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Abstract: Mueller Matrix polarimetry is a powerful optical technique for the characterization 
of both anisotropic and bianisotropic materials. This review emphasizes methods for the 
interpretation of measured Mueller matrices, from the meanings of matrix symmetries, to ab 
initio calculations of Mueller matrices that begin with Maxwell’s equations operating on materials 
with permittivity, permeability and magnetoelectric constitutive tensors. We present an overview 
of polarimetry measurements in crystals as well as metamaterials that have optically responsive 
features on the order of the wavelength of visible light. Examples of the full measurement 
of the constitutive tensors of bianisotropic media from the analysis of their Mueller matrix, 
collected either in transmission or reflection, are i llustrated for natural crystals, polycrystals 
and nanofabricated metamaterials. Experimental and theoretical research into the complex 
optical responses of bianisotropic materials with polarized light is best expressed in terms of the 
Mueller matrix, as it offers an unambiguous and mathematically robust platform for analysis of 
light-matter interactions.

1. Introduction

Optical polarimetry can be used for the characterization of bianisotropic materials, those that have 
an orientational dependence with respect to the refraction of both linear and circularly polarized 
light. Arago’s first polarimetric experiment revealed optical rotatory dispersion (polarisation 
chromatique in his words) [1, 2] from light, linearly polarized by reflection, passed along the high 
symmetry axis of α-quartz, the first and most frequently studied bianisotropic material. By the 
middle of the 19th century, polarimetry was an established analytical technique for measuring the 
concentration of chiral analytes in a solution [3], i.e. a biisotropic medium. Polarimetry became 
essential to the characterization of natural products and to the determination of chemical reaction 
mechanisms [4].

Nineteenth century polarimetry was focused on perturbations to the state of linearly polarized 
light traversing a medium. Here, we emphasize Mueller matrix polarimetry in which many 
polarization states of light serve as modulated input, while the polarization of the output light 
is fully assayed. This more complete and complex form of polarimetry has the potential to 
provide a much fuller characterization of light-matter interactions. Mueller matrix polarimetry is 
derived from the development of the Stokes-Mueller optical calculus in the early part of the 20th 
century [5, 6].

The Mueller matrix represents the transfer function of an optical system in its interactions with 
polarized light and it contains all of the necessary information about the linear optical properties 
of the medium. The theory predated experiment, as few attempts to measure the complete 
Mueller matrix were made [7] until the availability of accurate electrophotometry and automated 
instruments capable of making intensity measurements with various independent combinations



of polarizers and retarders in the incoming and outgoing light beams [8, 9]. Nowadays Mueller
matrix polarimetry is relatively well-acknowledged but, in general, it is still rarely applied if, for
example, is compared with petrographic microscopes fitted with crossed linear polarizers, or
simple polarization modulation schemes that compare of the transmission of alternating left and
right circular polarization states, as in the case of circular dichroism spectrometers.

This paper is organized in three main sections that follow this introduction: Section 2 offers a
basic introduction to the Stokes-Mueller formalism; Section 3 presents methods for the analysis
of Mueller matrix polarimetric data of bianisotropic materials; Section 4 reviews experimental
studies of bianisotropic materials using Mueller polarimetry. We have eschewed discussions
about instrumental developments of spectroscopic and imaging Mueller polarimeters as they
have been sufficiently described [10–13]. Nevertheless, further developments in instrumentation
to increase sensitivity and spatial resolution will be required to ensure the vitality of Mueller
matrix polarimetry in future.

2. Basic concepts

Any polarization state of light, either polarized, partially polarized or unpolarized can be
represented by a Stokes vector S. The Stokes vector has four real components that can be
expressed in terms of intensities: S0 is the total intensity; S1 is the intensity difference in x and y

polarizations; S2 is the difference between x ′ and y′ vibrations, rotated by 45◦ with respect to
xy; S3 is the difference between left and right circular polarizations. These intensities can be
transformed by a 4×4 matrix with 16 real elements, the Mueller matrix M [5,14], which connects
the input and output Stokes vectors after interaction of electromagnetic radiation with an optical
medium by reflection, transmission, or scattering. However, not all real-valued 4×4 matrices are
Mueller matrices. Realizable Mueller matrices must connect physically realizable Stokes vectors.
Almost the whole Stokes-Mueller formalism can be developed from this comparatively simple
idea [15].
Mueller matrix polarimeters employ a polarization state generator (PSG) and a polarization

state analyzer (PSA) to respectively produce and analyze polarization states as illustrated in
Fig. 1. The PSG is in the path of the excitation beam probing the sample and the PSA is in
the detection beam collected after interaction with the sample. Combining four (or more) input
Stokes vectors generated by the PSG with four (or more) output vectors analyzed by the PSA
results in a matrix of 16 measured (or more) light intensities that permit the determination of
the 16 elements of the Mueller matrix of the sample. Mueller matrix polarimetry is described
as complete polarimetry [11, 12], as opposed to partial polarimetry where only a subset of
Mueller matrix elements are measured with simpler PSG and/or PSA devices and limitations on
the polarization states that are generated and analyzed. Under special conditions it is possible
to convert partial polarimetry measurements based on the determination of 9 or 12 Mueller
matrix elements into complete Mueller matrices [16, 17]. Circular dichroism spectrometers are,
for example, partial polarimeters optimized for measuring only one of the 16 elements of the
Mueller matrix. Obtaining the remaining 15 elements, the complete Mueller matrix, is a formal
prerequisite for the application of powerful algebraic decomposition methods that provide a
phenomenological interpretation of complex media and systems in physical terms.

A non-depolarizing medium (material or system) that interacts linearly with a polarized light
probe is generally described by a 2×2 complex matrix J, called the Jones matrix, transforming
the incident transverse electric field vector into an outgoing vector following the interaction [18].
This Jones matrix will have a corresponding non-depolarizing Mueller matrix Mnd with up to 7
independent parameters (the “absolute phase” of J is not embodied in Mnd ). If, furthermore,
the medium under investigation is varying in space or in time (within the spatial or temporal
resolution of the measurement equipment), then it cannot be described by a single Jones matrix,
but rather by a statistical ensemble of Jones matrices or non-depolarizing Mueller matrices. This



Fig. 1. Scheme of a PSG and PSA respectively probing a Mueller matrix and analyzing the
resulting Stokes vector after the light-matter interaction.

statistical ensemble is formally equivalent to a Mueller matrix as it is schematically illustrated
in Fig. 2. In this case, M is called depolarizing, since it generally produces partially polarized
outgoing light from totally polarized incident light.

Fig. 2. Scheme of depolarizing system that can be understood as a statistical ensemble of
parallel non-depolarizing contributions.

We can associate a coherency matrix C with the Mueller matrix M in the following way [15]:

C =
1
4

3∑
i, j=0

Mi jΠi j, (1)

where Mi j(i, j = 0, 1, 2, 3) are the elements of the Mueller matrix M, Πi j = A(σi ⊗ σ∗j )A−1.

A =

©«

1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0

ª®®®®®®®¬
, A−1 =

1
2

A† =
1
2

©«

1 1 0 0

0 0 1 −i

0 0 1 i

1 −1 0 0

ª®®®®®®®¬
. (2)

The superscript † indicates the conjugate transpose (Hermitian conjugate), the superscript ∗
indicates the complex conjugate, ⊗ is the Kronecker product and σi are the Pauli matrices with



the 2 × 2 identity in the following order:

σ0 =
©«
1 0

0 1
ª®¬ , σ1 =

©«
1 0

0 −1
ª®¬ , (3)

σ2 =
©«
0 1

1 0
ª®¬ , σ3 =

©«
0 −i

i 0
ª®¬ . (4)

If and only if the Mueller matrix of the system is non-depolarizing (alternatively pure or
deterministic), the associated coherency matrix C will be of rank one. When rank(C) = 1, the
single non-vanishing eigenvalue is λ0 = tr(C) = 1. In practice, due to the unavoidable noise,
experimental Mueller matrices are never strictly non-depolarizing. A non-depolarizing estimate
of a depolarizing Mueller matrix is found by constructing the Jones matrix from the eigenvector
corresponding to the largest eigenvalue of C [19]. If this eigenvector is (τ α β γ)T , then the
Jones matrix is [20]:

J = τσ0 + ασ1 + βσ2 + γσ3 =
©«
τ + α β − iγ

β + iγ τ − α
ª®¬ . (5)

and Mnd = A(J ⊗ J∗)A−1 is the Mueller matrix non-depolarizing estimate. Besides allowing
to calculate this non-depolarizing estimate, coherency matrices are essential for a deeper
mathematical understanding of Mueller matrices [21]. For example, they are useful to model
situations of partial coherence [22, 23], to study depolarizing Mueller matrices from a statistical
point of view [24] or to define a quaternion algebra for the Stokes-Mueller formalism [25].
A widely used method to quantify depolarization in experimental Mueller matrices is the

depolarization index (DI) [26]:

DI =

√∑3
i, j=0 M2

i j − M2
00

√
3M00

, (6)

with values that vary between 0 for a perfect depolarizer to 1 for a non-depolarizing Mueller
matrix. The DI may be sometimes used as a quality control index of a measurement system,
especially when studying materials that we presume are of high quality and non-depolarizing.

2.1. Mueller matrix symmetries

The symmetries of Mueller matrices are insightful no matter the values of the elements themselves.
In this section, we will focus our attention on the interpretation of symmetries for Mueller
matrices measured at normal incidence in transmission or back reflection, i.e. for geometries
where there is no preferential plane of scattering.

For normal incidence transmission measurements the most general symmetries that one can
obtain for various media are summarized in Table 1. A more comprehensive list of Mueller
matrix symmetries at random scattering angles is given in [27] and the symmetries that apply
under specular reflection are discussed in [28]. The symmetries shown apply to depolarizing
as well as non-depolarizing Mueller matrices. The symmetries of this table do not consider
polarimetric reciprocity. Reversing the direction of light propagation in a medium that mantains
polaririmetric reciprocity should not change the experiment, i.e. the Stokes vector measured at
the output must be the same after reversing the wave vector. We emphasize that polarimetric
reciprocity is not equivalent to the more fundamental electromagnetic reciprocity, a concept
that is important in the consideration of constitutive relations of bianisotropic materials [29].



Table 1. Mueller matrix symmetries in normal incidence transmission

Material Symmetry description Mueller matrix symmetry

Isotropic Rotational symmetry and mirror
symmetry

©«

M00 0 0 0

0 M11 0 0

0 0 M11 0

0 0 0 M33

ª®®®®®®®¬
Biisotropic Rotational symmetry

©«

M00 0 0 M03

0 M11 M12 0

0 −M12 M11 0

M30 0 0 M33

ª®®®®®®®¬
Anisotropic Mirror symmetry

©«

M00 M01 M02 M03

M01 M11 M12 M13

M02 M12 M22 M23

−M30 −M13 −M23 M33

ª®®®®®®®¬
Bianisotropic No symmetry

©«

M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33

ª®®®®®®®¬
Unlike electromagnetic reciprocity, polarimetric reciprocity is easily broken even by ordinary
anisotropic materials [30].
Table 2 summarizes symmetries when polarimetric reciprocity. The Table is split between

normal incidence transmission and back reflection configurations. The back reflection case
involves, by default, polarimetric reciprocity [31]. As such, this case is only considered in this
table and not in Table 1.

3. Analysis of Mueller matrix polarimetry data

Raw polarimetric data can be analyzed at different levels: (1) The phenomenological optical
properties of the sample, such as linear birefringence or linear dichroism, explain how the sample
responds to polarized light quantitatively. This analysis alone is not necessarily informative about
the sample’s intrinsic dielectric, magnetic or magnetoelectric material tensors. (2) Alternatively,
preliminary knowledge of the sample is used to construct an electromagnetic model that calculates,
from material constituents, polarimetric results that are as close as possible to measurements.
These two approaches will be presented in more detail in the next two subsections.



Table 2. Mueller matrix symmetries with polarimetric reciprocity: normal incidence
transmission and backreflection

Material Symmetry transmission Symmetry backreflection

Isotropic

©«

M00 0 0 0

0 M11 0 0

0 0 M11 0

0 0 0 M33

ª®®®®®®®¬

©«

M00 0 0 0

0 M11 0 0

0 0 −M11 0

0 0 0 M33

ª®®®®®®®¬
Biisotropic

©«

M00 0 0 M03

0 M11 M12 0

0 −M12 M11 0

M03 0 0 M33

ª®®®®®®®¬

©«

M00 0 0 M03

0 M11 0 0

0 0 −M11 0

M03 0 0 M33

ª®®®®®®®¬
Anisotropic

©«

M00 M01 0 0

M01 M11 0 0

0 0 M22 M23

0 0 −M23 M33

ª®®®®®®®¬

©«

M00 M01 M02 M03

M01 M11 M12 M13

−M02 −M12 M22 M23

M03 M13 −M23 M33

ª®®®®®®®¬
Bianisotropic

©«

M00 M01 M02 M03

M01 M11 M12 M13

−M02 −M12 M22 M23

M03 M13 −M23 M33

ª®®®®®®®¬

©«

M00 M01 M02 M03

M01 M11 M12 M13

−M02 −M12 M22 M23

M03 M13 −M23 M33

ª®®®®®®®¬
3.1. Phenomenological calculation of optical properties

The two-by-two Jones matrix formalism for polarization optics can be defined in terms of eight
real parameters (CD, LD, LD’, CB, LB, LB’, η and k): [32, 33]:

J = e−iχ/2
©«

cos T
2 −

iL
T sin T

2
(C−iL′)

T sin T
2

− (C+iL
′)

T sin T
2 cos T

2 +
iL
T sin T

2

ª®®¬ , (7)

where
T =

√
L2 + L′2 + C2, (8)

χ ≡ 2(η − ik),

L ≡ LB − iLD,

L′ ≡ LB′ − iLD′,

C ≡ CB − iCD.

(9)

These eight parameters represent only one of the many alternative ways that one can choose
to parameterize a complex 2×2 matrix. The advantage of this parameterization with respect to
others is that in the case of light transmitted through a homogeneous medium the eight parameters
have a clear physical interpretation as circular dichroism (CD), circular birefringence (CB),



horizontal linear dichroism (LD), 45◦ linear dichroism (LD’), horizontal linear birefringence
(LB), 45◦ linear birefringence (LB’), isotropic retardation (η) and isotropic amplitude absorption
(k) . These optical effects are defined in Table 3.

A non-depolarizing Mueller matrix, Mnd, can also be written in terms of these parameters,
although it leads to a lengthy algebraic result [32]. It can be more conveniently written as a
matrix exponential [34–36]:

Mnd = eL, L =

©«

−κ −LD −LD′ CD

−LD −κ CB LB′

−LD′ −CB −κ −LB

CD −LB′ LB −κ

ª®®®®®®®¬
. (10)

Alternatively, this exponential result can be obtained from the differential analysis of a Mueller
matrix, which is shown schematically in Fig. 3 and given by

dM
dz
= mM. (11)

This equation introduces the differential matrix m that relates the M matrix of a homogeneous
anisotropic medium to its spatial derivative along the direction of propagation of light (z).
Essentially, Eq. (10) is the solution of this differential equation when M is non-depolarizing
(then L = md, where d is the total accumulated path length). If M is depolarizing, Eq. (11) still
holds [37] and a similar exponential solution may exist but then L no longer maintains the simple
form of Eq. (10).

Fig. 3. Scheme of the differential analysis of a transmission Mueller matrix

We can conclude that, given an experimental transmission Mueller matrix, this differential
analysis supports the calculation of interpretable optical properties merely by calculating the
logarithm of the experimental matrix (L = lnM) or by analytically inverting Eq. (7) [33], after
finding first a non-depolarizing estimate of the measured Mueller matrix as described in section
2. This type of analysis is often referred to as differential decomposition [38].

3.2. Comparison to a model

In most cases, if we want to obtain quantitative information about the values of the constitutive
tensors of bianisotropic materials from Mueller matrix polarimetry, we must build a model that



Table 3. Symbols used and definitions

effect symbol definitiona

isotropic phase retardation η 2πnl/λ0

isotropic amplitude absorption k 2πκl/λ0

(x - y) linear dichroism LD 2π
λ0
(κx − κy)l

(x - y) linear birefringence LB 2π
λ0
(nx − ny)l

45◦ linear dichroism LD′ 2π
λ0
(κ45 − κ135)l

45◦ linear birefringence LB′ 2π
λ0
(n45 − n135)l

circular dichroism CD 2π
λ0
(κ− − κ+)l

circular birefringence CB 2π
λ0
(n− − n+)l

a n stands for refractive index, κ for the extinction coefficient, l for path length through the medium, and λ0 for the
vacuum wavelength of light. Subscripts specify the polarization of light as, x, y, 45◦ to the x-axis, 135◦ to the x-axis,
circular right +, or left −.

establishes a link between constitutive tensors and Mueller or Jones matrices [39–43]. In other
words, since experiment delivers a Mueller matrix, theory likewise should deliver a Mueller
matrix so that the two can be compared and the constitutive elements can be refined in order
to fit the experiment matrix. A favorable situation is light reflection/transmission by a layered
bianisotropic medium. These conditions are often met for homogeneous bianisotropic systems
such as certain crystals and also in other structurally bianisotropic systems such as helicoidal
nanonostructures [44–47] or liquid crystals [48]. A suitable matrix calculus was developed by
Berreman [42] and it has the advantage that it “naturally” incorporates a bianisotropic set of
constitutive relations [49, 50]. Modifications of this method to consider the partial coherence of
light have also been developed [23, 51, 52]. We recently modified the matrix method by Yeh [43]
for light propagation in layered anisotropic media so as to incorporate a bianisotropic form of the
constitutive relations [53].
The constitutive equations that we consider in this work are:

D = εE + iαH, (12a)

B = µH − iαTE, (12b)

where ε, µ and α are, respectively, the permittivity, permeability and magnetoelectric (gyration)
tensors (note that sometimes the magnetoelectric tensor is alternatively presented by the Greek
letter κ). For a nonmagnetic material, µ is the identity 3×3 matrix tensor. For isotropic chiral
media, a similar set of constitutive equations is used but ε, µ and α are scalars. We are unaware
of any Mueller matrix measurement on a biisotropic media that is not chiral (thus requiring a
more general set of constitutive equations). The Berreman [42] or Yeh [53] matrix methods can
be used to model both the transmission and specular reflection of plane polarized light in layered
bianisotropic media with these constitutive tensors. It is important to indicate that while both,
transmission and reflection measurements, rely on the same set of bianisotropic relations, the
way they probe the constitutive tensors is different [54]. Therefore, when studying bianisotropic
materials, transmission and reflection measurements should be regarded as complementary
(rather than alternative) approaches. Transmission measurements – only possible for transparent
samples – are typically very sensitive to the anisotropy of the dielectric tensor ε in the plane of



the sample, that manifests in differences between refractive indices, as anticipated in Table 3.
In fact, at normal incidence, only the differences between refractive indices are probed, but not
their “mean values”. The “mean values” are best studied for specular reflection measurements, a
configuration that is referred to as ellipsometry. Conversely, for the magnetoelectric tensor α,
reflection measurements are insensitive to average values of this tensor, which are best studied in
transmission. This will be illustrated for particular crystals in the next section.
Models for samples with large spatial dispersion effects such as in metamaterials with in-

plane periodicity usually rely on numerical implementations of Maxwell equations as fields are
propagated through discretized geometric models of materials that are being analyzed [55, 56].
Such simulations tend to be computer-intensive and often only achieve a qualitative agreement with
measurements. Even so, some simple geometries allow for an analytic treatment, for example the
case of a dipole dimer, which is important because it mimicks the situation commonly described
as exciton coupling in organic chemistry [57]. This case can be studied with the coupled dipole
method and it is possible to calculate and decompose the Mueller matrix for any scattering
direction [58].

4. Experiments with bianisotropic materials

4.1. Crystals

Chiroptical measurements of single bianisotropic crystals along low symmetry directions has
been a challenge for more than two centuries. While Arago observed the effects of optical rotatory
dispersion when he passed linearly polarized light along the high symmetry axis of α-quartz,
it took 123 years before a credible measurement was made along the low symmetry diad axis
using null polarimetry [59]. From 1983 onward, a systematic procedure for determining optical
activity in low symmetry directions of bianisotropic crystals was developed by Kobayashi [60],
Asahi [61] and coworkers using the generalized Jones matrix (Eq. 7) and a limited modulation
scheme of a rotating polarizer and analyzer. However, typically this High Accuracy Universal
Polarimetry (HAUP) employs normal incidence on plane parallel sections fashioned for each
independent tensor element, albeit techniques have been introduced for correcting for the light
path in oblique incidence [62, 63]. Mueller matrix polarimetry is an alternative whose merits are
described in applications below.

As stated at the outset, α-quartz has been the touchstone bianisotropic material that researchers
have returned to time and again to validate new methods of polarimetry. The Mueller matrix of α-
quartz in transmission was first determined using a polarimeter with two photoelastic modulators
whose orientations needed to be reconfigured so as to be able to solve the four linear equations
that provide the 16 Mueller matrix elements [64]. Later, the magnetoelectric tensor of quartz
was redetermined with four synchronously operating photoelastic modulators that did not require
reconfiguration [65]. Obviating the mechanical movement of optical components is important for
measuring comparatively small optical perturbations that arise in the magnetoelectric response of
dissymmetric crystals. This sensitive four-photoelastic modulator polarimeter was also used to
reinvestigate the linear electrogyration (electric field induced optical rotation) [66]. Even though
it had been previously reported by others, this effect was no longer detectable with the new
equipment. As this instrument permitted analytical separation of the independent polarimetric
parameters, it avoided artifactual contributions from the large linear electro-optic effect, that
most likely affected previous measurements.
Bianisotropic AgGaS2 was also reinvestigated [65] using the four-photoelastic modulator

polarimeter [12]. This material was the focus of a milestone in the history of optical activity
of bianisotropic substances. Hobden [67, 68] used a so-called isotropic point, an accidental
isochrony in ordinary and extraordinary refractivities at one frequency, so as to measure CB in
a low symmetry direction where the contribution from LB would ordinarily be withering. No
such “tricks” are any longer required. Operating a Mueller matrix polarimeter in transmission



or reflection (a configuration usually known as Mueller matrix ellipsometry) gave independent
determinations of the optical activity anisotropy of AgGaS2 above the bandgap [69] without
relying on accidental isochronies.

The number of anisotropic single crystals for which the magnetoelectric or gyration tensor has
been determined completely is rather small given the >200 year history of the study of crystals
with circularly polarized light (CPL). Those measured before the year 2000 were tabulated by
Kaminsky [70] and those between 2000 and today by Martin [71]. The majority of these crystals
were analyzed by HAUP but Mueller matrix polarimetry was recently used to analyze ethylene
diammonium sulfate [72] and the isomorphous selenate [73]. These crystals, while isostructural,
are distinct in that the selenate has an isotropic point at 364 nm (3.41 eV), where the ordinary
and extraordinary refractive indices coincide. These subtle distinctions in optical response
by experiment are necessary for challenging the computation of the refractivity of dielectric
bianisotropic crystals, still a frontier in quantum chemistry requiring a linear response theory
implemented with periodic boundary conditions. In other words, the anisotropy of the interaction
of left and right CPL with single crystals remains a lingering aspect of linear crystal optics that is
hard to define and are essential for understanding chiroptical structure-activity relationships.
Much of the literature on the optical properties of anisotropic media refer gyrotropy to the

wave vector in the experiment. However, in the Berreman formulation discussed above, the
magnetoelectric tensor must be defined, as for dielectric susceptibility, in terms of the orthogonal
directions probed by the electric field vectors.
In the past, one of the most laborious steps in the analysis of the anisotropy of the optical

activity of single crystal samples has been the necessity of obtaining polished, plane parallel
slabs for each independent tensor element investigated. Some low symmetry molecular crystals
resist cutting and polishing in the necessary directions. Benzil was a difficult organic crystal
of this kind [74]. A tremendous savings in labor was achieved by accounting for multiply
reflected incoherent waves in anisotropic, arbitrarily oriented crystals [75]. The Mueller matrix
of thick crystals collected in transmission or reflection could then be interpreted in terms of the
constitutive material parameters [22].
As a case study, we will review ethylene diammonium selenate [73]. Like its isomorphous

sulfate, it is a lamellar crystal with a nearly perfect cleavage perpendicular to the optic axis. It
is difficult to prepare plane polished sections in any other direction. Thin sections of several
hundred micrometers were measured in transmission along the optic axis normal to the cleavage
plane. The CB, twice the optical rotation, can be read straightaway, as the Mueller matrix in this
configuration has the form of a rotation matrix and only depends on one parameter, the α11(λ)
component of the magnetoelectric tensor. Reflection Mueller matrix data (Figure 4) were then
acquired at several angles of incidence with respect to the optic axis, using the same crystal
section as for the transmission data. Optical models for the crystal were then constructed using
the techniques described in [22, 42, 75]. The α33(λ), ε11(λ) and ε33(λ) values were computed
using standard dispersion equations with fitted parameters in order to achieve best fits with the
spectroscopic Mueller matrix data. The orientation of the crystal and its thickness can also be
refined as fitted values.
When plotted as in Figure 5a, ε11 and ε33 cross and, at this energy, LB drops to zero (Figure

5b). Where LB = 0, the crystal becomes accidentally optically isotropic and behaves as if it were
an optically active, cubic crystal. This data can be displayed in several ways to emphasize the
anisotropy of the optical activity as shown in Figure 5d-g. If the crystal section is mounted on a
goniometer, polar maps of the CB can be displayed as a function of azimuthal orientation and tilt
angle (Figure 5d-f). Alternatively, representation surfaces of the tensors can be plotted, either as
ρ (deg/mm), or as the magnetoelectric parameter αi j (Figure 5g). The two presentations differ in
that in one case, the anisotropy is projected onto a plane, whereas in the other the anisotropy is
cast as a three-dimensional surface drawn with perspective on the paper. Because ρ (deg/mm) and



αi j are bisignate, there are special directions on the surface of cones where the CB also vanishes
and, at the isotropic point, light along these directions is wholly indifferent to polarization.

Fig. 4. Spectroscopic Mueller matrix for ethylene diammonium selenate, point group 4̄22,
with a thickness of 226 µm in reflection at three angles of incidence 40°(red), 48°(green),
56°(blue).

Fig. 5. The data in Figure 4 can be reduced to (a) the dielectric permittivity tensor components
ε, (b) the phenomenological linear birefringence (LB), and (c) the magnetoelectric tensor
elements components (d) experimental (left) and calculated (right) polar map of the circular
birefringence at 364 nm (3.41 eV). Azimuthal and tilt angles are labeled. (e,f) Computed
maps cut normal to [010] and 63.9◦ from [001]. (g) Normalized representation surfaces
of the magnetoelectric tensor α (left) and of the optical rotation in deg/mm (right). The
cones represent the places where both the linear birefringence and the circular birefringence
disappear at one wavelength. The dashed lines indicate the viewing directions depicted in
the polar maps in panels (d), (e) and (f), respectively.

The aforementioned Mueller matrix ellipsometry (reflection) of AgGaS2 measurements were



particularly instructive in focusing important distinctions between optical activity in transmission
and optical activity in reflection, a subject investigated in the 1980’s and 1990’s by Silverman
so as to evaluate competing sets of constitutive equations governing such phenomena. [69]
Measurements of this kind have traditionally been challenging because unlike in transmission
through transparent media, where optical activity accumulates over the optical path length of
the material, reflection measurements sacrifice this enhancement. But, in the absorption band
of a crystal like AgGaS2, resonance enhancement can make up for some of this difference.
The complementarity between optically active, chiral (α-quartz) and achiral (AgGaS2) uniaxial
crystals is instructive and it is illustrated in Figure 6. Under normal incidence, the optical
activity of α-quartz cannot be measured. Silverman explained this by relying on the Ewald-
Oseen extinction theorem, the idea that on reflection, opposite overlapping circular polarizations
interfere [76]. However, it easier to understand in this way: The ellipsometric parameters sensitive
to optical activity record an azimuthal rotation of electric-field polarization as a transformation
of s- and p-polarized inputs. However, in α-quartz, under normal incidence along the optic
axis, the electric field experiences equal components of the magnetoelectric tensor. Therefore,
they both receive and transfer cross polarizations equivalently, and the response is given by the
difference of these tensor elements, i.e. zero. On the other hand, in AgGaS2, the components of
the magnetoelectric tensor normal to the optic axis are equal in magnitude but oppositely signed.
In this symmetry, the reflection optical activity is equal to the difference between +/- values, and
can indeed be measured.

Fig. 6. Transmission versus reflection optical activity for two optically active, uniaxial point
groups 32 and -42m. The dielectric tensor has the same form ε =diag(ε11, ε22, ε33). (O.A.)z
means optical activity along the high-symmetry axis. Adapted from [69].

The response in a Mueller matrix polarimeter can be made vivid by exploring the wave vector
space as in Fig. 7 where one point of the image corresponds to one direction of light propagation
in the sample, producing a map of the k-vector distribution of the radiation. Such maps can
be obtained in two different ways: using a high-NA objective and imaging its back focal plane
with a technique that is named Mueller conoscopy [77, 78], the case is shown in Fig. 7, or using
mechanical actuators to reorient the sample and/or the light beams to effectively scan the sample
with a varying k-vector, a method used in Refs. [30, 79]. This representation is especially useful
for exploring tensorial properties of materials. By accounting for the NA of the objective and
the Euler angles that define the crystal orientation on the instrument, it is possible to use the
previously discussed optical models to make simulations based on tensor constituents that are a
best fit to the experimental data. The individual images can be read similar to the polar plots
in Figure 5d-f although, in that case, the experimental data was not collected using a high-NA
objective and a camera detector but reorienting the crystal in the Mueller matrix polarimeter and
with a single point detector.



Fig. 7. Experiment and simulation of a 532 nm transmission Mueller matrix conoscopy
measurement on a slab of z-cut (1 mm thick) right-handed α-quartz. More details about
these measurements in Ref. [78].

Recently, the optical activity anisotropy of potassium titanyl phosphate (KTP) has also
been measured in reflection by Mueller matrix ellipsometry and the results have been analyzed
according to different sets of constitutive equations [80]. As expected, only symmetric constitutive
relations, such as those from Eq. (12), offer a satisfactory description of this reflection experiment.
However, in transmission, only propagation of the electric field is needed to describe the linear
optical activity. Adding an imaginary antisymmetric tensor to the permittivity tensor of the
medium [53], as it is often described in classical books of optics or crystallography, can be
adequate because these transmission experiments do not directly probe the change of the magnetic
field. This is not the case for reflection experiments [69] that require bianisotropic constitutive
equations to be properly described.

The synthesis of chiral zeolites or other micron-sized chiral particles has been a long-standing
prize in catalysis. However, such crystallites tend to be difficult to study because they are too
small for conventional polarimeters and sometimes they are ill-formed. Measurements are only
possible with imaging methods that offer a high spatial resolution. Mueller matrix microscopy
served to establish the absolute configuration of ellipsoidally-shaped enantiomorphs. The thinnest
parts of the crystal were examined so that the order of the birefringence of samples remained
first order, and so the circular birefringence could be evaluated as a signature of configuration
straightaway [81].

4.2. Metamaterials

Nanofabricated structures and metamaterials have made chiroptics a vital part of contemporary
materials science [82]. Applications of strong responses range from negative index substances,
[83] to broadband circular polarizers [84] and optical chirality enhancers [85].
The metamaterials analyzed here are regularly arrayed nanostructured composites. When

the lattice constant of the array is small as compared to the wavelength, the optical response
of the material can be described by effective properties. The nanostructures are engineered so
as to establish the permittivity and permeability a priori, often relying on large optical activity
as a consequence of amplified spatial dispersion with respect to the wavelength of light. The
wavelength to lattice constant ratio above which effective optical constants can be attributed to
the metamaterial is a matter of debate.

Various periodic arrays of split-ring resonators have been studied byMueller matrix polarimetry
[56,79,86–88] at oblique incidence in the visible and IR spectral range. Even if metamaterials are



fabricated on a planar substrate, bianisotropy in terms of magnetoelectric coupling manifests at
oblique incidence whenever the plane of incidence is not coinciding a mirror-plane of the sample.
A similar response was found for oblique arrays of perforated holes in gold [30]. At normal
incidence, however, magnetoelectric coupling effects cannot be excited for strictly planar systems,
albeit it is still possible to have phenomena such as asymmetric transmission of CPL [30, 89].
This is shown in Fig. 8a for the oblique array of holes in gold measured at normal incidence. Note
that the two directions of propagation considered (forward and backward) carry the same amount
of CPL (Fig. 8b) thus showing the reciprocal response of the medium. For reciprocal media
we can state that if two incident beams of equal intensity and equal polarization but opposite
direction emerge from a medium, the same polarization components of the light must have equal
intensities.
In principle, ideal planar metamaterials should be described as anisotropic materials instead

of bianisotropic because they are achiral. Fabricated metamaterials, even if designed to be thin
"two-dimensional" structures, are in reality quasi-planar if they lie on a substrate; they become
dissymmetric by virtue of the backing to which they are afixed. Moreover, oftentimes, electron
beam lithography can lead to unintended rounding of the edges of nanostructures on the exposed
side, heightening this dissymmetry. This can generate a significant bianisotropic response even
at normal incidence [90].

Fig. 8. Spectroscopic Mueller matrix measurement of the oblique array lattice of holes in a
gold film in the forward and backward configurations. The diameter of the holes is 250 nm
and the lattice parameters are a = 530 nm, b = 730 nm and φ = 65◦. a shows that forward
and backward measurements lead to a different overall transmitted intensity. b shows that if
the resulting Stokes vector is analyzed by a circular polarizer, the transmitted intensity will
be the same in both configurations. Adapted from [30].



Thin film metamaterials also have been intensively studied by Mueller matrix ellipsometry,
particularly in the case of chiral sculpted thin films [46,47,91,92] that achieve selective reflection
of circularly polarized light through circular Bragg resonances. This form-induced bianisotropy,
in many ways analogous to the cholesteric phase of liquid crystals [93] and other supramolecular
assemblies [94], or to the Bouligand structures of the cuticle of some beetles [44, 95], presents
subtle differences in the optical manifestations compared to bianisotropic crystals, for example
displaying differential reflection of CPL at normal incidence (backreflection). This is not possible
upon reflection in biisotropic or bianisotropic crystals [54]. These differences stem from the
constitutive equations themselves, since helical structures are described by the dielectric tensor of
a homogeneous medium with a twist, without including a magnetoelectric response. Thus, they
cannot be strictly considered bianisotropic. Nevertheless, there is still some relation between
both concepts; only the length scale differs. For example, if the periodicity of the rotation in
a helical medium, i.e. the helix pitch, is very small compared to the wavelength, the medium
could be considered homogeneous and it could be described by the constitutive equations of
bianisotropic media in Eq. 12.
Similarly, in certain polycrystalline samples, Mueller matrix polarimetry can give signatures

of CB or CD that are not necessarily consequences of the complex magnetoelectric tensor,
but rather arise from some degree of helical ordering. In fact, Mueller matrix polarimetry is
especially sensitive to false chiroptical responses of this kind that arise in inhomogeneities in the
propagation direction for which decompositions of Mueller matrices to their differential analogs
are not appropriate. Nevertheless, the resulting artifactual signals of CB and CD can be very
instructive for establishing mesoscale ordering of anisotropic components on the micron-scale,
especially since such effects are only electric dipole allowed [96–103].

5. Conclusion

Complexity has placed bianisotropic optical materials at the forefront of contemporary experi-
mental and theoretical studies. The common feature of these materials is that their properties
cannot be correctly represented only with a permittivity tensor and the magnetoelectric tensors
must be considered simultaneoulsy. Mueller matrix polarimetry is the most general technique for
analyzing the linear optical response to polarized light, thus it is specially suited to samples that
exhibit anisotropy in the dielectric and magnetoelectric tensor.

For a given experimental Mueller matrix, even one with evident symmetries, it is not obvious
whether it arises from a bianisotropic, anisotropic or even isotropic sample. The precious
additional knowledge available to the experimentalist is the orientation of the sample with respect
to the excitation and detection light beams. When this is known, it is possible to correlate the
symmetry of the Mueller matrix with material symmetries that appear in the constitutive tensors.
In such cases, for example, the anisotropy of the differential refraction and absorption of circularly
polarized light completes the characterizations of linear light-matter interactions, quantities that
have resisted interpretation for generations.
Mueller matrices of metamaterials and polycrystalline structures can often have large values

associated with the dispersion or dissipation of circularly polarized light, whether they originate
in natural optical activity or heterogeneities of complex anisotropic components. Chiroptical
properties typically arise in the dissymmetric arrangement of polarizable atoms or groups of
atoms. On the mesoscale, the differential Mueller matrix associated to transmission measure-
ments provides evidence of the dissymmetric arrangement of misoriented anisotropic elements,
polarimetric remnants of inhomogeneities along the light propagation direction, that can reveal
details of structures within complex, organized media.
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