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Phoretic particles exploit local self-generated physico-chemical gradients to achieve
self-propulsion at the micron scale. The collective dynamics of a large number of such
particles is currently the focus of intense research efforts, both from a physical perspective
to understand the precise mechanisms of the interactions and their respective roles, as well
as from an experimental point of view to explain the observations of complex dynamics
as well as formation of coherent large-scale structures. However, an exact modeling of
such multiparticle problems is difficult, and most efforts so far rely on the superposition of
far-field approximations for each particle’s signature, which are only valid asymptotically
in the dilute suspension limit. A systematic and unified analytical framework based on
the classical Method of Reflections (MoR) is developed here for both the Laplace and
Stokes’ problems to obtain the higher-order interactions and the resulting velocities of
multiple phoretic particles, up to any order of accuracy in the radius-to-distance ratio
ε of the particles. Beyond simple pairwise chemical or hydrodynamic interactions, this
model allows us to account for the generic chemo-hydrodynamic couplings as well as
N-particle interactions (N � 3). The ε5-accurate interaction velocities are then explicitly
obtained, and the resulting implementation of this MoR model is discussed and validated
quantitatively against exact solutions of a few canonical problems.

DOI: 10.1103/PhysRevFluids.4.124204

I. INTRODUCTION

Active matter comprises of a large collection of individually active agents that continuously
consume stored energy or energy from their surroundings to overcome external mechanical
resistance and achieve self-propulsion. Being in a state of continuous nonequilibrium, they exhibit
collective dynamics at a scale much larger than their size and a behavior different from their
individual dynamics [1–5], as observed, for example, in biological systems such as flocks of birds
or bacterial colonies. In so-called dry active matter systems (e.g., vibrated granular matter, dry
nematics [6,7]), the influence of the surrounding medium has negligible influence on dynamics of
individual agents, and their interactions are guided by short-range processes (e.g., steric repulsion)
but are sufficient to create long-range order and phase transitions [8,9]. In contrast, in wet active
matter, interacting individuals are immersed in a fluid medium, thus allowing for medium-mediated
couplings of their respective motions, such as long-range hydrodynamic interactions. Examples
of the complex ordering and/or dynamics at the collective levels include the turbulent nature of
bacterial and algal suspensions [10,11], active polar gels [12,13], nematic liquid crystals [14–16],
and active liquid drop emulsions [16,17].
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From a physical standpoint, characterizing the development of such rich collective dynamics
from simple individual behavior is of particular interest [3,4,9,18]. Historically, such efforts
initially focused on phenomenological models based on short-range self-alignment rules between
the individual agents [19,20]. A clear advantage of such an approach is its generality, which
allowed these models to be applied across a wide variety of system sizes and physical nature.
At microscopic scales, similar ideas are at the root of so-called active Brownian particle and
run-and-tumble particle models, which account for short-range steric interactions and also attempt to
include long-range couplings through phenomenological interaction potentials [4,8,21,22]. Despite
attempts to include physical modeling of the coupling field [23,24], such models fundamentally
overlook major complexities of the long-range (e.g., hydrodynamic) coupling mechanisms, which
motivates the development of another class of models based on a direct and detailed physical
description of these interaction mechanisms and derived from first principles. Such modeling may
thus fundamentally differ from one active system to another in order to account for the specific
nature of the interaction routes between its agents.

Natural examples of microscopic active matter systems can be found in the behavior of
the suspensions of swimming microorganisms (e.g., bacteria, algae). Yet, over the past decade,
artificial systems have also gained much attention from physicists and engineers alike due to
significant advances in controlled manufacturing [25,26] and the successful parallel development
of quantitative experimental measurements and adapted theoretical frameworks [27,28]. In such
active systems, microscopic particles suspended in a fluid medium are excited either through
an externally applied field or exploiting direct interactions of individual particles with their
physico-chemical environment. In the former case, energy is supplied by an external directional
field to individual agents (e.g., particles forced by rotating electromagnetic fields [29–32]). The
latter, which corresponds to so-called fuel-based systems where the source of energy is stored in
the particle’s immediate environment, includes autophoretic particles [33–35], active liquid drops
[36–38], and bubble-propelled microswimmers [39–41]. In order to swim, all such systems exert a
mechanical forcing on their surroundings and generate a displacement of their fluid environment.
They further share two fundamental physico-chemical properties, namely, their ability to act on a
physico-chemical field by changing the local temperature, electric field, or solute content of their
fluid environment (activity) and their ability to convert inhomogeneities of this field into phoretic
flows and/or Marangoni stresses at their surface (mobility). Based on these generic common
features, multiple interaction routes can be envisioned for this class of systems, either directly
through the flow generated by the motion of one particle in the vicinity of its neighbors or through
its physico-chemical signature and resulting gradients near other particles. How such long-range
interaction routes compete and condition the collective dynamics of these systems as observed in
experiments and how this interplay is modified by the varying particle density or their environment
are key questions currently at the center of attention of the physical community [42–44].

The goal of the present work is to provide a simple yet accurate and unified framework to
analyze and model such interactions. In the following, we specifically focus on the particular case
of self-diffusiophoretic particles to derive such models, keeping in mind that a similar formalism
could be extended to other fuel-based systems sharing the fundamental properties outlined above.
Such colloidal particles “swim” through self-generated gradients of a solute concentration using
differences in the short-range interactions with their surface of solute and solvent molecules. To
achieve this, two distinct physico-chemical properties are necessary: (1) a surface activity (A) that
catalyses a chemical reaction which either produces or consumes the chemical solute and (2) a
surface mobility (M) which generates an effective hydrodynamic slip velocity along its surface in
response to local concentration gradients [45,46]. Together, these two properties create self-induced
surface velocity which allows the particle to work against viscous forces in order to attain sustained
motion.

Understanding completely their collective dynamics from a fundamental point of view requires
finding the joint solutions for the dynamic evolution of the flow field and chemical concentration
of solute (driven by diffusion but also potentially by advection by the phoretic flows), under
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the influence of the chemical and resulting mechanical forcing of the (many) different particles.
In dense suspensions, i.e., for small interparticle distances, this has to be done numerically,
and a wide range of numerical methods are currently available or could be proposed based on
state-of-the-art techniques for generic microswimmer suspensions. These include direct numerical
solutions of the hydrodynamic and diffusion equations accounting for the detailed forcing of the
particles (e.g., boundary element methods [47–49] or immersed boundary methods [50,51]) or a
reduced-order approximation of this forcing (e.g., multipole methods [52]), coarse-grained models
such as multiple particle collision dynamics [53,54], or lattice Boltzmann methods [55]. Direct
computations of the particles’ velocities can be performed using hybrid representations of their
resistance/mobility matrices using Stokesian dynamics [56,57]. Recent advances have been made in
developing schemes for efficiently determining these matrices numerically in suspensions of spheres
[58–60]. A somewhat similar approach identifies generalized Stokes laws and solves numerically for
the different irreducible resistance tensors linking particles velocities and surface tractions [61,62].
Computational algorithms based on identification between coefficients of Lamb’s solution to the
known Green’s function expansions for internal and external flows in a suspension of spheres
have also been previously proposed and have been applied to solve certain problems in periodic
domains such as Stokes flow through porous media [63,64]. For large numbers of particles, direct
or approximate simulations of the chemical and hydrodynamic problems can, however, become
prohibitively expensive computationally or impose drastic approximations in the representation
of the particles’ forcing on the fluid medium. As such, obtaining an analytical or semianalytical
framework to compute the particles’ velocity efficiently while retaining the underlying physical
interaction mechanisms is of particular interest to understand the behavior of phoretic suspensions.

Although full analytical solutions of the joint chemical and hydrodynamic problems can be
obtained for simple geometries (e.g., one or two spheres [65,66]), such exact derivations do not
extend beyond two spherical particles. Yet in the dilute suspension limit when the typical distance d
between particles is much greater than their typical radius a, a first physical insight on the particles’
coupling can be obtained by evaluating the leading-order correction to a particle’s velocity in the
slowest decaying components of the chemical and hydrodynamic fields of its neighbors. In such
far-field models, the drift velocities resulting from hydrodynamic and chemical coupling of the
particles both scale as (a/d )2. A fundamental assumption here is that interactions between particles
can be analyzed pairwise, thus neglecting multiparticle interactions. Nonetheless, due to their
simplicity of implementation, far-field models have significantly contributed to our understanding
of dilute suspension dynamics [43,67–69] although they may be unable to capture even qualitatively
several key features of the hydro-chemical coupling beyond the asymptotically dilute limit [66].

The spirit of such models can, however, be extended to include both higher-order contributions to
each particle’s forcing on its surrounding environment and multiparticle interactions, still retaining
the advantageous simplicity of solving the hydrodynamic and chemical problems only in the vicinity
of a single particle, for which analytical solutions exist for simple geometries (e.g., spheres and
spheroids), but in a modified (nonuniform) environment. Using an iterative process where at each
step the fields are corrected so as to satisfy the proper boundary conditions on each particle, a series
solution for the particles’ velocity can be obtained with increasing order of accuracy in a/d , and
this iterative process effectively accounts for multiparticle interactions. This approach, wittingly
termed the “Method of Reflections” (MoR), was initially introduced by Smoluchowski [70] and
has classically been implemented in hydrodynamics to analyze the collective sedimentation of
interacting spheres [71,72] or the effect of a confining boundary [73], and the conditions for its
asymptotic convergence toward the exact solution have also been analyzed mathematically [74,75].
Recently, this framework was applied to diffusion problems related to bubble dissolution [76] or
phoretic propulsion and migration of homogeneous particles [77,78].

In this work, we propose a systematic use of this approach to solve for both the chemical
and hydrodynamic problems and obtain the interaction velocities of spherical phoretic particles
of arbitrary surface properties as series expansion in the radius-to-distance ratio a/d . The result is
a versatile and systematic framework to obtain the particles’ velocity directly, which can be used
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to analyze suspension behavior in the not-so-dilute limit and provide significant improvement over
simple far-field models.

The rest of the paper is organized as follows. Section II briefly reviews the classical solutions of
the chemical and hydrodynamic problems around a single Janus particle and its resulting swimming
dynamics. Focusing on dilute systems, Sec. III summarizes the derivation of far-field interactions
where only the leading-order chemical and hydrodynamic signatures of each particle are retained to
obtain two-particle interaction velocities accurate till O(a2/d2). The general framework at the center
of present work is then presented in Sec. IV and builds upon the previous classical results using the
Method of Reflections for both the chemical (Laplace) and hydrodynamic (Stokes) problems, to
obtain approximation of the interaction velocities up to a desired but arbitrary accuracy O(an/dn)
with n > 2. As a practical example, this framework is then used to obtain explicitly the particles’
velocities to an (a/d )5-accuracy in Sec. V. In Sec. VI the predictions of this model are compared and
validated against analytical solutions and/or direct numerical simulations for various configurations
of multiple Janus particles, thereby showing the significance of the proposed method in capturing
crucial dynamics of the system. We finally draw conclusions and analyze future applications of this
class of models in Sec. VII.

II. SINGLE JANUS PARTICLE

In this section an active axisymmetric Janus colloid of radius a is considered. Such polar phoretic
particles, which generally consist of an inert rigid colloidal sphere coated on one half by an
active catalyst or of two hemispheres of different chemical nature (e.g., bimetallic swimmers), are
commonly used in experiments [79]. This axisymmetric particle is characterized by its position x
and a unit vector e indicating the direction of its axis of symmetry and along which self-propulsion
occurs. r denotes position with respect to the center of the particle.

For simplicity of analysis, the activity of the particle is modeled as a spatially dependent
production (resp. consumption) of solute with a fixed rate A(μ) > 0 [resp. A(μ) < 0] which may
vary along the surface; here we note μ = e · r/r (= cos θ ) with r = |r|. Later we will focus on
Janus particles with A(μ) = A uniform on one part of the surface (active site) and A = 0 on the
passive part of the particle. The solute’s diffusion within the solvent phase of viscosity η and density
ρ is characterized by its molecular diffusivity D, and the background (i.e., far-field) concentration
of solute is C∞.

Following the classical continuum framework [46,65], the surface of the particle gener-
ates an effective slip velocity in response to local concentration gradients along the surface,
ũ = M(μ)∇‖C|r=a, as the result of an imbalance in osmotic pressure resulting from the differential
interaction of solute and solvent molecules with the particle’s surface. Here M is the spatially
dependent surface mobility of the particle. In the following, we denote A∗ and M∗ the typical
(positive) scales of the activity and mobility properties, respectively. The dimensionless activity
and mobility are thus A(μ) = A(μ)/A∗ and M(μ) = M(μ)/M∗, respectively. The problem is
made nondimensional using the size of the particle, a, as reference length scale, A∗M∗/D
and A∗M∗η/(aD) as characteristic velocity and pressure, respectively, while the dimensionless
relative concentration field is defined as c(r) = [C(r) − C∞]/(A∗a/D). For large enough diffusivity
(or small enough particles), the effects of solute advection by the fluid flow and fluid inertia
are negligible [i.e., the characteristic Reynolds and Péclet numbers are negligibly small, Re =
ρA∗M∗/(aD) � 1 and Pe = A∗M∗a/D2 � 1], and so is the transient redistribution of solute
molecules around the particle so that c(r) satisfies a quasistatic Laplace problem around the particle:

∇2c = 0, (1)

with boundary conditions in the far field and on the particle’s surface,

c(r → ∞, μ) = 0 and n · ∇c|r=a = −A(μ). (2)
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Note that a now denotes the nondimensional particle radius (here a = 1, trivially) and is retained
for generality purposes so as to allow later for the treatment of multiple particles of different radii.
The general solution to the Laplace problem in Eqs. (1) and (2) is obtained as an harmonic series
[43,46,65,77],

c(r) =
∞∑

m=0

Am

m + 1

(
a

r

)m+1

Lm(μ) with Am = 2m + 1

2

∫ 1

−1
A(μ) Lm(μ) dμ, (3)

where Lm(μ) are the Legendre polynomials of order m. The concentration field is thus decomposed
into the superposition of an infinite number of polar modes of increasing order and spatial decay rate:
m = 0 represents a point source (∼r−1), m = 1 a source dipole (∼r−2), m = 2 a source quadrupole
(∼r−3), and so on. The strength of each mode, Am, is obtained by a simple projection along Lm(μ) of
the activity distribution, Eq. (3). For a hemispheric Janus particle with A(μ) = 1 for μ ∈ [0, 1] and
A(μ) = 0 otherwise, the mode amplitudes Am can be obtained analytically as A0 = 1/2, A1 = 3/4,
A2 = 0, A3 = −7/16, etc. [65].

In response to the nonuniform distribution of solute at its surface, the particle generates a local
phoretic slip ũ,

ũ = M(n) (I − nn) · ∇c|r=a = −M(μ)
√

1 − μ2
∂c

∂μ

∣∣∣∣
r=a

eθ , (4)

which in turns generates a flow around the particle and its locomotion. The flow velocity is obtained
in the laboratory frame by solving Stokes’ equations,

∇2u = ∇p, ∇ · u = 0, (5)

around the particle, with boundary conditions

u|r=a = Uself + a �self × n + ũ and u(r → ∞) = 0, (6)

where Uself and �self denote the particle’s translational and rotational velocities, respectively.
For force- and torque-free particles, the translational and rotational velocities can be obtained

using the Lorentz reciprocal theorem applied to Stokes’ flows [80],

Uself = −〈̃u〉 and �self = 3

2a
〈̃u × n〉, (7)

where 〈 〉 represents the averaging operator over the particle’s surface. When the particle’s mobility
is uniform [M(n) = M = 1], this simplifies as Uself = −(MA1/3)e and �self = 0: the particle self-
propels along its axis of symmetry with no rotation. Here e is chosen to be directed from the passive
part and toward the active one. Note that the only chemical mode contributing to self-propulsion of
the phoretic particle is a chemical source dipole (m = 1). All the other modes of the concentration
field generate only nonswimming flow fields. For a Janus particle with hemispherical active surface
[i.e., A(n) = 1 on the active half, and A(n) = 0 otherwise], Uself = −e/4.

The complete axisymmetric hydrodynamic flow field is further obtained classically as a super-
position of orthogonal squirming modes [65,81,82]:

u(r) = α1

2r3

(
3rr
r2

− I
)

· e −
∑
m�2

(2m + 1)αm

2m(m + 1)

({
m(m + 1)Lm(μ)

[(
a

r

)m+2

−
(

a

r

)m
]}

r
r

+ L′
m(μ)

[
(m − 2)

(
a

r

)m

− m

(
a

r

)m+2
](

I − rr
r2

)
· e

)
, (8)

and, for all m � 1,

αm = 1

2

∫ 1

−1

√
1 − μ2 L′

m(μ) ũ · eθ dμ. (9)
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In these notations, the swimming velocity is Uself = α1e, and the successive squirming modes
of the series in Eq. (8) are associated with hydrodynamic singularities of increasing order: for
example, m = 1 includes a source dipole (∼r−3), m = 2 consists of a force dipole (∼r−2) and a
source quadrupole (∼r−4), and so on with higher modes comprising force and source multipoles.
For an axisymmetric phoretic particle with uniform mobility M, a one-to-one relation between the
coefficients of hydrodynamic and chemical modes can be further established [65]:

αm = − mMAm

2m + 1
· (10)

III. FAR-FIELD INTERACTIONS

The derivations of the previous section demonstrate that phoretic particles leave two types of
imprints on their environment: a modified chemical field due to their activity and a hydrodynamic
signature due to their swimming motion. Both of these influence the dynamics of their neighbors,
which will now evolve in a modified background environment. In this section we briefly review the
associated resulting drifts, at the core of so-called far-field interaction models, which are the lowest
order of approximation for particles’ interactions in the dilute limit.

A. Motion of particles in external chemical and hydrodynamic fields

Considering a single particle in externally imposed nonuniform chemical and hydrodynamic
fields, the concentration and velocity fields now satisfy the modified Laplace and Stokes problems:

∇2c = 0, n · ∇c|r=a = −A(n), and c(r  a) ∼ c∞(r), (11)

∇2u = ∇p, ∇ · u = 0, u|r=a = M(n) (I−nn) · ∇c|r=a + U + �×n, and u(r  a) ∼ u∞(r),

(12)

together with the force- and torque-free conditions on the particle.
Both problems are linear, therefore the self-propulsion velocities (U,�) can be decomposed as

three independent problems, defined in response to the three forcings, namely, the chemical activity
of the particle and the background chemical and hydrodynamic fields:

(a) (Uself,�self ): self-propulsion of the active particle with no background forcing (A �= 0,
c∞ = 0, u∞ = 0)

(b) (Uχ ,�χ ): drift of a passive particle in a background chemical field (A = 0, c∞ �= 0, u∞ = 0)
and

(c) (Uh,�h): drift of a passive particle in a hydrodynamic background flow (A = 0, c∞ = 0,
u∞ �= 0).

The self-propulsion problem is the focus of the previous section. The drift in an external
concentration field c∞(r) is a classical problem discussed in Refs. [43,45,83]. For a particle with
uniform mobility M(n) = M,

Uχ = −M ∇c∞|r=0 and �χ = 0. (13)

The effect of an external disturbance flow u∞ is analyzed here by computing the hydrodynamic
drift on a rigid particle exposed to a nonuniform background hydrodynamic field u∞(r). This is
a classical hydrodynamic problem, whose solution is given by the well-known Faxen’s laws for a
spherical particle [84]

Uh = u∞|r=0 + a2

6
∇2u∞

∣∣∣∣
r=0

and �h = 1

2
∇ × u∞

∣∣∣∣
r=0

. (14)

124204-6



MODELING CHEMO-HYDRODYNAMIC INTERACTIONS …

FIG. 1. Notations used for geometric description of the arrangement of any two Janus particles j and k.
The Janus particles comprise active (white) and inert (black) parts.

B. Far-field interaction of active phoretic particles

Combining these fundamental results, a first approximation to the collective dynamics of phoretic
particles is then obtained in the dilute limit (i.e., when the particles are asymptotically far away from
each other) by assuming that the background concentration and hydrodynamic fields experienced
by a given particle k result from the superposition of the chemical and hydrodynamic signatures of
each of its neighbors (denoted j �= k) as if these particles were themselves isolated. This assumption
is critical as it amounts to neglecting the influence of surrounding particles (or boundaries) on the
chemical and hydrodynamic fields they generate, thereby fundamentally restricting the order of
accuracy of the approximation. Further, in the dilute limit, only the slowest decaying contribution
to each signature should be retained to obtain the dominant chemical and hydrodynamic drifts.

In the following, and in the rest of the paper, the position of particle k is noted xk , its non-
dimensional radius is ak , and its orientation is given by a unit vector ek . For any two particles j
and k, d jk and s jk denote respectively their center-to-center distance and the unit vector joining the
center of particles j to k, with d jks jk = xk − x j , as shown in Fig. 1. We further denote r j the position
vector measured with respect to particle j, r j = r − x j .

The concentration and hydrodynamic fields created by isolated particles (see Sec. II) can
be expanded as series of chemical and hydrodynamic singularities whose effect on neighboring
particles scale like increasing powers of ε = a/d (where a and d denote here the typical values
of particle radius aj and interparticle distance d jk , respectively). When sufficiently far apart (i.e.,
ε � 1), the phoretic particles behave, at the leading order, as the slowest decaying chemical and
hydrodynamic singularities, i.e., a chemical point source and a hydrodynamic force dipole.

Retaining only the dominant chemical signature of each particle, the external concentration field
c∞,k experienced by particle k and its gradient at the particle’s center (rk = 0) are obtained as

c∞,k =
∑
j �=k

A j,0a j

r j
⇒ ∇c∞,k

∣∣∣∣
rk=0

= −
∑
j �=k

A j,0 a2
j

d2
jk

s jk . (15)

The resulting chemical drift due to a point source is then obtained using Eqs. (13),

Uχ

k = Mk

∑
j �=k

A j,0 a2
j

d2
jk

s jk and �
χ

k = 0. (16)

Each neighboring particle j induces on particle k a chemical drift along their line of centers without
any rotation (for uniform mobility).

Similarly, retaining only the leading-order flow field created by particle j [i.e., that of a stresslet
obtained for m = 2 in Eq. (8)], the background hydrodynamic field experienced by particle k is
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given by

u∞,k (r) =
∑
j �=k

a2
j MjA j,2

2
(3e je j − I) :

(
r jr jr j

r5
j

)
, (17)

and the hydrodynamic drifts are obtained from Eqs. (14), keeping only leading-order contributions,
as

Uh
k =

∑
j �=k

MjA j,2

2

(
a j

d jk

)2

(3e je j − I) : s jks jks jk, (18)

�h
k =

∑
j �=k

3a2
j MjA j,2

2d3
jk

(e j · s jk )(s jk × e j ). (19)

In nondimensional units, the self-propulsion velocity of the particles is O(1), Eq. (7), while the
chemical and hydrodynamic drifts introduced by the presence of other particles, Eqs. (13), (18), and
(19), are both of the same order, O(ε2).

The resulting framework, termed the far-field interaction model, is fundamentally based on
ignoring higher-order contributions to the chemical and hydrodynamic signatures of individual
particles which would contribute to O(ε3) or smaller drift velocities, as well as neglecting
modification in the fields created by each particle due to the presence of others. The latter includes,
for example, the drift on particle k arising from the concentration induced by the activity of particle
j but in a finite domain due to the presence of particle l . Note that, while the former contributions
could in principle be directly obtained from the results of Sec. II, they must be discarded in order to
remain consistent in the order of asymptotic approximation of the model with respect to the latter
approximation. Similarly, far-field models must also ignore such higher-order corrections as the
Laplacian term in Faxen’s law, Eq. (14), which would contribute an O(ε4) to the particles’ velocities.
Such higher-order interactions however become increasingly significant as the separation between
particles decreases. Therefore, obtaining a more accurate estimate of Uk and �k requires taking
into account explicitly these faster-decaying terms. This idea of including multiple interdependent
interactions between the particles is at the heart of the classical Method of Reflections for both
chemical and hydrodynamic problem, which we exploit in the following section to construct
analytically consistent estimates of the velocities with increasing order of accuracy.

IV. THE METHOD OF REFLECTIONS FOR PHORETIC PROBLEMS

To compute the multibody dynamics of phoretic particles, we now derive a systematic framework
to compute their propulsion velocities (U,�) explicitly to any degree of accuracy O(εn), using the
Method of Reflections to solve the Laplace and Stokes’ equations around N spherical particles. The
linearity of both problems allows for a decomposition of both the chemical and hydrodynamic fields
into truncated series expansions, matching piecewise the chemical as well as the hydrodynamic
boundary conditions. Starting from a simple superposition of the chemical and hydrodynamic fields
generated by each of the particles when it is isolated, this approach consists in eliminating at
each stage the spurious concentration flux (resp. disturbance flow) introduced on the surface of
a given particle by the chemical (resp. hydrodynamic) field generated by all the other particles in
the previous stage, thus introducing a new correction to the chemical (resp. hydrodynamic) field
around each of the particles independently.

In the following, the general framework is first presented for the chemical problem, generalizing
the method proposed in Ref. [77] for homogeneous particles to the general case of arbitrary
surface activity, in order to determine the successive moments of the surface concentration on each
particle as a result of their activity. In a second step, the corresponding method is presented for the
hydrodynamic problem using the output of the chemical dynamics as a forcing and constructing
the resulting particle velocities. Combining these two steps provides the particles’ velocities as a
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function of their geometrical arrangement and orientations. This provides a systematic approach
to construct the particles’ velocities with a O(εn) accuracy for any n. As a practical example, the
application of this method is presented in Sec. V to obtain the particles’ velocities up to O(ε5), i.e.,
with leading-order corrections scaling as O(ε6).

A. Method of Reflection for the chemical problem

The method is initiated by considering the superposition of the chemical fields created by isolated
particles, noted c0

k , which was obtained explicitly in Eq. (3). c0
k satisfies the correct boundary

condition on particle k only and introduces a spurious flux on the other particles.
At each subsequent stage (r � 1), known as a “reflection,” a correction cr

k to the concentration
field created by a particle k is introduced in order to correct the spurious normal flux introduced on
the boundary of particle k during the previous reflection at the other particles (e.g., c1

k must correct
for the spurious flux introduced by

∑
j �=k c0

j ). cr
k is therefore the unique solution to the following

Laplace problem:

∇2cr
k = 0 for rk � ak, nk · ∇cr

k

∣∣
rk=ak

= −
∑
j �=k

nk · ∇cr−1
j

∣∣∣∣
rk=ak

, cr
k (rk  ak ) −→ 0 (20)

and can be written as

cr
k (rk ) =

∑
q�0

aq+1
k

r2q+1
k

Cr
k,q

q� [
rk

q⊗ rk
]
, (21)

where (Cr
k,q)q is a unique set of qth-order fully symmetric and deviatoric tensors. In the previous

equation rk

q⊗ rk denote the tensorial product of vector rk by itself repeated q times, while A
q� B

denotes the q-fold contraction of tensors A and B. Expanding cr−1
j in a Taylor series near the center

of particle k,

cr−1
j (r j ) =

∑
q�0

1

q!

q
∇cr−1

j

∣∣∣∣
rk=0

q� [
rk

q⊗ rk
]

= cr−1
j

∣∣∣∣
rk=0

+ rk · ∇cr−1
j

∣∣∣∣
rk=0

+ rkrk

2!
: ∇∇cr−1

j

∣∣∣∣
rk=0

+ · · · , (22)

the flux boundary condition in Eq. (20) together with Eqs. (21) and (22) imposes

Cr
k,q =

∑
j �=k

qaq
k

(q + 1)!

q
∇cr−1

j

∣∣∣∣
rk=0

. (23)

Substituting Eq. (21) for particle j at reflection r − 1 into Eq. (23) provides the recursive relation

Cr
k,q =

∑
j �=k

∑
s�0

Cr−1
j,s

s� Fχ

jk (q, s), with

Fχ

jk (q, s) = qaq
k as+1

j

(q + 1)!

[
q
∇
(

r j
s⊗ r j

r2s+1
j

)]
rk=0

= O(εq+s+1). (24)

Note that the formulation above corresponds to a parallel form of the Method of Reflections
(it relates the new concentration multipole on particle k to that of all other particles at the
previous reflection). A sequential approach of the method (i.e., obtaining Cr

k,q for each particle
k successively) would correspond to splitting the sum on j in Eq. (24) (respectively for j < k
and j > k) in order to exploit that for j < k, the new concentration multipole Cr

j,s, being already
available, would be used to compute Cr

k,q.
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Also, it should be noted that Fχ

jk (q = 0, s) = 0 for all s (reflections induce no net source) and
that only the fully symmetric and deviatoric part of the transfer function Fχ

jk (q, s) with respect to

its first s indices contribute since Cr−1
j,s is fully symmetric and deviatoric. The lowest-order transfer

functions are thus obtained as

Fχ

jk (1, 0) = −a jak s jk

2d2
jk

= O(ε2), (25)

Fχ

jk (2, 0) = a2
ka j (3s jks jk − I)

3d3
jk

= −2ak

3a j
Fχ

jk (1, 1) = O(ε3), (26)

Fχ

jk (3, 0)= 3a3
ka j

8d4
jk

[Is jk+s jkI+(Is jk )T23−5s jks jks jk]=−3ak

8a j
Fχ

jk (2, 1)= 3a2
k

4a2
j

Fχ

jk (1, 2) = O(ε4).

(27)

Here ATab represents the transpose of the tensor matrix A with respect to its ath and bth indices.
The recursive relation in Eq. (24) is initiated by noting that the tensors C0

k,q are obtained from the
activity distribution coefficients Ak,n of the individual particle as

C0
k,0 = Ak,0, C0

k,1 = Ak,1 ek

2
, C0

k,q�2 = (2q − 1)! Ak,q

2q−1(q − 1)! × (q + 1)!
ek

q⊗ ek, (28)

with B denoting the fully symmetric and deviatoric part of any given tensor B [85]. It should be
stressed here that the method is presented for axisymmetric particles (i.e., the successive moments
C0

k,q are functions of the axis of the particle ek only), yet could easily be extended to particles of
arbitrary coverage [86] by modifying Eq. (28) accordingly.

The change in surface concentration of particle k introduced at reflection r � 1, written c̃r
k , is

obtained within this framework as the sum of cr
k and of the contributions cr−1

j of all the other particles
( j �= k) evaluated at rk = ak :

c̃r
k = cr

k|rk=ak +
∑
j �=k

cr−1
j

∣∣∣∣
rk=ak

=
∑
q�1

2q + 1

q
Cr

k,q

q� [
nk

q⊗ nk
]
. (29)

For r = 0, the surface concentration is similarly obtained as

c̃0
k = c0

k

∣∣
rk=ak

=
∑
q�0

C0
k,q

q� [
nk

q⊗ nk
]
. (30)

Equation (29) provides an interpretation of the tensorial coefficient Cr
k,q as the fully symmetric and

deviatoric moment of order q of the surface concentration introduced at reflection r,

Cr
k,q = q

2q + 1

〈̃
c r

k nk

q⊗ nk
〉
. (31)

Finally, after all the desired reflections have been performed, the surface concentration c̃k of
particle k is obtained by superimposing all the different contributions c̃r

k ,

c̃k = C0
k,0 +

∑
q�1

[
C0

k,q +
∑
r�1

(2q + 1)

q
Cr

k,q

]
q� [

nk

q⊗ nk
]
. (32)

B. Method of Reflections for the hydrodynamic problem

A similar framework can be formulated for the hydrodynamic problem. At each stage p, for a
given particle k, we seek the unique solution of Stokes’ equation around particle k that decays in the
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far field,

∇2up
k = ∇pp

k , ∇ · up
k = 0, up

k (rk  ak ) → 0, (33)

and further satisfies the following Dirichlet condition on the particle’s surface:

up
k

∣∣
rk=ak

= vp
k + Up

k + �
p
k × nk, (34)

where Up
k and �

p
k are the translation and rotation velocity corrections, respectively, for particle k at

reflection p (determined by enforcing the linear and angular momentum balances on particle k), and
v0

k (initialization) corresponds to the phoretic slip resulting from the concentration distribution at the
particle’s surface, while vp

k with p � 1 (subsequent reflections) balances the spurious flow created
at stage p − 1 by all the other particles.

1. General solution of the hydrodynamic problem

The general solution to Eq. (33) is obtained classically from three sets of spherical harmonics
[84,87]:

up
k = ∑∞

q=1

[
∇φ

p
k,q + ∇ × (

χ
p
k,qrk

)+ 2(q + 1)pp
k,qrk − (q − 2)r2

k ∇pp
k,q

2q(2q − 1)

]
, (35)

with

⎡⎢⎣φ
p
k,q(rk )

pp
k,q(rk )

χ
p
k,q(rk )

⎤⎥⎦ =

⎡⎢⎣�
p
k,q

Pp
k,q

Xp
k,q

⎤⎥⎦ q�
⎛⎝rk

q⊗ rk

r2q+1
k

⎞⎠,

and (�p
k,q )q, (Pp

k,q )q, and (Xp
k,q)q are three sets of fully symmetric and deviatoric tensors of order q:

�
p
k,q = aq+2

k

2(q + 1)

(
qPk

q

[
nk · vp

k

]+ Pk
q

[−ak∇s · vp
k

])+ δq,1a3
k

4
Up

k , (36)

Pp
k,q = (2q − 1)aq

k

q + 1

(
(q + 2)Pk

q

[
nk · vp

k

]+ Pk
q

[−ak∇s · vp
k

])+ 3δq,1ak

2
Up

k , (37)

Xp
k,q = aq+1

k

q(q + 1)
Pk

q

[
aknk · (∇s × vp

k

)]+ δq,1a3
k�

p
k , (38)

where [Pk
q ( f )]q is the unique set of fully symmetric and deviatoric tensors of order q such that the

expansion of a scalar field f (x) into spherical harmonics at the surface of particle k is written as

f (x)|rk=ak =
∑
q�0

Pk
q [ f ]

q� [
nk

q� nk
]
. (39)

In contrast with the spherical harmonic decompostion of the chemical field which includes
a single set of tensor coefficients (Cp

k,q), the hydrodynamic field includes three such sets,
(Pp

k,q, �
p
k,q, Xp

k,q). In Eq. (35) each term corresponds to flow singularities of increasing order
[73,81,84]: (1) source/potential multipoles, (�p

k,q )q, with a flow field decaying as 1/rq+2, (2)
symmetric force multipoles (Pp

k,q )q, with a flow field decaying as 1/rq, and (3) rotlet (torque)
multipoles (Xp

k,q)q, with a flow field decaying as 1/rq+1. For instance, �
p
k,1 corresponds to a source

dipole of intensity −4π�
p
k,1 while Pp

k,2 corresponds to a stresslet of intensity −4πPp
k,2/3.

The conservation of linear and angular momentum for each particle imposes two further
conditions that uniquely determine Up

k and �
p
k . For example, for force- and torque-free particles,

Xp
k,1 = Pp

k,1 = 0 (there is no rotlet or stokeslet contribution to particle k’s hydrodynamic signature).
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TABLE I. Scaling of the transfer functions between the spherical har-
monic coefficients (q � 2) after each reflection. Note that reflection of
potential flows do not yield any torque multipoles, i.e., F�→X

jk (q, s) = 0.

Pp
k,q �

p
k,q Xp

k,q

Pp−1
j,s εs+q−1, εs+q+1 εs+q−1, εs+q+1 εs+q

�
p−1
j,s εs+q+1 εs+q+1 0

Xp−1
j,s εs+q εs+q εs+q

2. Recursive relations for the hydrodynamic singularities (p � 1)

When p � 1, vp
k must exactly cancel the flow introduced at the surface of particle k by the

previous reflection at all the other particles j �= k; using a Taylor series expansion of those flow
fields near the center of particle k,

vp
k = −

∑
j �=k

up−1
j

∣∣∣∣
rk=ak

= −
∑
q�1

⎡⎣∑
j �=k

aq−1
k

(q − 1)!

q−1
∇ up−1

j

∣∣∣∣
rk=0

⎤⎦ q−1� [
nk

q−1⊗ nk
]
. (40)

The normal velocity, surface divergence as well as surface vorticity on particle k are then obtained
from Eq. (40) in terms of the reflected velocities at its center [see Appendix A and Eqs. (A4)–
(A6)]. Furthermore, by taking the required gradients at the center of particle k, linear recursive
definitions are obtained for the flow singularities intensity (�p

k,q, Pp
k,q, Xp

k,q )q and particle velocities
(Up

k ,�
p
k ) at reflection p in terms of their counterparts at the previous reflection; these take the form

of transfer functions that are independent of p and solely depend on the particles’ arrangement (see
Appendix A). For force- and torque-free particles, these write

Up
k =

∑
j �=k

∑
s�1

{
�

p−1
j,s

s� F1
jk (1, s) − Xp−1

j,s

s� F2
jk (1, s) + Pp−1

j,s

s�
[
F3

jk (1, s) + a2
k

6
F1

jk (1, s)

]}
,

(41)

�
p
k = −1

2

∑
j �=k

∑
s�1

[
Pp−1

j,s

s� F2
jk (1, s) + sXp−1

j,s

s� F1
jk (1, s)

]
, (42)

�
p
j,1 = − a5

k

30

∑
j �=k

∑
s�1

[
Pp−1

j,s

s� F1
jk (1, s)

]
, (43)

and for q � 2:

�
p
k,q =

∑
j �=k

∑
s�1

[
�

p−1
j,s

s� F�→�
jk (q, s) + Pp−1

j,s

s� FP→�
jk (q, s) + Xp−1

j,s

s� FX→�
jk (q, s)

]
, (44)

Pp
k,q =

∑
j �=k

∑
s�1

[
�

p−1
j,s

s� F�→P
jk (q, s) + Pp−1

j,s

s� FP→P
jk (q, s) + Xp−1

j,s

s� FX→P
jk (q, s)

]
, (45)

Xp
k,q =

∑
j �=k

∑
s�1

[
�

p−1
j,s

s� F�→X
jk (q, s) + Pp−1

j,s

s� FP→X
jk (q, s) + Xp−1

j,s

s� FX→X
jk (q, s)

]
, (46)

with the transfer functions above defined in Eqs. (A21)–(A32). Of utmost importance to truncate
the reflection process at a fixed order in ε consistently, their respective scalings are given in Table I.
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As an example, using the results of Appendix A,

FP→P
jk (2, 2)

= − 5a3
k

12d3
jk

[
(Is jks jk )T24 + (Is jks jk )T23 + (s jkIs jk )T34 + s jkIs jk

2
+ s jks jkI − 5s jks jks jks jk

]

− a5
k

12d5
jk

[
(II)T23 + (II)T24 + II

5
− Is jks jk − (Is jks jk )T23 − (Is jks jk )T24

− (s jkIs jk )T34 − s jkIs jk − s jks jkI + 7s jks jks jks jk

]
, (47)

and the stresslet induced during reflection p on particle k by the stresslet signature of all the other
particles at the previous reflection is

Pp
k,2 =−

∑
j �=k

5a3
j

12d3
jk

[(
Pp−1

j,2 · s jk
)
s jk + s jk

(
Pp−1

j,2 · s jk
)+ (

Pp−1
j,2 : s jks jk

)
(I − 5s jks jk )

]+ O
(
ε5 Pp−1

j,2

)
.

(48)

The results above provide an explicit approach to obtain the successive reflections for the
hydrodynamic flow field and to truncate them to a required degree of approximation in ε. Note that
the method is completely general and could be applied formally to any low-Re problem involving a
suspension of spherical particles.

3. Initialization from the phoretic slip distribution (p = 0)

In the context of the present work, i.e., the collective dynamics of phoretic particles, the
hydrodynamic problem is initiated by considering the flow field generated by a single isolated
particle (p = 0) with a phoretic slip distribution v0

k at its surface. By definition, v0
k = M(nk )∇sC

is purely tangential. Also, aknk · (∇s × vp
k ) = aknk · (∇sM × ∇sc̃k ), is strictly zero for particles of

uniform mobility. Finally, the surface divergence of v0
k is obtained from the spherical harmonic

decomposition of the surface concentration on that particle, Eq. (32). For particles of uniform
mobility Mk , we finally obtain

nk · v0
k = 0, −ak∇s · v0

k = Mk

∑
q�1

(q + 1)

[
qC0

k,q +
∑
r�1

(2q + 1)Cr
k,q

]
q� [

nk

q⊗ nk
]
,

aknk · (∇s × vp
k

) = 0. (49)

The last equation imposes that X0
k,q = 0 for all q, so that there is no self-rotation associated with

phoretic slip for torque-free particles of uniform mobility. For force- and torque-free particles of
uniform mobility, we finally obtain

U0
k = −2Mk

3

[
C0

k,1 +
∑
r�1

3Cr
k,1

]
, �0

k = 0, �0
k,1 = −a3

kU0
k

2
, (50)

�0
k,q�2 = a2

kP0
k,q

2(2q − 1)
= aq+2

k Mk

2

[
qC0

k,q +
∑
r�1

(2q + 1)Cr
k,q

]
, X0

k,q�1 = 0. (51)

From the above equations, note that the phoretic propulsion velocity, U0
k for r � 1, arises

only from the first mode (Cr
k,1, the source dipole) of the reflected concentration field, which

fundamentally corresponds to the gradient of the external concentration field at the center of the
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particle. This implies that the propulsion velocity from the first reflection (r = 1) is simply the drift
created by the superimposed chemical fields of isolated particles.

It may be noted from Eqs. (50) and (51) the existence, when M is uniform, of a direct one-on-one
relation between the chemical and hydrodynamic coefficients, which was also observed in Eq. (10).
It should also be emphasized that the mobility distribution at the surface of the particles impacts
only the initialization of the hydrodynamic problem (p = 0), and not the recursive relations for
p � 1, which are completely general. Although Eqs. (50) and (51) are valid only for particles of
uniform mobility, they can be generalized straightforwardly to particles of nonuniform mobility
(e.g., Janus particles with different activities and mobilities on both hemispheres), by performing a
tensor reduction process to rewrite the modified Eqs. (49) in terms of fully symmetric and deviatoric
tensors (see Appendix A for an example of such reduction). This would potentially introduce a
nonzero surface vorticity in Eq. (49).

C. Chemical, hydrodynamic and chemo-hydrodynamic interactions

Performing successive reflections as described in the previous sections then provides a systematic
framework to obtain the velocity and rotation rate (Uk,�k ) in terms of the position and orientation
of the different particles (Rk, ek ) in the form of a series of terms in increasing powers of
O(ε). Truncating to a particular degree of accuracy provides a computationally efficient and
asymptotically consistent approach to determine the collective dynamics of N particles.

This convenient framework also provides a clear understanding of the different interaction routes
between the particles and an explicit way to analyze only certain components of the coupling.
Formally, we show below that the particles’ velocity includes four different contributions [62]:

(1) Self-propulsion velocity: velocity of the isolated particle in an unbounded fluid (no chemical
and no hydrodynamic reflections).

(2) Chemical interactions: modification of the particle velocity resulting from the perturbation
of its own surface chemical concentration by the presence of the other particles (i.e., chemical reflec-
tions with r � 1 in Sec. IV A) but solving for its swimming velocity as if it was hydrodynamically
isolated (i.e., no hydrodynamic reflections).

(3) Hydrodynamic interactions: modification of the particle velocity resulting from the hydro-
dynamic influence of the other particles (i.e., performing hydrodynamic reflections with p � 1 in
Sec. IV B) but neglecting any chemical influence of the other particles (i.e., no chemical reflections).

(4) Chemo-hydrodynamic interactions: modification to the particle velocity resulting from the
hydrodynamic influence of the other particles (hydrodynamic reflections with p � 1) and forced by
the modification in surface concentration distribution due to the presence of other particles (chemical
reflections with r � 1).

In the present framework, it is therefore particularly easy to analyze the effect of one interaction
route over another, by simply including or not any chemical and/or hydrodynamic reflections of
order r, p � 1.

It should also be noted that the classical view on phoretic particles’ interactions is that of
two distinct and independent routes, namely, chemical and hydrodynamic couplings. While this
dichotomy may be relevant for far-field (dilute) interactions which essentially are limited to
two-particle interactions (i.e., the chemical or hydrodynamic influence of particle i on particle j’s
velocity), the present results emphasize that this does not hold in general and instead reveal the
more intricate nature of the particles’ coupling: in fact, a third coupling occurs as a result of the dual
influence of the chemical and hydrodynamic of particles on each other. This third route, termed
here “chemo-hydrodynamic” interactions, is fundamentally a three-particle coupling as its simplest
occurrence involves the chemical influence of particle i on particle j’s surface concentration,
resulting in a modified flow field near particle k (note that particles i and k may be identical).
As a result such interactions arise only at a higher order of accuracy and are therefore subdominant
in the far-field limit.
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V. AN ε5-ACCURATE FRAMEWORK FOR PHORETIC PARTICLE INTERACTIONS

In this section, we apply the previous formalism explicitly and systematically determine the
particles’ velocity and rotation rate resulting from the different interaction routes described in the
previous section, up to an order of accuracy of ε5, i.e., with the largest asymptotic errors for large
distances scaling as O(ε6). This choice of truncature order is motivated by the inclusion at that order
of the dominant three-particle interactions (i.e., the interaction between two particles due to the
presence of a third one) and chemo-hydrodynamic coupling. In principle, however, the framework
of Sec. IV can be repeated to any number of reflections and, hence, achieve any stated degree of
accuracy.

A. Self-propulsion (p = 0)

The leading-order contribution to the particles’ velocities corresponds to the self-generated
concentration gradients at its surface (i.e., self-propulsion). It is obtained by neglecting any chemical
or hydrodynamic interaction with other particles. Hence, no reflection should be performed and
using the results of Eqs. (50) is obtained as

Usp
k = −2Mk

3
C0

k,1 = −A1Mk

3
ek and �0

k = 0. (52)

B. Chemical interactions between particles

As for self-propulsion, the hydrodynamic effect of other particles is neglected, hence no
hydrodynamic reflections are performed. The chemical interactions correspond to the contributions
in the surface concentration moments Cr

k,1 with r � 1:

Uχ

k = −2Mk

∑
r�1

Cr
k,1, �

χ

k = 0, (53)

and Cr
k,1 with r � 1 are obtained using the recursive relations, Eq. (24). Chemical reflections with

r � 3 (i.e., four-particle interactions) do not contribute to the O(ε5) approximation of the velocity
and are therefore ignored. The contribution to the chemical interaction velocity Uχ

k can therefore be
decomposed into two main groups whether (1) they involve the gradient of the concentration field
near a given particle and created individually by all its neighbors (two-particle interactions, r = 1)
or (2) they involve the gradient near the particle of interest of the correction to the concentration field
introduced by a second particle due to the presence of a third one (three-particle interactions, r = 2).

1. Two-particle chemical interactions

We focus first on the contribution of r = 1 to Eq. (53), i.e., the concentration gradient created
directly by other particles, which is obtained from Eq. (24). The induced velocity Uχ,r=1

k from the sth
chemical mode is of order O(εs+2) where s � 0 represents the sth chemical mode. Hence, truncating
terms smaller than ε5,

C1
k,1 =

∑
j �=k

[
C0

j,0F
χ

jk (1, 0) + C0
j,1 · Fχ

jk (1, 1) + C0
j,2 : Fχ

jk (1, 2) + C0
j,3

3� Fχ

jk (1, 3)
]
. (54)

Using the expression for the transfer function Fχ

jk (q, s) provided in Eq. (24), the resulting chemical
drift velocity is

Uχ,r=1
k = Mk

∑
j �=k

[
a jakC0

j,0s jk

d2
jk

+ aka2
j (3s jks jk − I) · C0

j,1

d3
jk

+ aka3
j

d4
jk

(
C0

j,2 · s jk
) · (5s jks jk − 2I)

+ aka4
j

d5
jk

[
C0

j,3 : (s jks jk )
] · (−3I + 7s jks jk )

]
, (55)
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FIG. 2. Illustration of three-particle chemical interactions arising from a single reflection of the concentra-
tion field. The chemical source from particle 1 (left) induces a chemical dipole (right) at the surface of particle
2. In turn, this corrected field and its gradient (arrows) induce a drift of particles 1 and 3.

with C0
j,s given in terms of the particles’ orientation e j in Eq. (28). One recognizes the successive

contribution of the first four chemical singularities contributing to the signature of particle j
(monopole C0

j,0, dipole C0
j,1, quadrupole C0

j,2, and octopole C0
j,3) to the concentration gradient near

particle k and its resulting chemical drift. Also note that the leading-order term proportional to C0
j,0

is the velocity obtained from the far-field model (Sec. III).

2. Three-particle chemical interactions

Proceeding now with the second reflection (three-particle interactions), we note that the con-
centration moments satisfy C1

j,q = O(εq+1) (i.e., the velocity induced by three-particle chemical
interactions are O(ε2q+s+3) with q � 1 and s � 0). Using the expression for the transfer function
Fχ

jk (q, s) given in Eq. (24), the gradient of concentration C2
k,1 near particle k responsible for its

chemical drift includes a single O(ε5) contribution,

C2
k,1 =

∑
j �=k

C1
j,1 · Fχ

jk (1, 1) =
∑
j �=k

∑
l �= j

C0
l,0F

χ

l j (1, 0) · Fχ

jk (1, 1), (56)

and the resulting three-particle chemical interaction drift velocity of particle k is obtained as

Uχ,r=2
k = −Mk

∑
l

∑
j �=(k,l )

C0
l,0

aka3
j al (3s jks jk − I) · sl j

2d2
jl d

3
jk

· (57)

Note that in the previous equation l = k is possible; i.e., this also provides the interaction of
particle k with itself due to the presence of a second particle j. The sole contribution to the three-
particle chemical interaction drift is therefore the gradient of concentration generated near particle
k by the dipolar correction near particle j due to the monopolar field created by particle l (Fig. 2).
The total velocity induced through purely chemical reflections is hence obtained from Eqs. (55) and
(57):

Uχ

k = Uχ,r=1
k + Uχ,r=2

k . (58)

We further note from the considerations above that the leading four-particle interactions (r = 3)
would be at most O(ε8), and all such four-particle interactions are therefore ignored here.

C. Drift from purely hydrodynamic interactions

We turn now to the hydrodynamic drift of particles arising from the flow fields created by their
neighbors. For purely hydrodynamic interactions, the flow forcing applied by each particle on the
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surrounding fluid is that resulting from its own chemical signature (i.e., no chemical reflections):
hydrodynamic reflections are thus initiated with Eqs. (50) and (51) using Cq

k,0 defined in Eqs. (28),

and recursive relations in Eqs. (41) and (46) are used to obtain the hydrodynamic drifts Uh
k and �h

k :

Uh
k =

∑
p�1

Up
k and �h

k =
∑
p�1

�
p
k , (59)

where Up
k an �

p
k are defined in Eqs. (41) and (42); the transfer functions are given in Appendix A.

1. Two-particle hydrodynamic interactions

For two-particle interactions (p = 1), the correction to propulsion velocity induced by a force
multipole P0

j,s of order s is O(εs) for the translational velocity and of O(εs+1) for the angular velocity
(with s � 2 in both cases). Similarly, the correction to propulsion velocity from a potential multipole
�0

j,s of order s is O(εs+2) (with s � 1), and there are no rotlet multipoles in the signature of an
isolated phoretic particle of uniform mobility (X0

j,s = 0). �0
j,s and P0

j,s are O(1) quantities, and using
Table I, the drifts with p = 1 in Eq. (59) are obtained by retaining terms that are O(ε5) or larger:

Uh,p=1
k =

∑
j �=k

{
�0

j,1 · F1
jk (1, 1) + �0

j,2 : F1
jk (1, 2) + P0

j,2 :

[
F3

jk (1, 2) + a2
k

6
F1

jk (1, 2)

]

+�0
j,3

3� F1
jk (1, 3) + P0

j,3

3�
[
F3

jk (1, 3) + a2
k

6
F1

jk (1, 3)

]
+ P0

j,4

4� F3
jk (1, 4) + P0

j,5

5� F3
jk (1, 5)

}
, (60)

�
h,p=1
k = −1

2

∑
j �=k

[
P0

j,2 : F2
jk (1, 2) + P0

j,3

3� F2
jk (1, 3) + P0

j,4

4� F2
jk (1, 4)

]
. (61)

As expected, only force multipoles contribute to the rotation of the particles (potential flows
do not create any vorticity). The strength of the different multipoles in the previous equations
are directly related to the multipoles of concentration using Eqs. (51) (e.g., �0

j,1 = a3
j MjC0

j,1/3,
P0

j,2 = 6a2
j MjC0

j,2, and so on). Using the definition of the transfer functions provided in Appendix A,
the ε5-accurate two-particle hydrodynamic interaction velocities are finally obtained as

Uh,p=1
k =

∑
j �=k

{
Mja3

j

3d3
jk

C0
j,1 ·(I − 3s jks jk ) + Mj

(
C0

j,2 ·s jk
) ·
[

3a2
j

d2
jk

s jks jk + a2
j

(
a2

j + a2
k

)
d4

jk

(2I − 5s jks jk )

]

+ Mj
(
C0

j,3 : s jks jk
) ·
[
− 3a3

j

2d3
jk

(I − 5s jks jk ) + a3
j

(
3a2

j + 5a2
k

)
d5

jk

(3I − 7s jks jk )

]

− 3a4
j Mj

d4
jk

(
C0

j,4

3� s jks jks jk
)·(I + 4s jks jk )−15a5

j Mj

2d5
jk

(
C0

j,5

4� s jks jks jks jk
)·(I − 3s jks jk )

}
,

(62)

�
h,p=1
k =

∑
j �=k

⎧⎨⎩3a2
j Mj

d3
jk

(
s jk × [

C0
j,2 · s jk

])−
∑
j �=k

15a3
j Mj

2d4
jk

(
s jk × [

C0
j,3 : s jks jk

])

− 14a4
j Mj

d5
jk

(
s jk × [

C0
j,4

3� s jks jks jk
])⎫⎬⎭. (63)
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FIG. 3. Illustration of three-particle hydrodynamic interactions resulting from a single hydrodynamic
reflection: The stresslet induced by the self-propulsion of particle 1 (a) induces a reflected stresslet at particle
2 (b). In turn, this modifies the hydrodynamic environment of particle 1 and 3 and induces their hydrodynamic
drift (red arrow). The velocity magnitude (color) and direction (white arrow) are shown. Note that a rotation is
also induced but scales as O(ε6) and is neglected here.

2. Three-particle hydrodynamic interactions

The slowest decaying transfer function listed in Table I corresponds to the stresslet induced by
a stresslet on another particle at the previous reflection and scales as ε3. The slowest-decaying
three-particle interaction therefore corresponds to the hydrodynamic drift of particle k associated
with the stresslet induced by particle j after reflection of the flow field generated by the stresslet of
particle l (Fig. 3), and its dominant contribution scales as ε5:

Uh,p=2
k = P1

j,2 : F3
jk (1, 2) =

∑
l �= j

[
P0

l,2 : FP→P
l j (2, 2)

]
: F3

jk (1, 2), (64)

Knowing FP→P
l j (2, 2) from Eq. (48) and remembering P0

l,2 = 6a2
l MlC0

l,2,

Uh,p=2
k = −

∑
l

∑
j �=(k,l )

5a3
j a

2
l Ml

2d3
l jd

2
jk

{
2
(
s jk · C0

l,2 · sl j
)
(s jk · sl j ) + (

sl j · C0
l,2 · sl j

)
[1 − 5(sl j · s jk )2]

}
s jk .

(65)

An illustration of the drift created by this three-particle hydrodynamic interaction is shown in Fig. 3.
The induced rotation from three-particle hydrodynamic interactions scales as O(ε6) and is therefore
ignored here. Indeed, rotational effects of the stresslet P1

j,2 considered above is O(ε6). The only other
singularity that can contribute to 2

k , the rotlet dipole X1
j,2, has an O(ε3) intensity (see Table I), and

the associated rotation rate is therefore O(ε7).

D. Drift from chemo-hydrodynamic interactions

A third type of interactions arise when accounting for reflections in both the hydrodynamic and
chemical problems between at least three particles. These are chemo-hydrodynamic interactions,
which are the hydrodynamic drifts generated by a given particle on its neighbors as a result of
their reflected chemical signature. Such multibody interactions are completely absent in the far-field
model (Sec. III) as these frameworks solely focused on pairwise and direct interactions of particles.
They also correspond to higher-order corrections of the particles’ velocity and therefore become
particularly important in not-so-dilute regimes. In the following, we show that the leading-order
chemo-hydrodynamic interactions is O(ε5).
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FIG. 4. Illustration of one of the dominant chemo-hydrodynamic interactions resulting from a single
reflection of the concentration field: (a) the chemical source from particle 1 induces a quadrupolar correction of
the concentration field near particle 2 (b). This source quadrupole induces a hydrodynamic stresslet (c) which
is responsible for the drift of particles 1 and 3 (red arrows). In (a) and (b), the concentration fields are shown,
while (c) shows the velocity magnitude (color) and direction (white arrows).

From a practical point of view, hydrodynamic reflections are initiated with Eqs. (50) and (51)
using Cr�1

k,q (chemical reflections), and recursive relations in Eqs. (41)–(46) are used to obtain the

hydrodynamic drifts Uχh
k and �

χh
k . The dominant such contribution involves three particles (one

chemical reflection, r = 1, and one hydrodynamic reflection, p = 1). A force multipole of order
q � 2, P0

j,q, generated by the reflected O(εq+1) concentration multipole C1
j,q, Eq. (51), results in a

O(ε2q+1) drift velocity Uχh
k on a third particle. Similarly, a potential multipole of order q � 1, �0

j,q,
generated by the O(εq+1) reflected concentration multipole C1

j,q, Eq. (51), results in a O(ε2q+3)

drift velocity Uχh
k . The two dominant interactions, which scale as O(ε5), therefore correspond to

(1) the drift on particle k induced by the potential dipole of particle j created by the chemical dipole
of particle l and (2) the drift on particle k induced by the stresslet of particle j resulting from the
chemical quadrupole of particle l (Fig. 4), all other interactions being subdominant. Using Eqs. (41),
(43), (50), and (51), the dominant chemo-hydrodynamic drift is

Uχh
k =

∑
j �=k

[
�0

j,1 · F1
jk (1, 1) + P0

j,2 : F3
jk (1, 2)

]
, with �0

j,1 = Mja
3
j C

1
j,1, P0

j,2 = 15Mja
2
j C

1
j,2,

(66)

which is finally obtained explicitly using Eq. (24):

Uχh
k =

∑
l

∑
j �=(l,k)

MjC
0
l,0

[
ala4

j

2d3
jkd2

l j

sl j · [3(s jk · sl j )s jk − sl j] + 5al a4
j

2d2
jkd3

l j

[3(sl j · s jk )2 − 1]s jk

]
. (67)

It should be noted that any rotation induced by three-particle chemo-hydrodynamic interactions
is at most O(ε6) and is therefore ignored.

Assembling the contributions to the interactions velocities provided in Eqs. (52) (self-
propulsion), Eqs. (55) and (57) (purely chemical interactions), Eqs. (62), (63), and (65) (purely
hydrodynamic interactions), and Eq. (67) (chemo-hydrodynamic interactions) provides a consistent
asymptotic approximation of the particles’ dynamics with a ε5 accuracy. It should be noted that a
similar approach can be used to obtain velocities with a prescribed arbitrary accuracy of εn with
n � 6.

VI. DYNAMICS OF MULTIPLE JANUS PHORETIC PARTICLES

In this section, the ε5-accurate framework based on the Method of Reflections proposed in the
previous section (hereafter referred to as MoR) is used to compute the dynamics of multiple active
Janus particles, and its predictions are compared with the exact solution of the full interaction
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FIG. 5. Interactions of two aligned Janus particles: (left) flow velocity magnitude obtained using BEM
and (right) concentration field obtained analytically (Appendix B). Both Janus particles have positive mobility
(M = 1) and equal unit radius, with three fourths of their surface releasing solute at a fixed rate (A = 1, white
region) while the rest of their surface is inert (A = 0, black region). The particles have a contact distance
dc = d − 2 = 0.5, and swim toward their inert cap when isolated (i.e., along +ez).

problem (obtained either analytically or numerically depending on the problem’s symmetries) and
simple far-field approximations (Sec. III). This provides both a validation of these results as well
as the opportunity to analyze the accuracy gained in the description of the collective dynamics
by accounting for higher-order interactions (in particular, three-particle and chemo-hydrodynamic
interactions).

Note that the present framework, in its long-range asymptotic formulation, is expected to be
particularly accurate for large particle distances but does not include intrinsically a description of the
lubrication interactions of particles. Further, phoretic interactions may be attractive in the near range
[88]. To prevent particles’ overlapping each other, steric repulsion is accounted for by implementing
an additional repulsive velocity between any pair of particles ( j, k),

urep
jk = −A

[
1 − tanh

(
dcjk

δrep

)]
, (68)

with dcjk = d jk − a j − ak the contact distance between particles j and k. In the following, we use
A = 35 and δrep = 0.04, so that this repulsion velocity is sufficient to prevent the particles’ overlap
but is only significant when the particles’ surfaces are distant by less than about a tenth of their radii
[77].

A. Axisymmmetric relative translation of two Janus particles

We first consider the case of two Janus particles arranged axisymmetrically, both aligned in
the same direction as shown in Fig. 5. Both particles have unit radius (a = 1) and uniform and
positive mobility (M = 1); three fourths of their surface is active (A = 1), the rest being inert
(A = 0). In isolation, each particle would hence swim with a velocity Uself = 3/16 ez. A 3/4-active
Janus is chosen here so as to test the framework with the most generic chemical and hydrodynamic
reflections computed in Sec. V (hemispheric Janus particles of uniform mobility have no intrinsic
stresslet).

In this highly symmetric setting, the chemical and hydrodynamic fields as well as the particles’
velocities can be obtained analytically for an arbitrary distance using bispherical coordinates [66,77]
(Appendix B). The resulting flow and concentration fields are reported in Fig. 5. In the gap between
the particles, the diffusion of the solute emitted from particle 1’s active cap is limited by the
confining effect of particle 2’s proximity, leading to increased levels of concentration and modified
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FIG. 6. Translation of two aligned Janus particles (see Fig. 5). (a) Swimming velocities of particle 1 (blue)
and particle 2 (red) as a function of their contact distance dc = d − 2, as obtained analytically (solid), using
MoR (dashed) or far-field models (dotted). The reference self-propulsion velocity of an isolated particle,
U self = 0.1875, is also shown (dot-dashed). (b) Error magnitude |�U | in the velocity prediction of far-field
and MoR models with respect to the analytical solution.

slip velocity at the particles’ surface in this region. The resulting hydrodynamic field is further
modified by lubrication effects at close contact.

Due to this confinement-induced modification of the concentration field, the contrast between
the front and back of the leading particle 1 is enhanced, while it is reduced for the trailing particle
2, leading to an increased velocity of the former and a reduced velocity for the latter (see Fig. 6).
In fact, the trailing particle is brought to rest at contact distance dc = 0.27, and further reduction
in contact distance leads to reversal in its swimming direction. Moreover, since U2 � U1 for all dc,
particles drift away from each other.

As seen in Fig. 6, the reduction (resp. enhancement) of the velocity of the trailing (resp. leading)
particle is captured by the far-field and MoR models. Moreover, both underestimate the velocity of
particle 1 and overestimate that of particle 2 when the particles are close (dc < 1). The propulsion
velocity predicted using only far-field model deviates from the analytical solution below contact
distances of a few radii while that predicted using MoR provides a good estimate even for contact
distances slightly smaller than a particle radius. Asymptotically, when ε = 1/d � 1, the expected
error scalings are observed: O(ε3) for the far-field approximation and O(ε6) for the MoR model
[Fig. 6(b)].

The previous considerations focused on instantaneous velocity predictions (for a fixed geometry).
We now evaluate the far-field and MoR models’ performance in predicting the long-term dynamics
of two particles initially positioned at dc = 0.5 (Fig. 7). The particles swim in the same direction
but drift apart as U1 > U2. As time progresses, their relative influence and resulting relative drift
reduces, and both particles approach their self-propulsion velocity asymptotically [Fig. 7(a)]. Even
for small separation (e.g., dc = 0.5), MoR-predicted propulsion velocities have a good accuracy

(the error for particle 2 when dc = 0.5 is |U mor
2 −U analytical

2

U self
2 −U analytical

2

| × 100 ≈ 15%), while errors introduced by

the far-field model are large (≈60%). The cumulated error in position over time (when the particles
are far away from each other) is essentially negligible for MoR, while it is on the order of the particle
radius for the far-field model [Fig. 7(b)].
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FIG. 7. Translation of two aligned Janus particles (see Fig. 5). (a) Evolution in time of the particles’
velocity for an initial separation distance dc = 0.5. The predictions for MoR and far-field modes are computed
at the relative positions described analytically. (b) Trajectories of the particles. Positions of particles at t = 0
and t = 75 are shown.

B. Coplanar translation and rotation of two Janus particles

We next focus on the coplanar and nonaxisymmetric motion of two Janus particles. In contrast
with the previous highly symmetric situation, a critical element for the prediction of the particles’
trajectory lies in the correct estimation of their rotation velocities (which arise from interactions
with their neighbors as particles with homogeneous mobility do not rotate when isolated). The
axisymmetry of a pair of Janus particles is lost as soon as they are not aligned with their relative
position, and while a solution in bispherical coordinates remains available in principle, it becomes
rapidly cumbersome [89]. Instead, the particles’ velocities are obtained here numerically using
the regularized Boundary Element Methods (BEM) framework for phoretic particles, a versatile
numerical technique developed by Montenegro-Johnson et al. [48,77].

The long-term dynamics of a pair of Janus particles is considered, which are initially aligned
along ex, i.e., orthogonally to their relative distance which is along ez (Fig. 8). The particles have
uniform mobility M = 1 and hemispherical activity distribution. When isolated, these particles swim
with a velocity Uself = ex/4 and are neutral squirmers (i.e., A2 = 0, no stresslet signature).

In such an arrangement, the particle pair attract and contact in finite time [89], which is indeed
observed in the trajectories obtained from BEM simulations (see Fig. 8), where the particles,
exhibiting mirror symmetrical motion, first drift apart while rotating to swim toward each other
at a later stage. The initial drift of the particles away from each other is easily understood by their
antichemotactic nature: they drift and swim down the concentration gradient created by the other
particle. Their rotation solely results from hydrodynamic and chemo-hydrodynamic interactions
since purely chemical interaction cannot induce rotation (for uniform mobility).

Instantaneous translational and angular velocities of particle 1 are shown in Fig. 9. The particles’
interaction results in a slight increase of their propulsion velocities (but only by a few percent).
Particle 1 monotonically rotates clockwise, with a sharp increase in angular velocity arising
before the particles contact. Once the particles form a cluster, they adopt a fixed tilted orientation
that balances chemical, hydrodynamic, and chemo-hydrodynamic interactions as well as steric
repulsion; a steady copropulsion velocity is achieved in this case.
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FIG. 8. Coplanar trajectories of two Janus particles obtained using BEM (solid), MoR (dashed), and far-
field (dotted). The particles’ center-to-center distance is initially d = 4a. Particles have uniform mobility M = 1
and hemispherical activity with A = 1 on their active half (black) and A = 0 on their inert cap (white). Note
that the y axis is directed into the plane of the paper.

The far-field model predicts the translational velocities reasonably well when the particles are
a few radii apart but deviates strongly towards the final stages of clustering (when dc < 1). It,
however, does not predict any rotation as a result of the absence of a self-generated stresslet and
resulting hydrodynamic interactions for a hemispheric Janus particle of uniform mobility. It should
be emphasized here that even if the particles were to have nonzero intrinsic stresslets (e.g., for
nonhemispheric coverage), the angular velocities predicted using the far-field model would still
be zero in this highly symmetric setting: this is the result of the stresslet flow-field produced by
each Janus particle having a plane of symmetry passing through the center of the other particle,
which creates no effective shear-induced rotation. Thus, in this configuration, the force-quadrupole
is the leading-order term responsible for the particles’ reorientation. As a result, the far-field model,
limited to only a force dipole, is unable to capture the qualitative trajectory (see Fig. 8), in particular
to obtain the long-term dynamics. On the other hand, Fig. 9 demonstrates that the MoR model
provides very accurate estimates of the translation velocities throughout the dynamics; the predicted
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FIG. 9. (a) Horizontal, (b) vertical, and (c) rotation velocity of Janus particle 1 for two coplanar particles
(see Fig. 8), as obtained from BEM (solid), MoR(dashed), and the far-field model. At each time, the comparison
between the prediction of the different models is performed for the same geometric configuration of the
particles (i.e., that obtained from BEM simulations). The translation velocity is scaled by the self-propulsion
velocity of an isolated Janus particle. Note that there is no angular velocity in the far-field model for all
separations. The corresponding velocities of particle 2 are obtained using the planar symmetry of the problem
with respect to z = 0.
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FIG. 10. Comparison of the effects of the different interactions on the trajectory of two coplanar particles
using the ε5-accurate MoR model. The trajectories obtained with all interactions (solid), purely chemical in-
teractions only (dotted), purely hydrodynamic interaction only (dash-dotted), and chemical and hydrodynamic
interactions (i.e., without chemohydrodynamic interactions, dashed) are shown. Particles’ location and their
orientation at various instances of time are shown graphically.

angular velocities, accurate to O(ε5), are adequate, except for close contact where higher-order
corrections are necessary to fully capture lubrication effects.

Thus, it is clearly seen from Fig. 8 that the trajectories predicted by MoR are much more
accurate than far-field models both quantitatively and qualitatively. MoR further provides a good
compromise between accuracy and computational performance: while BEM simulations took about
6 h of computational time, the simulation using MoR approximation was performed in milliseconds
and still captured the dynamics within an error of a particle radius.

Additionally, MoR clearly distinguishes chemical, hydrodynamic, and chemo-hydrodynamic
interactions, thus allowing us to analyze their relative and respective role in the particles’ coupling
by simply including or removing the appropriate interactions (Fig. 10). This conclusively shows that
the chemical interactions are predominantly responsible for the lateral drift. As expected, purely
chemical interactions do not induce any particle reorientation, and the particles drift apart laterally
down the chemical gradient created by their neighbor. Hydrodynamic interactions, on the other
hand, do no create any significant lateral drift but play a crucial role in reorienting the self-propelling
particles toward each other, thus inducing their clustering. Chemo-hydrodynamic interactions, in the
present case, are effectively repulsive, but their sharp asymptotic decay O(ε5) makes them almost
noninfluential in the long-term dynamics here. It is thus the competing chemical and hydrodynamic
interactions that primarily gives rise to the unusual dynamics in this particular case.

C. Dynamics of randomly arranged coplanar particles

In this section, we test the ability of the O(ε5)-accurate MoR model to predict the dynamics of
a larger number of particles (N > 2). For simplicity of analysis and visualization, we consider here
a system of five Janus particles initially distributed randomly in a plane (see Fig. 11), in relatively
close proximity (average contact distances of the order of a few radii). Due to the small density of
particles, we restrict the choice of their random initial orientations along the plane to only within
a quadrant to favor their interactions as would be expected in denser situations (i.e., with more
particles). The exact dynamics are first obtained using BEM simulations and then compared with
the MoR and far-field models (Fig. 11). Using a coarse mesh, BEM simulations required around
12 h of computational time while MoR results were obtained in 5 s.

Each particle self-propels along a straight line when isolated. Any slight change of their
orientation has a drastic effect on their long-term positions. Yet Fig. 11 shows that the MoR O(ε5)-
accurate model is sufficient for estimating these long-term trajectories to a reasonable accuracy and
performs significantly better in that regard than the simpler far-field model. Note that the particles
do not come in contact at any point in time.

Focusing on the instantaneous dynamics of particles 2 and 5, the MoR model is seen to capture
the qualitative trend of the velocities much more accurately than the far-field model (Fig. 12).
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FIG. 11. Comparison of the trajectories of five Janus particles predicted by BEM (solid), MoR (dashed),
and far-field models (dotted). The initial positions (at t = 0) of the numbered particles and their predicted
positions at t = 117 are shown as well. Note that the y axis is directed into the plane of the paper.

Quantitatively, the magnitudes and the errors in estimation of the translational velocities by MoR
model are quite comparable with the far-field model. Hence, the net displacement of the particles
are of the same orders. However, the major advantage of the MoR model over far-field models lies
in its ability to account accurately for the particles’ reorientation. Indeed, far-field models are unable
to produce any change in orientation as chemical interactions do not produce any rotational effects.

MoR model correctly predicts the transient peak in angular velocity and captures the dynamics
generated by its hydrodynamic interaction with other particles (Figs. 11 and 12). This is much less
the case for particle 5, for which the prediction of MoR for its angular velocity, while qualitatively
correct, exhibits large errors that can be attributed to strong lubrication effects from close contact
with neighboring particles (especially particles 3 and 4). For this particle, although the oscillatory
trend in angular velocity is reproduced by MoR, the performance in terms of position predictions is
significantly reduced.

VII. CONCLUSIONS AND PERSPECTIVES

In this work, we propose a general framework based on the Method of Reflections to systemati-
cally determine the velocities of interacting autophoretic particles up to any order of accuracy in the
particle density, under the combined influence of their chemical and hydrodynamic signatures on
their environment. The explicit implementation of this framework with an ε5 accuracy demonstrated
its ability to capture not only the instantaneous velocity but also essential features of the long-term
dynamics of phoretic particles. The performance of the predictions are significantly better, qualita-
tively and quantitatively, than classical far-field models, which can be seen as ε2 truncations of the
present framework. Such far-field models are widely used due to their simplicity [4,43,44]; yet, as
they focus solely on pairwise particle interactions through the slowest-decaying hydrodynamic and
chemical signatures, they fundamentally overlook more complex chemo-hydrodynamic interaction
routes as well as many-body interactions. The analysis presented here demonstrates that these
models become fundamentally inaccurate in not-so-dilute suspensions where particles are separated
by a few radii or less. In contrast, the MoR model proposed here is observed to correctly predict
the particles’ velocities with a comparable computational cost, even when the particles have contact
distances of the order of a single particle radius. Further, it is able to capture quantitatively the
reorientation of the self-propelled particles, an element that is critical to predict and understand
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FIG. 12. Evolution of the particles’ velocities during the planar interactions of five Janus particles (Fig. 11):
(left) Horizontal, (center) vertical, and (right) rotation velocities of particles 2 (top) and 5 (bottom) predicted
by BEM (solid), MoR(dashed), and far-field models (dotted). The same particles’ positions (obtained from the
BEM simulations) are considered for all three models.

their long-term trajectories and interactions. As such, the MoR model offers a promising alternative
to far-field models in order to analyze dynamics of suspensions that are not asymptotically dilute.
These predictions are furthermore obtained at a computational cost that is orders of magnitude
smaller than a direct numerical simulation using classical approaches such as boundary elements or
immersed boundary methods.

The complete analytical framework was presented as well as a practical application to O(ε5)
accuracy for particles of uniform mobility. Yet, with some additional tensor computations to obtain
the required transfer functions, it could be extended to obtain more precise estimates, by identifying
which combination of reflections (for both the Laplace and Stokes problems) lead to interactions of
greater asymptotic order than the requested accuracy. The chosen accuracy is motivated here as the
smallest order at which three-particle interactions become significant and combine both chemical
and hydrodynamic coupling, in contrast with far-field models that simply superimpose pairwise
interactions that involve solely chemical or hydrodynamic effects. The uniformity of the particles’
mobility significantly simplifies the final expression of the interaction velocities as there is a direct
mapping between the concentration multipole intensities and the velocity field singularities used
for initializing the hydrodynamic reflections. Yet the entire framework presented here is directly
applicable to particles of arbitrary mobility distribution, provided this initialization step is modified
by adding a tensorial reduction process as discussed in Sec. IV B.

Despite its asymptotic nature and the fact that it is inherently not designed to represent near-
contact dynamics, such as lubrication effects, the method converges rapidly: an accuracy of O(ε5)
in propulsion velocities was obtained using just a single reflection for the hydrodynamic problem
and two reflections for the chemical field. The rapid convergence of the hydrodynamic problem is
linked to the particles being force-free so that the slowest-decaying hydrodynamic singularity, the
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FIG. 13. Collective dynamics of 25 Janus particles with uniform positive mobility and hemispherical
activity. A set of 10 particles (in red) are arranged on a circle of radius 10 units, aligned offset from the
radial direction by an angle 0.05π , and 15 particles (in blue) are arranged on a circle of radius 15 units with
the same angular offset from the radial direction. Particles’ position computed using the MoR framework of
Sec. V are shown for various instances of time, t .

Stokeslet with an 1/r decay rate, is absent here. Similarly, the rapid convergence of the chemical
problem is associated with the absence of a monopole in the subsequent reflections. Besides its
rapid convergence, the MoR method is also surprisingly accurate as it is able to capture many of the
particles’ dynamics and predict their velocity even for interparticle contact distances on the order of
their radius.

The presentation of the framework followed here, for simplicity, is that of a parallel imple-
mentation of the MoR [90], i.e., a Jacobi-type iteration where corrections near a given particle
are based on the information from all the other particles at the previous iteration. An alternative
approach is the historical sequential approach [70,74], for which the newest correction near any
particle is used as soon as it becomes available in a Gauss-Seidel-type iteration (i.e., even during
the same reflection near the subsequent particles). As noted in Sec. IV A, the present framework
can be straightforwardly implemented sequentially rather than in parallel [see the discussion of
Eq. (24)], and a similar remark holds for the hydrodynamic reflection sequence, Eqs. (41)–(46).
Mathematically, when truncating at a given number of reflections, the sequential method is proved
to converge exponentially for the mobility problem considered here, where the forces on particles
are prescribed [74] (it would not be the case for a resistance problem where particles’ velocities are
imposed [57]). In contrast, mathematical convergence of the parallel implementation is still an open
question. However, this does not impact the implementation of the method proposed here, which is
based on a truncation of the series approximation based on a fixed maximum order of the different
terms in powers of ε = a/d rather than a fixed number of reflections: with this physically-based
approach, both the sequential and parallel methods then lead to retaining the same contributions.

An important feature and fundamental interest of this approach, from a physical point of view,
is to clearly identify the physical mechanisms resulting in the different components of the particles’
interaction velocities, as demonstrated in Sec. V. The interaction of phoretic particles is indeed
commonly, and perhaps short-sightedly, considered as the juxtaposition of two independent and
fundamentally different physical mechanisms, namely, the effect of their nonuniform chemical
signature and the hydrodynamic flow they create while swimming, and the question of their
relative weight is attracting much debate [4,43,44,69]. This picture, inherited implicitly from
far-field models, is misleading: in essence, the only physical mechanism leading to the particles’
displacement is hydrodynamics as particles do not have any direct chemical or physical interactions
(i.e., so-called chemical interactions are in fact due to the hydrodynamic slip generated by the neigh-
boring particles’ chemical effect). It further overlooks the intricate coupling of the hydrodynamic
and chemical problems, and the most generic interactions are in fact chemo-hydrodynamic and
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involve many particles, rather than being simply pairwise. The present framework in fact provides a
unique opportunity to analyze rigorously the relative weight of different interaction routes, as each
interaction type can be turned on or off easily in the model (a feature that is much more difficult to
implement on a full numerical simulation for example).

The MoR model was implemented and tested here in the limit of a small number of particles
to enable quantitative comparisons with direct numerical simulations. However, it can straightfor-
wardly be applied to analyze complex dynamics of larger systems. As an illustration, Fig. 13 shows
the interactions and scattering dynamics of 25 Janus particles initially distributed regularly. Its low
computational cost makes this method particularly well suited for analyzing the dynamics of a
very large number of particles and of suspensions. An important element influencing the cost of
the method is obviously the degree of the highest-order multipoles considered, which is directly
linked to the desired degree of accuracy. Nevertheless, the successive computations of chemical
and hydrodynamic moments as linear combinations of the same moments evaluated independently
around each of the other particles at the previous order of reflection confer interesting scalability
properties to this method with the number of particles N , with a O(N2)-computational cost for large
numbers of particles, which makes it a very compelling candidate to obtain quantitative insights into
the behavior of large active suspensions.
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APPENDIX A: SOLUTION OF THE HYDRODYNAMIC REFLECTION PROBLEM

1. Spherical harmonics decomposition

The first step in solving the hydrodynamic reflection problem (i.e., finding the flow field up
k for

p � 1) is to determine the intensity of the flow singularities involved in Eq. (35) as a function of the
velocity gradients generated near particle k at the previous reflection. The (q − 1)-th gradient of the
flow field can first be decomposed by isolating its symmetric part with respect to all indices:

q−1
∇ up−1

j = 1

q

q∑
s=1

(q−1
∇ up−1

j

)T1s +
[

q−1
∇ up−1

j − 1

q

q∑
s=1

(q−1
∇ up−1

j

)T1s

]
, (A1)

where the terms in bracket do not contribute to Eq. (A4), where it is contracted with a fully

symmetric tensor, nk

q⊗ nk . Here AT1s corresponds to the transpose of A with respect to indices 1
and s. When q � 3, the first part (i.e., the symmetric part) is not necessarily trace-free with respect
to any pair of the last q − 1 indices and must therefore be further decomposed as

1

q

q∑
s=1

(q−1
∇ up−1

j

)T1s =

q−1
∇ up−1

j︷ ︸︸ ︷
1

q

q∑
s=1

(q−1
∇ up−1

j

)T1s − q − 2

q(2q − 1)

∑
1�l<m�q

[q−3
∇ (

I ⊗ ∇2up−1
j

)]T1l ,T2m

+ q − 2

q(2q − 1)

∑
1�l<m�q

[
I ⊗

q−3
∇ (∇2up−1

j

)]T1l ,T2m
, (A2)

and the first part (
q−1
∇ up−1

j ) denotes the fully symmetric and deviatoric part of the (q − 1)-th velocity
gradient. Then, noting that the last terms includes q(q − 1)/2 different terms contributing identically
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once contracted with nk

q⊗ nk ,

∑
q�1

[
aq−1

k

(q − 1)!

q−1
∇ up−1

j

]
q� [

nk

q⊗ nk
]

=
∑
q�1

⎡⎣ aq−1
k

(q − 1)!

q−1
∇ up−1

j

⎤⎦ q� [
nk

q⊗ nk
]+∑

q�3

1

2(2q − 1)

aq−1
k

(q − 3)!

q−3
∇ (∇2up−1

j

) q−2� [
nk

q−2⊗ nk
]

=
∑
q�1

⎧⎨⎩ aq−1
k

(q − 1)!

[
1 + a2

k

2(2q + 3)
∇2

]
q−1
∇ up−1

j

⎫⎬⎭ q� [
nk

q⊗ nk
]

(A3)

since
q−1
∇ (∇2up−1

j ) is traceless with respect to any pair of its indices. Equations (A5) and (A6) can be

decomposed similarly, noting that
q−1
∇ ω

p−1
j is already fully deviatoric, and lead to Eqs. (A4)–(A6).

Using the expression for the surface velocity vp
k , Eq. (40), the normal velocity, surface divergence

and surface vorticity are thus obtained as

vp
k · nk = −

∑
q�1

⎧⎨⎩∑
j �=k

aq−1
k

(q − 1)!

[
1 + a2

k

2(2q + 3)
∇2

]
q−1
∇ up−1

j

∣∣∣∣
rk=0

⎫⎬⎭ q� [
nk

q⊗ nk
]
, (A4)

−ak∇s · vp
k = −

∑
q�1

⎧⎨⎩∑
j �=k

aq−1
k

(q − 1)!

[
q − 1 + (q + 1)a2

k

2(2q + 3)
∇2

]
q−1
∇ up−1

j

∣∣∣∣
rk=0

⎫⎬⎭ q� [
nk

q⊗ nk
]
, (A5)

aknk · [∇s × vp
k

] = −
∑
q�1

⎡⎣∑
j �=k

aq
k

q!

q−1
∇ ω

p−1
j

∣∣∣∣
rk=0

⎤⎦ q� [
nk

q⊗ nk
]
. (A6)

Identifying the singularities’ intensity using Eqs. (36)–(38) requires decomposing these three
functions into spherical harmonics along the particle’s surface as in Eq. (39). Comparing Eqs (A4)–
(A6) with Eqs. (36)–(38), the fundamental singularities at reflection p can be identified readily in
terms of the gradients of the velocity fields introduced at the previous reflections. For force- and
torque-free particles, Pp

k,1 = Xp
k,1 = 0,

Up
k =

∑
j �=k

(
1 + a2

k

6
∇2

)
up−1

j

∣∣∣∣
rk=0

, �
p
k = 1

2

∑
j �=k

ω
p−1
j

∣∣∣∣
rk=0

, �
p
k,1 = − a5

k

30

∑
j �=k

∇2up−1
j

∣∣∣∣
rk=0

,

(A7)

which recovers Faxen’s laws exactly, and for q � 2,

�
p
k,q = − 2q − 1

2(q + 1)

a2q+1
k

(q − 1)!

∑
j �=k

[
1 + (2q + 1)a2

k

2(2q − 1)(2q + 3)
∇2

]
q−1
∇ up−1

j

∣∣∣∣
rk=0

, (A8)

Pp
k,q = − 2q + 1

2(q + 1)

a2q−1
k

(q − 1)!

∑
j �=k

[
1 + a2

k

2(2q + 1)
∇2

]
q−1
∇ up−1

j

∣∣∣∣
rk=0

, (A9)

Xp
k,q = − 1

q(q + 1)

a2q+1
k

q!

∑
j �=k

q−1
∇ ω

p−1
j

∣∣∣∣
rk=0

. (A10)
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2. Recursive relations

From Eqs. (A8)–(A10), obtaining recursive relations in p between the three sets of tensors

�
p
k,q, Pp

k,q, and Xp
k,q therefore requires determining

q−1
∇ up−1

j ,
q−1
∇ ω

p−1
j , and ∇2(

q−1
∇ up−1

j ) =
q
∇pp−1

j
associated with each singularity at reflection p − 1 at the center of particle k. Rewriting Eq. (35) in
terms of the set of tensors �

p
k,q, Pp

k,q, and Xp
k,q:

up−1
j =

∞∑
s=1

⎛⎝�
p−1
j,s

s� ∇
(

r j
s⊗ r j

r2s+1
j

)
− Xp−1

j,s

s�
⎡⎣s

⎛⎝r j
s−1⊗ r j

r2s+1
j

⎞⎠⊗ (ε · r j )

⎤⎦
+ Pp−1

j,s

2(2s − 1)

s�
⎧⎨⎩r j

s−1⊗ r j

r2s−1
j

⊗
[

(2s − 1)
r jr j

r2
j

− (s − 2)I

]⎫⎬⎭
⎞⎠, (A11)

the required gradients are computed as

q−1
∇ up−1

j =
∞∑

s=1

⎛⎝�
p−1
j,s

s�
q
∇
(

r j
s⊗ r j

r2s+1
j

)
− Xp−1

j,s

s�
q−1
∇
⎡⎣s

⎛⎝r j
s−1⊗ r j

r2s+1
j

⎞⎠⊗ (ε · r j )

⎤⎦
+ Pp−1

j,s

2(2s − 1)

s�
q−1
∇
⎧⎨⎩r j

s−1⊗ r j

r2s−1
j

⊗
[

(2s − 1)
r jr j

r2
j

− (s − 2)I

]⎫⎬⎭
⎞⎠, (A12)

q−1
∇ ω

p−1
j =

∞∑
s=1

q−1
∇
(

−s∇χ
p−1
j,s + 1

s
∇pp−1

j,s × r j

)

=
∞∑

s=1

⎧⎨⎩−sXp−1
j,s

s�
q
∇
[

r j
s⊗ r j

r2s+1
j

]
− Pp−1

j,s

s�
q−1
∇
⎡⎣r j

s−1⊗ r j

r2s+1
j

⊗ (ε · r j )

⎤⎦⎫⎬⎭, (A13)

∇2
(q−1
∇ up−1

j

) =
∞∑

s=1

Pp−1
j,s

s�
q
∇
[

r j
s⊗ r j

r2s+1
j

]
(A14)

Using these results, the transfer functions between two successive orders of reflections are obtained
as

Up
k =

∑
j �=k

∑
s�1

{
�

p−1
j,s

s� F1
jk (1, s) − Xp−1

j,s

s� F2
jk (1, s) + Pp−1

j,s

s�
[
F3

jk (1, s) + a2
k

6
F1

jk (1, s)

]}
,

(A15)

�
p
k = −1

2

∑
j �=k

∑
s�1

[
Pp−1

j,s

s� F2
jk (1, s) + sXp−1

j,s

s� F1
jk (1, s)

]
, (A16)

�
p
j,1 = − a5

k

30

∑
j �=k

∑
s�1

[
Pp−1

j,s

s� F1
jk (1, s)

]
, (A17)
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and for q � 2

�
p
k,q =

∑
j �=k

∑
s�1

[
�

p−1
j,s

s� F�→�
jk (q, s) + Pp−1

j,s

s� FP→�
jk (q, s) + Xp−1

j,s

s� FX→�
jk (q, s)

]
, (A18)

Pp
k,q =

∑
j �=k

∑
s�1

[
�

p−1
j,s

s� F�→P
jk (q, s) + Pp−1

j,s

s� FP→P
jk (q, s) + Xp−1

j,s

s� FX→P
jk (q, s)

]
, (A19)

Xp
k,q =

∑
j �=k

∑
s�1

[
�

p−1
j,s

s� F�→X
jk (q, s) + Pp−1

j,s

s� FP→X
jk (q, s) + Xp−1

j,s

s� FX→X
jk (q, s)

]
, (A20)

with

F�→�
jk (q, s) = − (2q − 1)a2q+1

k

2(q + 1)(q − 1)!
F1

jk (q, s), (A21)

FX→�
jk (q, s) = (2q − 1)a2q+1

k

2(q + 1)(q − 1)!
F2

jk (q, s), (A22)

FP→�
jk (q, s) = − (2q − 1)a2q+1

k

2(q + 1)(q − 1)!

[
F3

jk (q, s) + (2q + 1)a2
k

2(2q − 1)(2q + 3)
F1

jk (q, s)

]
, (A23)

F�→P
jk (q, s) = − (2q + 1)a2q−1

k

2(q + 1)(q − 1)!
F1

jk (q, s), (A24)

FX→P
jk (q, s) = (2q + 1)a2q−1

k s

2(q + 1)(q − 1)!
F2

jk (q, s), (A25)

FP→P
jk (q, s) = − (2q + 1)a2q−1

k

2(q + 1)(q − 1)!

[
F3

jk (q, s) + a2
k

2(2q + 1)
F1

jk (q, s)

]
, (A26)

F�→X
jk (q, s) = 0, (A27)

FP→X
jk (q, s) = a2q+1

k

q(q + 1) × q!
F2

jk (q, s), (A28)

FX→X
jk (q, s) = a2q+1

k s

q(q + 1) × q!
F1

jk (q, s), (A29)

where the following (q + s)-order tensors, which are fully symmetric and deviatoric with respect to
their last q indices, have been defined (with their respective order in ε = a/d shown):

F1
jk (q, s) =

[
q
∇
(

r j
s⊗ r j

r2s+1
j

)]
rk=0

= O(εs+q+1), (A30)

F2
jk (q, s) = s

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

q

q−1
∇
⎡⎣r j

s−1⊗ r j

r2s+1
j

⊗ (ε · r j )

⎤⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

rk=0

= O(εs+q ), (A31)

F3
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⎛⎜⎜⎜⎜⎝
q

q−1
∇
⎧⎨⎩r j

s−1⊗ r j

r2s−1
j

⊗
[

(2s − 1)
r jr j

r2
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− (s − 2)I

]⎫⎬⎭
⎞⎟⎟⎟⎟⎠
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= O(εs+q−1).

(A32)
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APPENDIX B: AXISYMMETRIC MOTION OF TWO JANUS PARTICLES

Here we use bispherical coordinates to compute the velocities of two axisymmetric Janus
particles aligned along their common axis of symmetry (see Fig. 5). The analysis is presented here
for two Janus particles of identical radius a. The case of two particles with different radii can be
obtained following a similar approach (e.g., Ref. [66]).

In this coordinate system, the orthogonal coordinates (τ, ξ , φ) are related to the cylindrical
coordinates (ρ, φ, z) through

ρ = κ
√

1 − ξ 2

cosh τ − ξ
, z = κ sinh τ

cosh τ − ξ
· (B1)

The surface of two identical spheres are represented by τ = ±τ0 (which defines particles 1 and
2, respectively). The spheres have a radius of a = κ/| sinh τ0|, and their centers are at a distance
d = 2κ coth τ0 (this defines κ and τ0 uniquely). On the surface of each sphere, ξ varies monotoni-
cally from ξ = −1 (at the pole facing the other particle) to ξ = 1 (at the pole facing away from the
other particle).

Let ξ = ξ c
i demarcate the region of activity on the surface of a Janus particle i (i.e., the active

regions are [−1, ξ c
1 ] for particle 1 and [ξ c

2 , 1] for particle 2). Noting Sc
i the fraction of the particle

surface that is chemically active (e.g., coated with a catalyst):

ξ c
i=1,2 = 1 ± (

2Sc
i − 1

)
cosh(±τ0)

cosh(±τ0) ± (
2Sc

i − 1
) · (B2)

Because of the particle structure of the bispherical coordinate system, ξ c
i is also a function

of the instantaneous distance between the particles. Hemispheric Janus particles correspond to
Sc

1 = Sc
2 = 1/2, while Sec. VI A focuses on Sc

1 = Sc
2 = 3/4.

The solute concentration field produced by the particles obeys the diffusion equation, Eq. (1),
whose general far-field decaying solution is given by [66,91]

c(τ, ξ ) =
√

cosh τ − ξ

∞∑
n=0

cn(τ )Ln(ξ ) with cn(τ ) = an exp(n+1/2)(τ−τ0 ) +bn exp−(n+1/2)(τ−τ0 ) .

(B3)

The normal flux boundary condition on the surface two particles,

cosh τ − ξ

κ

∂c

∂τ

∣∣∣∣
τ=±τ0

= ±A H
(
ξ, ξ c

i=1,2

)
where H

(
ξ, ξ c

i=1,2

) =
{

1 l1 < ξ � l2
0 otherwise , (B4)

with l1 = −1 and l2 = ξ c
1 for particle 1 and l1 = ξ c

2 and l2 = 1 for particle 2. Equations (B3) and
(B4) provide after projection along Ln(ξ ):

cn(±τ0) sinh(τ0)

2(2n + 1)
+ c′

n(±τ0) cosh(±τ0)

2n + 1
− (n + 1)c′

n+1(±τ0)

(2n + 1)(2n + 3)
− nc′

n−1(±τ0)

(2n + 1)(2n − 1)

= ±
∫ l2

l1

A| sinh τ0|Ln(ξ )dξ

2
√

cosh τ0 − ξ
· (B5)

The integral in Eq. (B5) is computed numerically, and Eqs. (B3) and (B5) together provide a lin-
ear system for (an, bn) whose solution determines the concentration field. The surface concentration
gradients induce an effective slip velocity along eξ ,

ũξ (±τ0, ξ ) = M
√

1 − ξ 2

κ
(cosh τ0 − ξ )

∂c

∂ξ

∣∣∣∣
τ=±τ0

· (B6)

To obtain the particles’ velocities, the common strategy employed in low Reynolds hydrodynam-
ics is to develop an auxiliary problem whose solution is known or can be computed easily (e.g.,
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rigid body dynamics) and, thereafter, use the Lorentz reciprocal theorem to obtain velocity or forces
of the original problem [80]. We consider here an auxiliary problem (u∗, σ∗) corresponding to the
flow field around the same particles considered here, with particle i translating rigidly with velocity
Ui = Uiez with a net hydrodynamic force Fi = Fiez. It satisfies

∇2u∗ = ∇p∗, ∇ · u∗ = 0, u∗(r → ∞) → 0, (B7)

and u = U∗
i and

∫
Si

σ∗ · n dS = F∗
i on particle i. Applying the Lorentz reciprocal theorem to this

auxiliary problem and to the dynamics of the two Janus particles provides that for any (F ∗
1 , F ∗

2 )

F ∗
1 U1 + F ∗

2 U2 = −
∫
S1,S2

ũ · σ∗ · n dS. (B8)

Applying this result for the particular choice of auxiliary problem with F ∗
1 = F ∗

2 (resp. F ∗
2 = −F ∗

1 )
provides the global velocity U1 + U2 (resp. relative velocity U1 − U2) and hence reconstructs the
individual velocities of the particles.

In each case, the relation between the translation velocity of each sphere U ∗
i , the total hydrody-

namic force F ∗
i , and corresponding fluid stress tensor σ∗ is well known [91], and we therefore only

briefly summarize the main results. The auxiliary problem is axisymmetric and can be formulated
in terms of a stream function ψ∗:

ψ∗(τ, ξ ) = (cosh τ − ξ )−3/2
∞∑

n=1

(1 − ξ 2)L′
n(ξ ) Vn(τ ), where (B9)

Vn(τ ) = αn cosh

(
n + 3

2

)
τ + βn sinh

(
n + 3

2

)
τ + γn cosh

(
n − 1

2

)
τ + δn sinh

(
n − 1

2

)
τ.

(B10)

The coefficients αn, βn, γn, and δn are computed from the no-slip boundary condition on the spheres,
i.e., u∗ = U ∗

i ez on particle i (i.e., τ = ±τ0) [91]. Once the coefficients are determined, one can
evaluate the surface shear stress,

σ ∗
τ,ξ (±τ0, ξ ) =

√
1 − ξ 2

κ

[∑
n�1

L′
n(ξ )Sn − cosh τ0 + sinh2 τ0

2(cosh τ0 − ξ )

]
with (B11)

Sn = −(cosh τ0 − ξ )3/2V ′′
n (±τ0) +

√
cosh τ0 − ξ

2
[±V ′

n (±τ0) sinh τ0 + 3Vn(±τ0) cosh τ0], (B12)

and the total hydrodynamic force on each sphere is then obtained as [91]

F ∗
1 = 2π

√
2

κ

∑
n�1

n(n + 1)[αn + βn + γn + δn] and

F ∗
2 = 2π

√
2

κ

∑
n�1

n(n + 1)[αn − βn + γn − δn]. (B13)
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