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The authors report on an algebraic procedure, allowing for the completion of an experimental
nondepolarizing Mueller matrix with a column or a row missing to a full 16-element one.
The method provides a closed-form solution for the missing column or row and is illustrated on
single-wavelength, spectroscopic, and imaging experimental examples. Published by the AVS.
https://doi.org/10.1116/1.5120342

I. INTRODUCTION

The real 4 × 4 Mueller matrix M is the most general
phenomenological descriptor of the linear interaction of a
medium or an optical arrangement with polarized light, rep-
resented in the form of the incident and emerging Stokes
vectors.1 If no loss of spatial or temporal coherence takes
place during the measurement, the resulting experimental
Mueller matrix Mnd is termed nondepolarizing since it trans-
forms any totally polarized incident Stokes vector into a
totally polarized emerging one.1,2 The matrix Mnd is then
equivalent to a complex 2 × 2 Jones matrix J (wherefrom its
alternative name of the Mueller–Jones matrix), which means
that its 16 real elements are not independent but are rather
functions of 2 × 2 × 2 – 1 = 7 parameters. (Note that J and
Jeiw, where w is a real “absolute” phase, result in one and the
same Mnd, wherefrom the subtraction of the unit.) In other
words, there exist 16 – 7 = 9 relationships3 between the ele-
ments of Mnd. Conversely, in the presence of depolarization,4

i.e., if spatial or spectral coherence is either partially or
totally lost during the experiment, there is no one-to-one
correspondence between M and J (J can be then defined
only in a statistical sense4) so that all 16 elements of M are
independent.

The fact that the nondepolarizing Mueller matrix Mnd

depends on only 7 rather than on a total of 16 parameters
suggests that, in principle, one should be able to complete it
to its full form even if one has measured it only partially.
Indeed, conventional partial Mueller polarimeter designs
provide experimentally either 9 (when both a column and a
row are missing) or 12 (when a column or a row is missing)
elements of M.5,6 In the first case, it has been shown that the
completion problem for a partial nondepolarizing Mueller
matrix Mnd features exactly two distinct solutions,7 whereas
in the second one, the solution is unique.8 In both cases, the
completion of the partial 9- or 12-element Mnd to a full
16-element one is based on the fact that its associated

covariance matrix2 Hnd must be of unit rank. This involves
the conversion of the elements of Mnd into those of Hnd and
back, and furthermore requires making a judicious choice of
equations from an overdetermined set, thus making only
partial use of the information contained in Hnd.

An alternative approach to the recovery of the full Mnd

from its partial experimental counterpart would consist in
exploiting the nine relationships existing between its ele-
ments. Since the uniqueness of the solution is ensured only
in the 12-element partial nondepolarizing Mueller matrix
case, the alternative approach will be applied to it.
Furthermore, this case is of significant experimental impor-
tance since 12-element partial Mueller polarimeters9 are
commonly used to characterize anisotropic nondepolarizing
samples by performing so-called “generalized ellipsome-
try.”10 Although measurements using complete Mueller
matrix polarimeters are relatively widespread, 12-element
partial systems still retain strong scientific and commercial
interest essentially because of their simpler optical layout
usually offering a wider spectral range, increased sensitivity,
and better adaptability to imaging operation. Therefore, the
development of a computationally efficient closed-form alge-
braic procedure for the recovery of the full Mnd from its
12-element experimental counterpart having a column or a
row missing, without resorting to the evaluation of its associ-
ated covariance matrix Hnd or of its equivalent Jones matrix
J, is of definite practical interest.

II. ALGEBRAIC PROCEDURE

It has been established independently by several
authors11–14 that the set of relationships15,16 relating the ele-
ments of a nondepolarizing Mueller matrix can be cast into
the following matrix form:

MTGM ¼
ffiffiffiffiffiffiffiffi
jMj

p
G, (1)

in which G ¼ diag 1 �1 �1 �1ð Þ is the Minkowski
metric (the notation |⋯| stands for determinant and the super-
script “T” denotes transposition). (For simplicity, from now
on, we shall write simply M instead of Mnd for a nondepola-
rizing Mueller matrix.)

Note: This paper is part of the Conference Collection: 8th International
Conference on Spectroscopic Ellipsometry 2019, ICSE.
a)Electronic mail: razvigor.ossikovski@polytechnique.edu
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In what follows, we shall assume that the 12-element
partial nondepolarizing Mueller matrix M has its last (i.e.,
fourth) column missing (i.e., undetermined experimentally).
If instead the second or the third column of M is missing,
then it can be permuted with the fourth one; the recovery
procedure is applied and the final result is permuted back.
(Notice that the first column or row of M is always measured
by partial polarimeters.) Alternatively, if a row instead of a
column is missing, then one can apply the procedure to the
transpose MT of M and retranspose the final result. Under
the above assumption, the 12-element partial M can be parti-
tioned columnwise,

M ¼ m1 m2 m3 v½ �, (2)

where mk ¼ M1k M2k M3k M4k½ �T , k = 1, 2, 3, is its kth
column and v ¼ v1 v2 v3 v4½ �T is its unknown last
column (Mik, i = 1, 2, 3, 4, k = 1, 2, 3 are the 12 known ele-
ments of M). Substituting Eq. (2) into Eq. (1) results in

mT
1Gm1 mT

1Gm2 mT
1Gm3 mT

1Gv
mT

2Gm1 mT
2Gm2 mT

2Gm3 mT
2Gv

mT
3Gm1 mT

3Gm2 mT
3Gm3 mT

3Gv
vTGm1 vTGm2 vTGm3 vTGv

2
664

3
775

¼
ffiffiffiffiffiffiffiffi
jMj

p 1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

2
664

3
775: (3)

By equating the last columns of both sides of Eq. (3) one
readily obtains the following set of three equations for the
unknown column v:

mT
1Gv ¼ mT

2Gv ¼ mT
3Gv ¼ 0: (4)

These equations can be grouped into the single matrix
equation

Av¼
mT

1G

mT
2G

mT
3G

2
64

3
75v¼

M11 �M21 �M31 �M41

M12 �M22 �M32 �M42

M13 �M23 �M33 �M43

2
64

3
75

v1
v2
v3
v4

2
6664

3
7775¼ 0,

(5)

where A is an auxiliary 3 × 4 matrix. It is well known from
linear algebra that the solution of Eq. (5) is given by

v ¼ v0 A1 A2 A3 A4½ �T , (6)

where v0 is a (real) proportionality factor and Am, m = 1, 2,

3, 4, are the adjuncts (i.e., the signed minors) obtained by
striking out the mth column of A,

A1 ¼ (�1)1
�M21 �M31 �M41

�M22 �M32 �M42

�M23 �M33 �M43

�������
�������¼

M21 M22 M23

M31 M32 M33

M41 M42 M43

�������
�������,

(7a)

A2 ¼ (�1)2
M11 �M31 �M41

M12 �M32 �M42

M13 �M33 �M43

�������
�������¼

M11 M12 M13

M31 M32 M33

M41 M42 M43

�������
�������,
(7b)

A3 ¼ (�1)3
M11 �M21 �M41

M12 �M22 �M42

M13 �M23 �M43

�������
�������¼�

M11 M12 M13

M21 M22 M23

M41 M42 M43

�������
�������,

(7c)

A4 ¼ (�1)4
M11 �M21 �M31

M12 �M22 �M32

M13 �M23 �M33

�������
�������¼

M11 M12 M13

M21 M22 M23

M31 M32 M33

�������
������� :
(7d)

Notice that the minors appearing in the right-hand sides
of Eqs. (7a)–(7d) can be obtained simply by striking out the
mth row and the fourth column of M, i.e., without the need
for constructing the auxiliary matrix A.

The absolute value jv0j of the proportionality factor v0
entering Eq. (6) can be determined from the equalities

vTGv ¼ �mT
1Gm1 ¼ mT

2Gm2 ¼ mT
3Gm3 (8)

obtained by equating the diagonal elements of both sides of
Eq. (3). After substitution of Eq. (6) into Eq. (8), one gets
three equivalent expressions for jv0j,

jv0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mT
1Gm1

A2
4þA2

3þA2
2�A2

1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mT

2Gm2

A2
4þA2

3þA2
2�A2

1

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�mT
3Gm3

A2
4þA2

3þA2
2�A2

1

s
, (9a)

where mT
kGmk ¼M2

1k �M2
2k �M2

3k �M2
4k, k = 1, 2, 3.

On experimental data, one can average advantageously the
three theoretically equal products mT

1Gm1, �mT
2Gm2, and

�mT
3Gm3 for better noise resilience, i.e., rather use the fol-

lowing expression:

jv0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mT

1Gm1�mT
2Gm2�mT

3Gm3

3(A2
4þA2

3þA2
2�A2

1)

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

11 �M2
21 �M2

31�M2
41�M2

12 þM2
22 þM2

32 þM2
42�M2

13þM2
23 þM2

33 þM2
43

3(A2
4þA2

3þA2
2�A2

1)

s
,

(9b)
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instead of Eq. (9a).
Clearly, Eq. (6) yields two solutions for the unknown last

column of M, vþ, and v�¼ � vþ,

v+¼+ jv0j A1 A2 A3 A4½ �T , (10)

where jv0j is given by Eqs. (9a) and (9b). To pick up the
correct solution use should be made of the fact that the deter-
minant jMj of any nondepolarizing Mueller matrix M is non-
negative,13

jMj ¼
M11 M12 M13 v1
M21 M22 M23 v2
M31 M32 M33 v3
M41 M42 M43 v4

��������

��������
¼ �A1v1 þ A2v2 þ A3v3 þ A4v4 � 0: (11)

The last expression in Eq. (11) is the expansion of the
determinant on the elements of the last column of M, involv-
ing the adjuncts from Eqs. (7a)–(7d). Substitution of the first
of Eq. (9a) into Eq. (10) followed by that of Eq. (10) into
Eq. (11) yields

jMj ¼ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mT

1Gm1

A2
4 þ A2

3 þ A2
2 � A2

1

s
�A2

1 þ A2
2 þ A2

3 þ A2
4

� � � 0:

(12)

Since mT
1Gm1 ¼ M2

11 �M2
21 �M2

31 �M2
41 � 0 (because the

first column of any Mueller matrix is necessarily a Stokes
vector), then A2

4 þ A2
3 þ A2

2 � A2
1 ¼ �A2

1 þ A2
4 þ A2

3 þ A2
2 � 0

(because the fraction under the square root must be non-
negative). Therefore, the correct solution is v ¼ vþ since the
factor �A2

1 þ A2
4 þ A2

3 þ A2
2 multiplying the square root in

Eq. (12) is non-negative. Consequently, the missing last
column v of M is determined uniquely. This completes the
procedure.

III. EXPERIMENTAL VALIDATION

The following experimental Mueller matrix

Mexp ¼
1:000 �0:440 0:421 0:117
�0:434 0:767 �0:113 �0:449
�0:423 0:113 �0:882 0:013
0:119 �0:448 �0:007 �0:657

2
664

3
775 (13)

is that of a diffraction grating measured at the wavelength
of 400 nm in reflection configuration at an incidence angle
of 75° by using a UV-visible spectroscopic complete
Mueller polarimeter.17 The grating whose structure is
described in detail elsewhere18 was rotated at 45° with
respect to the plane of incidence so that all Mueller matrix
elements feature nonzero values. Assuming that only the
first three columns of Mexp were measured (on a partial

Mueller polarimeter) and applying Eqs. (7), (9b), and (10)
yields the following recovered complete Mueller matrix
Mrec:

Mrec ¼
1:000 �0:440 0:421 0:113
�0:434 0:767 �0:113 �0:448
�0:423 0:113 �0:882 0:009
0:119 �0:448 �0:007 �0:653

2
664

3
775: (14)

Comparison of Mexp from Eq. (13) and Mrec from
Eq. (14) indicates successful recovery of the last column, the
largest absolute error being 0.004, to be compared to the
typical 0.5% experimental accuracy of the Mueller polarime-
ter used.17 This example demonstrates the applicability of
the procedure to experimental Mueller matrices with nonzero
elements in their two 2 × 2 off-diagonal blocks, typical of
patterned anisotropic samples characterized in the conical
diffraction mode.

To study the potential spectral dependence of the quality
of recovery, the procedure was applied over the entire experi-
mentally available spectral region ranging from 240 to
650 nm. The result is shown in Fig. 1.

The calculated values of the elements of the last column of
the Mueller matrix virtually overlapped their experimental
counterparts so that the latter are not shown in the figure. The
recovered elements obey the symmetry relations M14 ¼ M41,
M24 ¼ M42, and M34 ¼ �M43 expected for a sample whose
polarimetric response is rotationally invariant with respect to a
180°-rotation about its normal.3,8 It should be emphasized that
the recovery procedure does not assume the validity of any
symmetry relations; indeed, the latter are violated by the pres-
ence of slight asymmetries in the pattern profiles, as has been
shown both theoretically19 and experimentally.20–23 The
quality of recovery of the last column of the Mueller matrix is
spectrally uniform. The average error (rms value) per element
is 0.0027 and is thus lower than the experimental accuracy.
This value is comparable to that obtained by applying either
of the covariance-matrix-based methods (analytical or numeri-
cal) from Ref. 8. However, the uniformity of the present pro-
cedure is better: it features a maximum error of 0.017 over the
entire spectrum as evidenced by Fig. 1, whereas that of the
covariance-matrix-based methods attains 0.068.

The closed-form expressions of the recovery procedure
turn out particularly useful in imaging applications, where
high-resolution detector arrays generate a large number of
experimental data points in the form of (complete or partial)
Mueller matrices, and consequently, the image processing
time is an essential parameter. As an example, we applied
the procedure on the Mueller matrix image of a thin poly-
crystalline sample of banded mannitol spherulites dyed with
Chicago sky blue 6B tetrasodium salt that crystallize in two
distinct polymorphs (more details can be found in Ref. 24).
The measurement was performed on an imaging Mueller
matrix microscope25 at a wavelength of 630 nm. Figure 2
shows both the complete experimental Mueller matrix as
well as the last column recovered by using the information
from the 12 elements of the first three columns. The
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FIG. 2. Experimental Mueller matrix image of a thin polycrystalline sample of dyed banded mannitol spherulites and its recovered last column from its
three-column, 12-element partial counterpart.

FIG. 1. Recovered complete spectroscopic Mueller matrix of the diffraction grating from the 12-element partial one with the last column assumed missing. The
difference (multiplied by ten for better visibility) between measured and recovered last column elements is likewise shown.
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measured and recovered last columns compare very favor-
ably; in particular, the quality of recovery is spatially
uniform and reproduces successfully all features originally
resolved by the microscope.

These experimental results qualify the algebraic procedure
for practical use.

Before concluding, it should be emphasized that recovery
is feasible only if the experimental Mueller matrix M is non-
depolarizing. If no preliminary information on M is avail-
able, one can still apply the procedure and evaluate a
posteriori the eigenvalues of the covariance matrix2 H asso-
ciated with the recovered complete M. If the second largest
eigenvalue of H is lower than the experimental accuracy,
then H is of unit rank and the procedure is applicable.7 If
this is not the case, one should resort to more complex
covariance-matrix-based procedures.8 Alternatively, one may
evaluate the depolarization index (or the degree of polarimet-
ric purity)4 of the recovered M; a value equal to the unit
within the experimental error is a warrant of successful
recovery.

IV. SUMMARY AND CONCLUSIONS

An algebraic procedure providing closed-form expressions
for the elements of a missing column or row of a partially
measured 12-element nondepolarizing experimental Mueller
matrix has been described. When applied on experimental
data, the procedure results in generally lower absolute errors
compared to those of previously developed recovery
methods. The procedure is believed to be of use to experi-
mentalists willing to recover the complete nondepolarizing
Mueller matrix from a partial polarimetry experiment.
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