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Abstract: In 1822 A. Fresnel described an experiment to separate a beam of light into its right-
and left- circular polarization components using chiral interfaces. Fresnel’s experiment combined
three crystalline quartz prisms of alternating handedness to achieve a visible macroscopic
separation between the two circular components. Such quartz polyprisms were rather popular
optical components in XIXth century but today remain as very little known optical devices.
This work shows the analogy between Fresnel’s experiment and Stern-Gerlach experiment from
quantum mechanics since both experiments produce selective deflection of particles (photons in
case of Fresnel’s method) according to their spin angular momentum. We have studied a historical
quartz polyprism with eight chiral interfaces producing a large spatial separation of light by spin.
We have also constructed a modified Fresnel biprism to produce smaller separations and we have
examined the analogy with Stern-Gerlach apparatus for both strong and weak measurements.
The polarimetric analysis of a Fresnel polyprism reveals that it acts as a spin angular momentum
analyzer.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

One of the cornerstones of quantum mechanics is the Stern-Gerlach effect. In the original
experiment from 1922 [1] an unpolarized beam of silver atoms is passed through a strong
magnetic field gradient splitting it into two polarized beams. In the experiment, particles
with non-zero magnetic moment are deflected from straight path due to the magnetic field
gradient. Historically, this experiment was decisive in convincing physicists of the reality of
angular-momentum quantization in atomic-scale systems.
Particle spin is a truly quantum property and cannot be explained by classical physics. In

fact, it was the discovery of particle spin that lead to the development of the modern theory
of quantum mechanics. Light also carries a quantity called spin angular momentum that does
not depend on its frequency. For massless particles such as photons one usually refers to their
helicity, which is the value of the projection of the spin operator onto the momentum operator.
The helicity of a photon is always either +~ or −~ and they are respectively associated with the
right-handed and left-handed circular polarization states of light.
Because photons have no magnetic moment, they are not affected by the gradient of the

magnetic field in the Stern-Gerlach apparatus, and the quantization of their angular momentum
cannot be observed with this experiment. In some lectures about quantum mechanics [2, 3] an
optical analog of a Stern-Gerlach experiment for photons is proposed using a calcite crystal
or a Wollaston prism [4], thanks to the well-known phenomenon of double refraction that
splits a beam of light into two orthogonally linearly polarized beams [5]. This straightforward
analogy is especially useful to understand Stern-Gerlach experiments that involve a sequence
of Stern-Gerlach apparatuses with each one being rotated with respect to the next one, because
they can be explained by using the same mathematical model of states and measurements like
that of a sequence of calcite polarizers; i.e. essentially, by using Malus law. However, the
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double refraction in calcite is not selecting or separating light according to the intrinsic angular
momentum of photons.

This work studies a historical method proposed by Augustin Fresnel [6] to produce circularly
polarized light (CPL) by selective deflection of photons according to their spin angular momentum
and describes its analogy with the Stern-Gerlach experiment.

2. Fresnel polyprism

In a memoir presented to the French academy of sciences in December 1822, Fresnel introduced
for the first time the term circular polarization and described a novel method to produce it.
Previously, in 1817-1818, [7–9] he had already described what we know today as the Fresnel
rhomb used to convert linearly polarized light into CPL by means of two total internal reflections
introducing a 90◦ phase difference. The second method, described by Fresnel in 1822, is much
less known than the Fresnel rhomb one; it is based on the different speeds at which right- and left-
circularly polarized waves propagate in a chiral medium. Specifically, Fresnel was considering
natural light propagating along the optic axis of α-quartz. In a bulk sample the difference in
refractive indexes, an effect today known as optical rotation or circular birefringence, does not
produce any physical separation of right- and left- circular polarizations, but Fresnel described an
ingenious experiment where the chiral interfaces between quartz prisms of alternating handedness
cause double refraction of CPL, thus obtaining a macroscopic separation between the two
circularly refracted beams. For this experiment Fresnel used a very acute quartz prism of angles
14◦ − 152◦ − 14◦ placed between two other half-prisms of quartz of opposite handedness (of
“opposite species” in Fresnel’s terms). This optical design, shown in Fig. 1, has been sometimes
named as the Fresnel triprism or, more generally, Fresnel polyprism.
Fresnel polyprisms with alternating right- and left-quartz prisms were relatively popular

optical devices in the XIXth century for teaching demonstrations that plane polarized light can be
resolved into right-and left-circularly polarized components. They were commercially available,
although they did not necessarily follow the original specifications for the prisms given by Fresnel
(see Fig. 2). Nowadays, this method of producing circularly polarized light remains very little
known –albeit it is mentioned in several books [10–12]– and, to our knowledge, there are no
reports of any recent fabrication of Fresnel polyprisms made of quartz. There are, however, some
relatively recent works that have appraised Fresnel’s method: in 1993 an old Fresnel prism was
used as polarization interferometer to measure the circular birefringence of a sugar solution [13]
and, in 2006, Fresnel’s method was used to study the optical rotation of a chiral liquid by using
many prismatic cuvettes [14]. Curiously, Fresnel already anticipated in his memoir that his
experiment could be also replicated using a chiral liquid such as turpentine instead of quartz.
He estimated that to achieve effective separation with the materials he had at that time it would
require 40 different cuvettes with liquids of alternating handedness.

2.1. Fresnel’s spin-dependent light splitting

To our knowledge, the method of Fresnel, now almost 200 years old, has not been brought to
the attention of investigators working on spin-controlled shaping of light. In recent years much
interest has arisen in spin-dependent splitting of beams, i.e. situations in which the photon spin
controls the propagation path and the intensity distribution of light, as it is considered to be a
fundamental constituent of future spin-based photonics. Perhaps the most studied phenomenon
is the so-called spin-Hall effect of light, [15–22] which is due to the interaction between photon
spin and its orbital motion, so it is a consequence of light carrying both spin and orbital angular
momentum. This effect is, for example, observed at interfaces illuminated by finite size beams
that are composed of many plane waves with slightly different wavevectors k, thus defining
slightly different planes of incidence. It manifests as a very small spin-dependent transverse
shift upon reflection or refraction. This tiny shift is different from the more macroscopic effect
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discussed in this paper, as the double refraction effect for CPL proposed by Fresnel is not directly
related to the orbital angular momentum of light and can be readily explained in the plane wave
picture. Light splitting according to the helicity state can also be achieved in certain engineered
dielectric metasurfaces capable of controlling the phase and polarization with subwavelength
spatial resolution, [23–25] but these are highly resonant devices and have only narrowband
working frequencies.

A chiral medium such a quartz crystal can be described by the following Tellegen constitutive
relations [26],

D = εE + iαH, (1)
B = µH − iαTE. (2)

The permittivity and optical activity tensors of quartz have the following respective forms,

ε = diag
(
ε11 ε11 ε33

)
, (3)

and
α = diag

(
α11 α11 α33

)
. (4)

The optical activity tensor was measured spectroscopically in [27,28]. For propagation along the
optic axis there are two forward circularly polarized eigenmodes with different refractive indexes
given by

n± =
√
ε11 ∓ α11, (5)

where n+ and n− respectively apply to right- and left-handed circular polarizations. Note that
for right-handed quartz n− > n+ because α11 is positive. The chiral parameter α11 is very small
(∼ 10−5) compared to the refractive index √ε11. The normalized electric field eigenmodes are
written as

E± =
1
√

2

[
1 ±i

]T
. (6)

For a left-handed crystal the permittivity tensor of Eq. (3) remains the same but the optical
activity tensor of Eq. (4) takes opposite values, so that α11 is now negative. Therefore, the
refractive indexes for right- and left-handed crystals are related as

nLH
± = nRH

∓ , (7)

where the superscripts LH a RH indicate left- and right-handed crystals respectively. In the
following, we omit the superscripts LH and RH for simplicity and use a unique set of refractive
indexes, namely those of a right-handed crystal. For example, if for right-handed quartz the
refractive indexes are n+ and n− for right- and left-CPL respectively, for a left handed quartz the
values are reversed: right-CPL refracts with index n− and left-CPL with n+.

Plane wave reflection and refraction at an optical interface can be described by Snell’s law
and Fresnel relations. Because in an interface between right- and left-handed quartz there is no
discontinuity of the permittivity tensor, one can already anticipate that reflection and refraction
phenomena will be mostly governed by the chiral parameter. In fact, the polyprism can be also
regarded as a single medium with an inhomogeneous or stratified chirality. Notice that while
in Stern-Gerlach experiment the deflection is produced by an inhomogeneous magnetic field,
here the deflection of light is produced by an inhomogeneous chiral medium or by the interface
between two chiral media of same nature but of opposite handedness. No deflection of light can
take place without the presence of an interface.

Consider the first quartz-quartz interface shown in Fig. 1 between a left- a right-handed crystal.
A right-handed circularly polarized wave obeys Snell’s law,

n− sin A = n+ sin A′. (8)
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Fig. 1. Double refraction in a Fresnel triprism. The incident beam is split into right
(R) and Left (L) circular waves. The double headed arrows inside the crystal indicate the
direction of the optic axis, while R and L respectively denote a right- and a left-handed
crystal. In Fresnel’s original experiment A = 76◦.

As in quartz n− > n+ we can write n− = n+ + ∆ where ∆ = |nR − nL | = |2α11 |, therefore

sin A′

sin A
= 1 +

∆

n+
, (9)

The refracted angle A′ can be rewritten as A′ = A + ξ where ξ is the small angular deviation of
the beam from the straight path due to the optical activity of quartz. Then

sin (A + ξ)
sin A

' 1 +
cos A
sin A

ξ = 1 +
∆

n+
, (10)

and
|ξ | ' ∆ tan A/n, (11)

where we have written n+ ' n, n being the average refractive index; n = (n+ + n−)/2. A
left-handed circularly polarized wave will deviate by the same angle (note that n− ' n+ ' n) but
in the opposite direction.
In the second quartz-quartz interface of Fig. 1 the wave travels from a right-handed to a

left-handed crystal. If, as before, we consider a right-handed circularly polarized wave, the
Snell’s law is

n+ sin (A − |ξ |) = n− sin A′′, (12)

where we have taken into account that, due to the geometry of the triprism, the angle of incidence
of the right-handed circular wave at this interface is A − |ξ |. Notice that

n+ sin (A − |ξ |) ' n+ sin A(1 − ∆/n) ' (n− − 2∆) sin A, (13)

where in the last step we have used that n+ = n− − ∆. Rewriting the refraction angle A′′ as
A′′ = A − ξ ′ where ξ ′ is the small angular deviation of this beam with respect to the original
incident beam, we find that

|ξ ′ | ' 2∆ tan A/n. (14)

Finally, the beam goes through the last quartz-air interface which can be studied by applying
again Snell’s law,

n sin ξ ′ = sin θ. (15)

As all the involved angles are very small, nξ ′ ' θ, we obtain

θ ' 2∆ tan A. (16)

If more prisms are added to the polyprism this formula can be generalized (approximating all
small angles to first order) to

θ ' N∆ tan A, (17)
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where N is the number of quartz-quartz interfaces of alternating handedness (in Fresnel triprism
N = 2). The total angular separation between the right- and left-circularly polarized beams is 2θ.
In this calculation we have assumed implicitly that light propagates always along the optic axis of
quartz which, given the very small deflection angles, is a very reasonable approximation unless
one considers a very large number of interfaces. If, instead of quartz, an isotropic chiral medium
is considered, there would be no limitation to the number of successive interfaces one could use.
If we place a detector at a distance D from the prism then the two beams will be separated

by a distance 2|∆y(D)| = 2(δ + D tan θ) where δ is the small separation at the exit facet of the
device. The spin splitting δ at the exit of the polyprism depends on the angular deviation at each
quartz-quartz interface and the pathlength through each prism. In the case of the Fresnel triprism
considered in Fig. 1 it can be written as

δ ' L∆ tan A/n, (18)

where L is the total length of the polyprism. The total transmitted field at each point of a detection
screen can be written as

E(x, y,D) =
1
√

2
[A−eik− ·r |−〉 + A+eik+ ·r |+〉], (19)

with
k± =

2πn0
λ
[± sin θŷ + cos θẑ], (20)

where n0 is the refractive index of the surrounding medium (in our case, the air). The vectors
|+〉 and |−〉 are normalized Jones vectors for the right- and left-circularly polarized components
respectively,

|+〉 =
1
√

2

[
1 i

]T
, (21)

|−〉 =
1
√

2

[
1 −i

]T
. (22)

A± are the amplitudes of the two beams at the detection point. As the two beams are separated
along the y coordinate we may write A± = A0(x, y ± ∆y(D)), where A0(x, y) can be considered
as the amplitude of a Gaussian beam. The y component of the wavevector k± is the only one
that depends on the spin, so we may explicitly refer to this component as ky and redefine it as
ky = k0σ sin θ where σ is the spin, σ = 1 for right-CPL and σ = −1 for left-CPL.

2.2. Study of a historical Fresnel polyprism

A historical Fresnel polyprism was used to study experimentally Fresnel’s method to split light
by the spin angular momentum. This Fresnel polyprism (Fig. 2) was fabricated by Henri Soleil
most likely between 1849 and 1872 and is currently on display in the museum of the École
Polytechnique. This polyprism is not a triprism as originally described in Fresnel’s memoir but
rather contains nine different prisms of alternating handedness (i.e. eight interfaces between left-
and right-handed quartz). We have found no other record of a Fresnel polyprism composed of
such a large number of individual prisms. Despite its very old age, the polyprism seemed to
be exceptionally well preserved. The experiments were carried out in the École Polytechnique
museum facilities, with the polyprism in its original mount and without any refurbishing of the
optics. Two different diode laser pointers (of respective wavelengths 532 nm and 405 nm) were
used as light sources. A Glan-Thompson polarizer (Melles Griot) was used to linearly polarize
laser light. After having traversed the polyprism, the light was projected on a screen covered
with millimeter paper and we measured the separation between the centroid points of the spots
visible in the screen. From this separation and the distance between the polyprism and the screen
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Fig. 2. The historical polyprism. a, Basic experiment showing the polyprism manufactured
by H. Soleil in its brass mount, a laser pointer and a polarizer. b, Detail of the schematics
engraved on the prism mount showing the internal design with 9 individual prisms. D stands
for the French “droit” (right) and G for the French “gauche” (left). c, The spots projected
on the screen for a 532 nm laser (left image) and a 405 nm laser (right image). In this
experiment D = 208 cm. The camera was facing the polyprism. d, screen projection when
the laser light was pre-filtered to be left- and right-CPL respectively.

we deduced the deflection angle. From the total length of the prism (∼ 24 cm) and the schematic
drawing graved in the mount (see Fig. 2(b)) we inferred that the characteristic angle A of each
prism that composes the instrument is ∼ 73◦.

Two well separated spots of equal intensities were effectively observed on the projection screen.
We measured the separation between the two spots for both laser sources and for two different
distances between the polyprism and the screen (D = 155 cm and D = 208 cm). As evidenced in
Fig. 2(c), 405-nm light featured larger separation between beams than 532-nm light. By adding a
polarizer and a ±45◦ quarter-wave plate in front of the laser we repeated the experiment with
light pre-filtered to a unique circular polarization state and, as expected, we obtained a single
clear spot on the screen as displayed in Fig. 2(d).
From the results of these experiments we could easily calculate the deflection angle θ and

compare it with the predicted one given by Eq. (17). Table 1 compares the deflection angle
values from the experiment with the calculation of Eq. (17) assuming N = 8, A = 73◦, and the
values of ∆ = 2α11 obtained from the dispersion formula of α11 obtained in [27].
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Table 1. Measurements of the deflection angle θ for the historical polyprism of Fig. 2 and
comparison with the theoretical calculated values given by Eq. (17) for the ∆ values in [27].

Wavelength Measured θ ∆ Calculated θ

405 nm 0.164◦ ± 0.008◦ 1.090 · 10−4 0.1633◦

532 nm 0.121◦ ± 0.007◦ 7.920 · 10−5 0.1187◦

3. A weak amplification measurement with a biprism

The analogy between Fresnel’s and Stern-Gerlach experiments also has a direct extension to the
case of weak measurements. In 1988 Aharonov, Albert and Vaidman [29] suggested a modified
Stern-Gerlach apparatus with a reduced magnetic field to measure the spin z component of a
particle with a well-defined spin state. Because of the weak magnetic field (wherefrom the term
“weak measurement”) the beams at the output are not be well separated but rather overlap. Theory
showed that if a second Stern-Gerlach magnet with a strong magnetic field orthogonal to the first
one is added (so that the spin along x is measured), the separation of the two spin components
would become much larger. Soon after an optical analogue was proposed [30] and experimentally
realized [31], by considering a coherent beam with Gaussian distribution that is first pre-selected
in a linearly polarized state and then passed through a thin birefringent crystal producing a very
small separation between the ordinary and extraordinary rays so that the two emerging beams
overlap. If the composite emerging beam is post-selected with a polarizer orthogonal to the initial
polarization state, a much larger separation of the two orthogonally polarized beams is observed,
because the post-selection suppresses the overlapping part of the composite beam where the two
orthogonally polarized rays merge. Such optical weak measurement amplification scheme has
been used by several authors [32–36], most notably to study spin Hall effect that requires ∼Å
spatial sensitivity [15, 16].
The weak measurement amplification method can be also applied to a Fresnel prism. The

analog of a Stern-Gerlach with weak magnetic field is a Fresnel prism with few interfaces and/or
with a small angle A leading, in accordance with Eq. (17), to a very small deflection angle. In our
experiment with the polyprism from Fig. 2 the separation between the two circularly polarized
states was so large that clearly no amplification is needed. Therefore, to illustrate the weak
measurement amplification within Fresnel’s method we set up a new experiment that offered a
much smaller beam deflection. We used a single prism of right-handed α-quartz (Fichou Optics)
in optical contact to another, achiral fused silica prism, with a isotropic refractive index ∼ √ε11.
Both prisms were optically contacted using a drop of immersion oil (Olympus). The angle A
of the prisms was 63◦. In this construction, shown in Fig. 3(a), there is only one interface
contributing to the beam splitting, and only one of the two interfaced media is chiral. The
deflection angle is given by

θ '
∆

2
tan A. (23)

In this experiment, a camera (Point Grey GS3-U3-32S4M-C) was used as a detector and
the 405-nm laser diode pointer was used as a light source. A Glan-Thompson linear polarizer
was placed in front of the biprism to pre-select a particular spin state. At this wavelength, the
expected deflection for this biprism is θ ∼ 0.0064◦ and we observed the intensity pattern of the
bottom-left corner of Fig. 3(a). Despite the small deflection, one can already anticipate from
the image that splitting occurs. Note, however, that the splitting was not visible by simple eye
inspection, so that, historically, Fresnel designed a sequence of prisms to amplify the effect.
The beam splitting becomes much more evident when the emerging light is post-selected by an
analyzer orthogonal to the initial polarizer, as shown in the bottom-right corner of Fig. 3(a). The
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Fig. 3. Photometric analysis of the circular double refraction in a biprism. a, Basic
schematics of the biprism and intensity profiles of the transmitted beam in measurements
without and with post-selection respectively (D = 95 cm). The post-selection was made by
an analyzer orthogonal to the polarizer used for the pre-selection. b, Intensity profiles of the
transmitted beam for pre-selection with right- and left-CPL (no post-selection).

post-selection amplifies the beam separation but decreases the signal levels. Even if the optical
activity of quartz is strong enough to produce a deflection measurable with modern photometric
methods without any post-selection, this measurement illustrates how the weak measurement
amplification scheme can be used in the optical Stern-Gerlach analog.

Next, we modified the experiment by adding a quarter-wave retarder after the polarizer in order
to illuminate the biprism with right- and left-CPL states (no post-selection was used in this case).
With this pre-selection, all incoming photons have the same spin angular momentum and follow
a unique trajectory through the biprism, so that the camera detects a single spot, as expected (see
Fig. 3(b).

4. Polarimetric analysis of a Fresnel’s biprism

As a last experiment we studied the biprism in a Mueller matrix polarimeter and measured the
Mueller matrix associated to each one of the two possible paths followed by 405-nm light in the
biprism. Details of the polarimeter used are given in [37]. The broadband light source of this
instrument was replaced by the 405-laser diode pointer. To allow the polarimeter discriminate
the two very close emerging light spots we placed a pinhole of 20 µm in front of the polarization
state analyzer, at a distance of ∼ 54 cm from the biprism. This effectively served to increase the
spatial resolution of the instrument. The pinhole was mounted on a xy translator that precisely
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adjusted the position of the pinhole in order to detect photons coming only from one of the two
deflected beams. The normalized Mueller matrices measured for the two deflected beams were

M1 =



1 −0.023 0.014 0.968

0.011 −0.005 0.036 −0.012

0.012 −0.021 −0.012 −0.006

0.984 −0.006 0.012 0.992


, (24)

M2 =



1 0.015 0.001 −0.986

0.015 −0.009 0.028 −0.017

−0.016 −0.031 −0.022 −0.012

−0.971 −0.006 0.021 0.994


. (25)

It is clear that M1 and M2 correspond, within the experimental noise (light levels were very low
due to the very small pinhole), to the Mueller matrices of a right and left homogeneous circular
polarizer respectively. Note that these are reciprocal forms of a circular polarizer, different
from the Mueller matrix of a sequence of linear polarizer and a ±45◦ quarter-wave plate most
often used to generate CPL. The Jones matrices corresponding to these homogeneous circular
polarizers are

T+ =
1
2


1 −i

i 1

 , T− =
1
2


1 i

−i 1

 . (26)

Matrices T+ and T− are constructed from the outer products of the circular polarization Jones
vectors and can be written as

T+ = |+〉〈+| =
1
2
(I + Sz), (27)

T− = |−〉〈−| =
1
2
(I − Sz), (28)

where I is the 2×2 identity matrix and Sz is the Pauli spin matrix

Sz =


0 −i

i 0

 . (29)

Subsequent multiplication of Eqs. (27) and (28) on the right by, respectively, |+〉 and |−〉
generates the eigenvalue equations Sz |+〉 = |+〉 and Sz |−〉 = −|−〉, which show that Sz is the spin
angular momentum operator for photons, with the two possible eigenvalues σ = ±1. Thus, the
Mueller matrix measurements we have carried out verify experimentally that Fresnel polyprisms,
like Stern-Gerlach apparatus, perform spin measurement.

5. Conclusion

Although the notion of circular polarization was introduced by Fresnel almost 200 years ago, and
for more than a century it has been known that light possesses both linear and angular momenta
along the direction of propagation, only very recently there has been exceptional increase in the
number of publications and applications that exploit the spin angular momentum of light. This
development is strongly connected to recent advances in nanophotonics and plasmonics, as well
as to recent studies of tiny optical spin-Hall effects caused by spin-orbit interactions. However,
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the more macroscopic spin-dependent deflection of light described by Fresnel has not yet been
exploited for modern spin-dependent transportation phenomena. In this context, promising fields
for the application of Fresnel’s spin-dependent transportation appear to be on-chip and interchip
optical circuitry and optical quantum computing [38]. We think that Fresnel’s method could grant
access to photonic spin-sensitive addressing or to reading of guided modes and quantum states.
More generally, the possibilities of Fresnel’s method as a generator or a detector of circularly
polarized light seem to be not yet fully exploited.
In summary, we have studied an optical analog of the original Stern-Gerlach experiment

producing a macroscopic separation between the spin states of a light beam. Very remarkably,
Fresnel described this spin splitting experiment exactly one century before the actual Stern-Gerlach
experiment was published.
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