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Abstract: We propose a novel, computationally efficient integral decomposition of depolarizing
Mueller matrices allowing for the obtainment of a nondepolarizing estimate, as well as for the
determination of the elementary polarization properties, in terms of mean values and variances-
covariances of their fluctuations, of a weakly anisotropic depolarizing medium. We illustrate the
decomposition on experimental examples and compare its performance to those of alternative
decompositions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The interpretation in physical terms of experimental Mueller matrices of complex media is
one of the fundamental tasks of applied polarimetry. Algebraic decompositions of Mueller
matrices constitute powerful tools for addressing this task [1] and are currently applied to various
advanced areas of science and technology allowing for optical polarimetry characterization,
such as microelectronics metrology [2] or biomedical diagnosis [3], to mention just two of
them. The purpose of the present letter is to advance a novel, computationally efficient sum
decomposition of depolarizing Mueller matrices. Belonging to the class of the so-called integral
decompositions [4], it is based on the fluctuating medium phenomenological picture. Within
this picture, depolarization, present in the experimental Mueller matrix and resulting from
the partial or total loss of spatial or spectral coherence during the polarimetric experiment, is
described as originating from the statistical fluctuations of the Jones matrix elements [5,6] or of
the polarization properties of the medium [7,8].

2. Derivation and physical interpretation of the decomposition

Consider the general Jones matrix

J =


c0 + c1 c2 − ic3

c2 + ic3 c0 − c1

 (1)

parameterized by the components ci, i = 0, 1, 2, 3, of its expansion on the Pauli basis [9] and
assume that all components ck, k = 1, 2, 3, but c0 fluctuate, i.e. ck = cmk +∆ck, where cmk = 〈ck〉

are the mean values of ck and ∆ck, such that 〈∆ck〉 = 0, are their fluctuations or uncertainties (the
brackets 〈. . . 〉 denote spatial or temporal averaging). Then J becomes the Jones generator [10]
of a depolarizing Mueller matrix M whose coherency matrix C is given by [9]

C = 〈c c+〉 = cmc+m + 〈∆c ∆c+〉 = Cm + ∆C (2)
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where Cm and ∆C are the mean and the fluctuating matrix components of C, respectively (the
superscript ‘+’ denotes complex conjugate transpose). In Eq. (2)

c =
[

c0 c1 c2 c3
]T
= cm + ∆c

=
[

c0 cm1 cm2 cm3

]T
+

[
0 ∆c1 ∆c2 ∆c3

]
T

(3)

is the coherency vector [9,11] associated with the Jones generator J, decomposed into its mean,
cm, and fluctuating, ∆c, vector components (the superscript T stands for transpose). Substitution
of Eq. (3) into Eq. (2) yields for the fluctuating part ∆C of C,

∆C =



0 0 0 0

0 〈|∆c1 |2〉 〈∆c1∆c∗2〉 〈∆c1∆c∗3〉

0 〈∆c2∆c∗1〉 〈|∆c2 |2〉 〈∆c2∆c∗3〉

0 〈∆c3∆c∗1〉 〈∆c3∆c∗2〉 〈|∆c3 |2〉


(4)

By inverting the following expression [1]

C = 1
4
∑
i,j

MijT(σi ⊗ σj)T−1 i, j = 0, 1, 2, 3 (5a)

for the coherency matrix C in terms of the elements Mij of its associated Mueller matrix M where
the transformation matrix T is

T =



1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0


(5b)

and σi are the Pauli spin matrices (⊗ is the Kronecker product), Eq. (2) transforms into its Mueller
matrix counterpart [4,6],

M =Mm + ∆M (6)

Notice that Eq. (6) could be also obtained directly by substituting the Jones generator J from
Eq. (1) into the general expression M = T〈J ⊗ J∗〉T−1 for the depolarizing Mueller matrix M
generated by the fluctuating J [5,10].

Equation (6) is nothing but a special integral decomposition of the depolarizing M. [4] Thus,
Mm is the nondepolarizing estimate of M while ∆M is the residual. (If M is nondepolarizing,
then M =Mm and ∆M = 0.) From Eqs. (2), (3) and (5) one gets the explicit expression for the
mean coherency vector cm,

cm =
1
2
√

t



M00 +M11 +M22 +M33

M01 +M10 + i (M23 −M32)

M02 +M20 − i (M13 −M31)

M03 +M30 + i (M12 −M21)


=

1
2
√

t



t

αA

βA

γA


(7)

parameterizing, in virtue of Eq. (1), the mean Jones matrix Jm associated with the nondepolarizing
estimate Mm = T (Jm ⊗ J∗m)T−1 of M. The quantity t is the trace of M whereas αA, βA and γA
are the complex counterparts of the so-called anisotropy coefficients of M [11,12].
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Similarly, the expressions for the variances and covariances of the fluctuations ∆ck, obtained
from Eqs. (2) , (4) and (5), are

〈|∆c1 |2〉 = 1
4 (M00 +M11 −M22 −M33) − |cm1 |

2

〈|∆c2 |2〉 = 1
4 (M00 −M11 +M22 −M33) − |cm2 |

2

〈|∆c3 |2〉 = 1
4 (M00 −M11 −M22 +M33) − |cm3 |

2

〈∆c1∆c∗2〉 =
1
4 [M12 +M21 + i (M03 −M30)] − cm1c∗m2

〈∆c1∆c∗3〉 =
1
4 [M13 +M31 − i (M02 −M20)] − cm1c∗m3

〈∆c2∆c∗3〉 =
1
4 [M23 +M32 + i (M01 −M10)] − cm2c∗m3

(8)

Eventually, the depolarizing residual ∆M of M can be obtained from ∆M =M −Mm.
The special integral decomposition of M given by Eq. (6) is uniquely defined by Eqs. (7) and

(8). Its physical meaning is clear: it assumes that the three anisotropy components ck, k = 1, 2, 3
of the Jones generator J from Eq. (1) fluctuate while the isotropic one, c0, remains constant. We
can therefore name it the anisotropic integral decomposition of M.
To gain a deeper physical insight into the anisotropic integral decomposition, consider the

parameterization of the Jones matrix from Eq. (1)

J = a


cos T
2 −

iL
T sin T

2 −C+iL′
T sin T

2
C−iL′

T sin T
2 cos T

2 +
iL
T sin T

2

 (9)

in terms of its three elementary polarization properties, L (linear), L’ (linear-45°) and C (circular).
In Eq. (9) T =

√
L2 + L′2 + C2 is the amplitude of the properties while a is the transmissivity or

the reflectivity [1,4]. The three (complex) elementary polarization properties are defined through
their (real) birefringence (B) and dichroism (D) components as L = LB− iLD , L′ = LB′ − iLD′
and C = −CB + iCD [1,13]. (Note that other sign conventions for the elementary properties
likewise exist [1,13].)

Assume that the three elementary properties are fluctuating, i.e. Pk = Pmk +∆Pk where P1 = L,
P2 = L′ and P3 = C [4,7]. If all mean values Pmk and fluctuations ∆Pk are small, i.e. if |Pmk | « 1
and |∆Pk | « 1, then |T| « 1 and |∆T| « 1 and the expression for the fluctuating Jones generator
from Eq. (9) simplifies considerably to

Jwad = a


1 − i 12L − 1
2C − i 12L

′

1
2C − i 12L

′ 1 + i 12L

 (10)

Notice that the assumption |Pmk | « 1 is physically equivalent to weak anisotropy whereas that of
|∆Pk | « 1 means weak depolarization. Therefore, Jwad from Eq. (10) is the Jones generator of
both weakly anisotropic and depolarizing medium (or system).
Comparison of the two Jones generators, J from Eq. (1) and Jwad from Eq. (10), shows that

they are equivalent if one sets c0 = a and ck = −i a 1
2Pk. Substitution of these relations in Eqs. (7)

and (8) yields, respectively,

pm =
[
Lm L′m Cm

]T
=

2i
t

[
αA βA γA

]T
(11)

and
〈∆Pk∆P∗l 〉 =

16
t
〈∆ck∆c∗l 〉 k, l = 1, 2, 3 (12)

for the vector pm of the mean values Pmk of the elementary polarization properties, as well as
for the variances-covariances 〈∆Pk∆P∗l 〉 of their fluctuations. Therefore, the anisotropic integral
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decomposition fully characterizes a weakly anisotropic and depolarizing medium in terms of
the mean values and the variances-covariances of the fluctuations of its elementary polarization
properties.
Most generally, if the condition for weak anisotropy and depolarization is relaxed, Eqs. (11)

and (12) remain still valid (after rescaling) provided the elementary polarization properties Pk
are replaced by their integral counterparts PIk defined by [4]

PIk =
2Pk

T
sin

T
2
= Pk sinc

T
2

(13)

and the amplitude T of the elementary properties remains constant (i.e. does not fluctuate).
Therefore, the anisotropic integral decomposition could be also termed a constant-amplitude
one. Indeed, the identification of Eq. (9) with Eq. (1) yields c0 = a cos(T/2) and ck =

−i a 1
2PIk wherefrom a =

√
c20 − c2m1 − c2m2 − c2m3. Equations (11) and (12) now hold for pim =[

LIm LI′m CIm
]T

and 〈∆PIk∆PI∗l 〉, respectively, provided the denominator t appearing in

the first one is replaced by t′ =
√

t2 − α2A − β
2
A − γ

2
A whereas that in the second one by t′2/t.

Conversely, in the weak anisotropy and depolarization limit, |T| « 1 and |∆T| « 1; therefore,
PIk → Pk, t′→ t, t′2/t→ t, so that Eqs. (11) and (12) are recovered.

3. Application of the decomposition to experimental examples

In practice, the anisotropic integral decomposition can be used in two situations. First, if no
assumptions on the anisotropy of the sample or on the depolarization present in the experiment
can be made, the decomposition can be employed for obtaining a nondepolarizing estimate Mm
of the experimental depolarizing M through the mean Jones matrix Jm associated with it; see
Eq. (1), Eq. (7) and the discussion following it. Note that the relative simplicity of Eq. (7) makes
the evaluation of this nondepolarizing estimate much more straightforward than that of any other
[1,9,15]. Furthermore, M can be interpreted as resulting from fluctuating integral polarization
properties PIk and can be described in terms of their mean values and the variances-covariances
of their fluctuations; see Eq. (13) and the related discussion.

Second, if the weak anisotropy and depolarization condition is known to hold a priori, which
is a relatively frequent case in practice, the decomposition can provide estimates of the mean
values of the elementary polarization properties Pk of the medium, as well as of their variances-
covariances; see Eqs. (11) and (12). Typically, one uses the Cloude decomposition [2,9], the
Lu-Chipman decomposition [14], the virtual experiment method [15] or the recently proposed
instrument-dependent method [16] for solving the first kind of problems. The second situation is
commonly tackled with the differential decomposition [17–19] or with its equivalent, the matrix
roots decomposition [20]. However, all these approaches require either matrix diagonalizations
or numerical minimizations that make them much more intensive computationally than the
anisotropic integral decomposition. The latter expresses the quantities of interest directly in
terms of measured Mueller matrix elements.
To illustrate the anisotropic integral decomposition we shall consider two experimental

examples. The following normalized Mueller matrix

M(c) =



1 0.000 0.006 −0.012

0.002 0.911 −0.050 −0.015

−0.004 0.047 0.890 0.166

−0.018 −0.002 −0.182 0.877


(14)
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is that of a 0.065-mm-thick slab of c-cut nickel sulfate hexahydrate (NiSO4.6H2O) crystal
measured in transmission at the wavelength of 380 nm on a UV-visible four-photoelastic-
modulator-based polarimeter described in detail elsewhere [21]. The experimental matrix M(c) is
only weakly depolarizing since its Gil-Bernabeu depolarization index DI [22] equals 0.905 (recall
that DI= 1 for a nondepolarizing Mueller matrix). This observation justifies the determination of
a nondepolarizing estimate for M(c). By applying Eqs. (7), (5), (2) and inverting the latter, one
readily finds the two matrix terms of the anisotropic decomposition (6) to be

M(c)m =



0.928 0.001 0.002 −0.015

0.001 0.927 −0.048 −0.011

0.000 0.049 0.911 0.174

−0.015 0.002 −0.174 0.912


(15a)

and

∆M(c) =



0.072 −0.001 0.004 0.003

0.001 −0.016 −0.002 −0.004

−0.004 −0.002 −0.021 −0.008

−0.003 −0.004 −0.008 −0.035


(15b)

Clearly, M(c)m is a nondepolarizing estimate of the weakly depolarizing experimental M(c) whereas
∆M(c) is the (depolarizing) matrix residual. The relative smallness (with respect to the unit)
of the elements of ∆M(c) is in unison with the weakly depolarizing nature of M(c) (recall that
∆M = 0 for a nondepolarizing M). One likewise notices that the residual ∆M(c) is G-symmetric,
i.e. it satisfies the relation G ∆M(c)TG = ∆M(c) where G = diag

(
1 −1 −1 −1

)
is

the Minkowski metric [1,17]. It readily follows from Eqs. (5) that G-symmetry is a general
property of any Mueller matrix whose coherency matrix has the special form given by Eq. (4).
Notice, however, that in general, the nondepolarizing estimate Mm does not obey any particular
symmetry, i.e. Equation (6) is not simply the trivial decomposition of M into its G-symmetric
and G-antisymmetric parts.
To assess the performance of the decomposition with increasing the level of depolarization

exhibited by the sample, consider a transmission Mueller polarimetry experiment through stacks
of rectangular strips of scotch tape. The measurements were done at the wavelength of 490 nm.
Due to its spatially inhomogeneous stretched-plastic nature, scotch tape (3M Scotch Magic Tape
brand used) has been experimentally shown to be both depolarizing and linearly birefringent
along the tape direction [23]. Two strips were stuck on a glass slide forming a cross and the
Mueller matrices of up to four stacked crosses were measured consecutively. Figure 1 presents
the configuration. The experimental normalized Mueller matrices M(k) obtained respectively for
k= 1, 2, 3, 4 crosses are reported below,

M(1) =



1 0.000 0.012 0.001

0.000 0.997 −0.006 0.044

0.000 0.006 0.985 0.019

0.000 −0.045 −0.022 0.979


(16a)
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M(2) =



1 0.000 0.011 0.001

0.000 0.945 −0.014 0.091

0.000 0.011 0.935 0.045

0.000 −0.090 −0.047 0.924


(16b)

M(3) =



1 0.002 0.010 0.001

0.002 0.776 −0.019 0.109

−0.001 0.011 0.771 0.056

0.000 −0.108 −0.052 0.741


(16c)

M(4) =



1 0.002 0.006 0.000

0.002 0.531 −0.017 0.088

−0.001 0.010 0.530 0.047

−0.001 −0.093 −0.041 0.506


(16d)

Fig. 1. A single cross (left) and two stacked crosses (right) made of scotch tape strips stuck
on a glass slide.

An ideal, perpendicular-strips cross lacks all three birefringence (B) properties: LB, LB’
vanish since the opposite birefringence values of the two uniaxially anisotropic strips effectively
compensate one another while each individual strip does not exhibit any CB [23]. However, in
our experiment the two strips of each cross were not strictly perpendicular − a 5± 2-deg angular
misalignment was intentionally introduced − so that all three B-properties were present. (The
weak CB property originates from the slightly helical structure formed by the two strips of the
misaligned cross.)
Figure 2 shows the evolutions of the Gil-Bernabeu depolarization index DI, as well as of the

mean values of the three elementary B-properties (LB, LB’ and CB,) as a function of the number
(denoted by “#”) of stacked crosses. The mean values of the B-properties were obtained in three
different ways.
First, they were evaluated from the G-antisymmetric part of the Mueller matrix logarithm,

in accordance with the differential decomposition of depolarizing Mueller matrices [1,17–19].
Second, they were estimated from the non-depolarizing estimates obtained, respectively, with
the Cloude [1,9] and anisotropic decompositions. (Given the coherency vector cm of the
nondepolarizing estimate Mm provided by the respective decomposition, the mean values Pmk of
the elementary polarization properties are simply derived by identifying Eq. (1) with Eq. (9) for
c = cm and Pk = Pmk.)

As shown theoretically [8] and confirmed experimentally [23] the three B-properties obtained
from the differential decomposition (denoted “Log” in Fig. 2) vary linearly (within the experimental
accuracy) with the pathlength of light through the medium, i.e. with number of crosses. Those
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Fig. 2. Depolarization index DI (a) and the three elementary birefringence (B) properties,
CB (b), LB (c) and LB’ (d), obtained from three different decompositions as functions of the
number of crosses.

derived from the Cloude decomposition (denoted “Cloude”) exhibit the same trend; they are
virtually indistinguishable from the first ones.

The B-properties derived from the anisotropic decomposition (denoted “Anisotropy”) initially
coincide with the previous two sets at weak depolarization (DI close to the unit) and low mean
values of the properties before diverging from the linear trend at lower DI values and larger
mean values of the properties. The experimentally observed behavior is fully consistent with
the fact, arrived at in the theoretical part, that the nondepolarizing estimate of the anisotropic
decomposition provides the elementary polarization properties of the medium in the weak
depolarization and anisotropy limit. More quantitatively, we can conclude from Fig. 2 that if one
is interested in determining the elementary polarization properties (in terms of mean values and
variances-covariances of their fluctuations) then one should use the computationally advantageous
anisotropy decomposition instead of the differential or Cloude ones as far as the depolarization
index value does not drop below 0.8 and the mean values of the properties thus obtained do
not exceed about 0.15. Notice that, even if the anisotropy of M is large, one can still apply the
anisotropic decomposition to obtain the mean values of the elementary polarization properties
from the nondepolarizing estimate Mm of M, as explained in end of the previous paragraph.
However, the variances-covariances of the properties cannot be derived straightforwardly from
the depolarizing residual ∆M since Eqs. (11) and (12) do not hold in this case.

4. Conclusion

To summarize, we have derived explicit expressions for a special integral decomposition of a
depolarizing Mueller matrix M, originating from the fluctuations of the anisotropic components
of the Pauli expansion of the Jones generator J of M. The decomposition can be used in practice
either for obtaining a nondepolarizing estimate Mm of M or for evaluating the elementary
polarization properties of M (in terms of their mean values and variances-covariances), if M is
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known to be weakly anisotropic and depolarizing. In the general case where no assumptions on M
are made, the decomposition evaluates the integral polarization properties of M. Authors believe
these results to be of use to experimentalists who are willing to interpret phenomenologically
measured depolarizing Mueller matrices.
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