ̂′′ denote the first and second derivatives of δρ̂, respectively and

B̂kq̂ =


B̂1

1 (u)δx̂

B̂1
2 δx̂

B̂1
3 δx̂
−δx̂

+

δρ̂(u)
0
0
0

 , (S13)

with 

Â1
1(u) =

(
−1 + eik

) (
2F − 2νρ∗(u) + V ∗ρ∗′(u)

)
,

Â1
2 =

(
−1 + eik

) (
κ
(
3(eik − 1)α+ (ρ∗(1)− ρ∗(0))Θ + ρ∗(1)− 1

)
+ V ∗ρ∗(1)

)
,

Â1
3 =

(
−1 + eik

) (
3κS

(
(1− e−ik)α− ρ∗(0)(Θ− 1) + ρ∗(1)Θ− 1

)
− V ∗ρ∗(0)

)
,

Â1
4 =− 6Θκα(S + 1)(cos(k)− 1),

Â2
1 =− ν, Â2

2 = −eikκΘ, Â2
2
′ = κ(1 + Θ) + V ∗,

Â2
3 =κS(1−Θ)− V ∗, Â2

3
′ = e−ikΘκS,

Â2
4 =Θκ

(
(S + 1)Θ− S

)
, Â2

4
′ = −e−ikΘκ

(
(S + 1)Θ + 1

)
,

B̂1
1(u) = −

(
1 +

(
−1 + eik

)
u
)
ρ∗′(u), B̂1

2 = −eikρ̂∗(1), B̂1
3 = ρ̂∗(0).

(S14)

The numerical resolution of (S11) for a given k provides the set of associated eigenvalues (whose number depends
on the numerical mesh resolution). The eigenvalue corresponding to the most unstable mode is the one with largest
real part.

Note that as the operators Â−k and B̂−k are the complex conjugates of Âk and B̂k, respectively, the eigenvalues
associated with the wavelength −k are complex conjugate to those of wavelength k. As a result, the set of eigenvalues
of wavelength −k and k have the same real part, which allows us to reduce the computation of the growth rate
Re(λ)[k] to k ∈ (0, π), interval over which the dispersion relations are displayed (see, e.g., Fig. 2 of the main text).

II. LINEAR STABILITY RESULTS FOR GAAS(001)

We report in Fig.S1 the stability diagram obtained from representative physical parameters for GaAs(001).
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FIG. S1. Stability diagram for the deposition of GaAs(001), with ν = 0, Θ = 0.2, S = 2, α = 5 × 10−6. Blue (dark) and
yellow (light) correspond to the stable and unstable domains, and isolines display maxk∈(−π,π) log10 Re(λ). The white area
corresponds to a unphysical domain where the adatom density reaches values well above the equilibrium adatom coverage.

The choice of value for each parameter is explained in the main text. We can see the existence in Fig. S1 of an
unstable domain, quantitatively important for low values of κ. Specifically, for κ < 1 the observed instability develops
in 10 to 100 monolayers, which is fast enough to account for the bunching observed in the experiments mentioned in
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the main text. It should be noted that this unstable domain depends strongly on the strength of the ES barrier and
disappears when it is larger than S = 2.

III. NUMERICAL RESOLUTION OF THE FULLY NON-LINEAR STEP FLOW EVOLUTION
PROBLEM

In this section, we present the numerical scheme developed to solve the moving boundary problem of step flow,
which furnishes, beyond the onset of the bunching instability, the growth of step bunches. As step bunches grow
in time, the adatom density on terraces presents large deviations from its equilibrium value and the assumption of
near-equilibrium adatom density (|ρ − 1| � 1, in dimensionless form) underlying the linear step-flow problem, as
formulated in Equations (1)–(4) of the main text, is no longer valid. Therefore, to compute bunch growth, we resort
to the nonlinear step-flow evolution problem from which (1)-(4) derives [S1, S2]. In the absence of evaporation, the
moving boundary problem reads 

∂tρn = ∂xxρn + F̄ ,

−ρ−n ẋn+1 − (∂xρn)− = J−n+1,

ρ+n ẋn + (∂xρn)+ = J+
n ,

ẋn = Θ(J+
n + J−n ),

(S15)

where J−n and J+
n are given by {

J−n = κ̄
(
ln(ρ−n−1)−Θ(ρ+n − ρ−n−1) + fn

)
,

J+
n = κ̄S

(
ln(ρ+n )−Θ(ρ+n − ρ−n−1) + fn

)
.

(S16)

Further, to deal with the moving steps, we rewrite the system in a Lagrangian form with the change of space
variable from x to u and the associated change of adatom density from ρn to ρ̃n given in (6) of the main text and
detailed in Section I A above. This leads to the Lagrangian nonlinear adatom density evolution problem:

s2n∂tρ̃n = ∂uuρ̃n + sn
(
ẋn + (ẋn+1 − ẋn)u

)
∂uρ̃n + s2nF̄ ,

−snρ̃−n ẋn+1 − (∂uρ̃n)− = snJ̃
−
n+1,

snρ̃
+
n ẋn + (∂uρ̃n)+ = snJ̃

+
n ,

ẋn = Θ(J̃+
n + J̃−n ),

(S17)

where J̃−n and J̃+
n take the form {

J̃−n = κ̄(ln(ρ̃−n−1)−Θ(ρ̃+n − ρ̃−n−1) + fn),

J̃+
n = κ̄S(ln(ρ̃+n )−Θ(ρ̃+n − ρ̃−n−1) + fn).

(S18)

Note that in (S17)-(S18), the functions ρ̃n(·, t) are defined on (0, 1) and the variables xn(t), while no longer being the
boundaries of the domains over which the differential equations are resolved, furnish the step positions.

The numerical resolution is performed on a system of N = 500 steps, with periodic boundary conditions, where
each terrace is discretized using the finite element method with second-order interpolation functions, 3-point Gauss
quadrature, and one element. Indeed, the parabolic profile for the adatom concentration on terraces for stable
equidistant step flow suggests that a unique element per terrace is sufficient. Further, we observe no noticeable
mesh-dependence when increasing the terrace discretization up to ten elements per terrace. For the time-evolution
problem, we use an implicit solver implementing a variable-step, variable-order scheme.

The surface roughness of a sample of length L whose height is described by the function h(x) (with average

h := 1
L

∫ L

0
h(x)dx) is defined as

SR =

√
1

L

∫ L

0

[
h(x)− h

]2
dx. (S19)
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Denoting by a the step height and {xn}1≤n≤N the step positions, the roughness of the vicinal surface reads

SR = a

√√√√ 1

3N

N∑
n=1

{(
xn+1 − n+

1

2

)3

−
(
xn − n+

1

2

)3
}
. (S20)

For computing the median bunch height, a step is considered to belong to a bunch when its distance to the
neighboring steps is below 0.2. Note that the value of this threshold has very little influence on the resulting median
bunch height.

Finally, the exponents βh and βr defined in the main text are computed through a linear regression in log-log scale,
after cutting off the initial transient regime, cf. Fig. 5.
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