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ON THE CONVERGENCE OF TIME SPLITTING METHODS

FOR QUANTUM DYNAMICS

IN THE SEMICLASSICAL REGIME

FRANÇOIS GOLSE, SHI JIN, AND THIERRY PAUL

Abstract. By using the pseudo-metric introduced in [F. Golse, T. Paul:
Archive for Rational Mech. Anal. 223 (2017) 57–94], which is an analogue of

the Wasserstein distance of exponent 2 between a quantum density operator
and a classical (phase-space) density, we prove that the convergence of time

splitting algorithms for the von Neumann equation of quantum dynamics is

uniform in the Planck constant h̵. We obtain explicit uniform in h̵ error es-
timates for the first order Lie-Trotter, and the second order Strang splitting

methods.

1. Introduction

One of the main challenges in quantum dynamics and high frequency waves is
that one needs to numerically resolve the small wave length which is computation-
ally prohibitive [1, 7, 16, 14]. When a numerical method is developed one would like
to know its mesh strategy, namely, the dependence of the time step and mesh size
on the wave length h̵ (for a misuse of notation in this article we will not distinguish
the difference between the reduced Planck constant h̵ and the wave length).

Finite difference schemes for the Schrödinger equation typically require both time
step and mesh size in the semiclassical regime (i.e. for h̵≪ 1) to be of order O(h̵)
(see [19]), or even o(h̵). On the other hand, the time splitting spectral method can
improve the time step to be of order O(1) if only the physical observables are of
interest [2]. An important mathematical object to understand these mesh strategies
is the Wigner transform [21], which is a convenient tool to study the semiclassical
limit of the Schrödinger equation [8, 18]. In fact, the mesh strategy of ∆t = O(1),
for the time step ∆t, of the time-splitting spectral method can only be understood
in the Wigner framework, and not in terms of the wave function [2].

Since the solution to the Schrödinger equation is oscillatory with wave length
of order h̵, if one uses a standard metric, such as the L2 or Sobolev norm, one
would end up with an numerical error of order O((∆t/h̵)m) for some integer m
which depends on the order of the method. This will not allow one to see an h̵
independent mesh strategy. The argument of an h̵ independent time-step strategy
in [2] for the time splitting discretization to the linear Schrödinger equation, which
was also useful in establishing a similar mesh strategy for the nonlinear Erhenfest
dynamics [6], was made at a formal level without quantifying the numerical error.
One would be interested in finding a suitable metric which allows one to establish
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such a mesh strategy at the rigorous level. In the present paper, we use the pseudo-
metric introduced in [10] to establish a uniform (in h̵) error estimate of the time
splitting methods for the von Neumann equation (which describes the evolution of
mixed quantum states, and reduces to the Schrödinger equation in the case of pure
quantum states [4]) in the semiclassical regime.

Our final results (Theorems 3.1 and 3.2) are stated in terms of the Monge-
Kantorovich, or Wasserstein distance of exponent 2 between the Husimi transforms
of the density operator and of its numerical approximation. Indeed, quantum par-
ticles are expected to become localized on phase-space trajectories in the classical
limit. Since Monge-Kantorovich, or Wasserstein distances metrize the weak topol-
ogy of Borel probability measures on phase-space (see Theorem 7.12 in [20]), they
are expected to be the appropriate metrics to compare the phase-space densities of
quantum particles in the classical limit. Besides, the Husimi transform is the most
natural procedure for associating a classical phase-space probability density to a
quantum density operator in a way that is compatible with the classical limit: see
for instance Theorem III.1 (1) in [18].

Nevertheless, the definition of the Husimi transform is intimately related to the
notion of Schrödinger coherent states (plane waves with Gaussian envelope), and
there is some arbitrariness in this choice. Non-Gaussian wave packets can also be
used to define generalized Husimi transforms, in terms of which our error analysis
can also be formulated, following [11]. To avoid this arbitrariness, we think it useful
to have a formulation of our uniform in h̵ error bounds directly in terms of density
operators, and not in terms of their Husimi transforms. This formulation is slightly
more involved than the one in terms of Husimi transforms, and for this reason, is
relegated in Appendix B.

2. A Pseudo-Metric for the Classical Limit

Definition 2.1. A density operator on H ∶= L2(Rd) is an operator R ∈ L(H) such
that

R = R∗ ≥ 0 , traceH(R) = 1 .

The set of all density operators on H will be denoted by D(H).

In the definition above, the notation L(H) designates the algebra of bounded lin-
ear operators defined on H, and ∥T ∥ is the operator norm of T ∈ L(H). Henceforth,
we also denote by Lp(H) for all p ≥ 1 the two-sided ideal of L(H) whose elements

are the operators T ∈ L(H) such that ∣T ∣p = (T ∗T )p/2 is a trace-class operator on H.
The Schatten norm of exponent p is denoted ∥T ∥p for all T ∈ Lp(H). For instance
L1(H) and L2(H) are respectively the sets of trace-class and of Hilbert-Schmidt
operators on H, and ∥ ⋅ ∥1 and ∥ ⋅ ∥2 designate respectively the trace norm and the
Hilbert-Schmidt norm. The notation traceH(T ) designates the trace of T ∈ L1(H).

We denote by D2(H) the set of density operators on H such that

(1) traceH(R1/2(−h̵2∆y + ∣y∣2)R1/2) < ∞ .

If R ∈ D2(H), one has
(2)

traceH((−h̵2∆y + ∣y∣2)1/2R(−h̵2∆y + ∣y∣2)1/2) = traceH(R1/2(−h̵2∆y + ∣y∣2)R1/2) < ∞

as can be seen from the lemma below (applied to A = λ2∣y∣2 − h̵2∆y and T = R).
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Lemma 2.2. Let T ∈ L(H) satisfy T = T ∗ ≥ 0, and let A be an unbounded operator
on H such that A = A∗ ≥ 0. Then

traceH(T 1/2AT 1/2) = traceH(A1/2TA1/2) ∈ [0,+∞] .

Proof. The definition of T 1/2 and A1/2 can be found in Theorem 3.35 in chapter V,
§3 of [17], together with the fact that A1/2 and T 1/2 are self-adjoint.

If traceH(T 1/2AT 1/2) < ∞, then A1/2T 1/2 ∈ L2(H) and the equality holds by
formula (1.26) in chapter X, §1 of [17].

If traceH(T 1/2AT 1/2) = ∞, then traceH(A1/2TA1/2) = +∞, for otherwise T 1/2A1/2

and its adjoint A1/2T 1/2 would belong to L2(H), so that T 1/2AT 1/2 ∈ L1(H), which

would be in contradiction with the assumption that traceH(T 1/2AT 1/2) = ∞. �

Definition 2.3. Let f ≡ f(x, ξ) be a probability density on R2d and let R ∈ D(H).
A coupling of f and R is a measurable operator-valued function (x, ξ) ↦ Q(x, ξ)
such that, for a.e. (x, ξ) ∈ Rd ×Rd,

Q(x, ξ) = Q(x, ξ)∗ ≥ 0 , traceH(Q(x, ξ)) = f(x, ξ) , ∬
Rd×Rd

Q(x, ξ)dxdξ = R .

The second condition above implies that Q(x, ξ) ∈ L1(H) for a.e. (x, ξ) ∈ Rd×Rd.
Since L1(H) is separable, the notion of strong and weak measurability are equivalent
for Q. The set of couplings of f and R is denoted by C(f,R). Notice that the
operator-valued function (x, ξ) ↦ f(x, ξ)R belongs to C(f,R).

In [10], one considers the following “pseudometric”.

Definition 2.4. For each probability density f on Rd ×Rd satisfying

(3) ∬
Rd×Rd

(∣x∣2 + ∣ξ∣2)f(x, ξ)dxdξ < ∞

and each R ∈ D2(H), set

Eh̵(f,R) ∶= inf
Q∈C(f,R)

(∬
Rd×Rd

traceH(Q(x, ξ)1/2c(x, ξ, y, h̵Dy)Q(x, ξ)1/2)dxdξ)
1/2

,

where the quantum transportation cost is the quadratic differential operator in y,
parametrized by (x, ξ) ∈ Rd ×Rd:

c(x, ξ, y, h̵Dy) ∶= ∣x − y∣2 + ∣ξ − h̵Dy ∣2 , Dy ∶= −i∇y .

Since c(x, ξ, y, h̵Dy) = c(x, ξ, y, h̵Dy)∗ ≤ 2(∣x∣2 + ∣ξ∣2) + 2c(0,0, y, h̵Dy), any cou-
pling Q ∈ C(f,R) satisfies

traceH(Q(x, ξ)1/2c(x, ξ, y, h̵Dy)Q(x, ξ)1/2)
≤ 2(∣x∣2 + ∣ξ∣2) traceH(Q(x, ξ)) + 2 traceH(Q(x, ξ)1/2c(0,0, y, h̵Dy)Q(x, ξ)1/2)

= 2(∣x∣2 + ∣ξ∣2)f(x, ξ) + 2 traceH(c(0,0, y, h̵Dy)1/2Q(x, ξ)c(0,0, y, h̵Dy)1/2)

for a.e. (x, ξ) ∈ Rd ×Rd. Hence

∬
R2d

traceH(Q(x, ξ) 1
2 c(x, ξ, y, h̵Dy)Q(x, ξ) 1

2 )dxdξ≤2∬
R2d

(∣x∣2+∣ξ∣2)f(x, ξ)dxdξ

+2 traceH(c(0,0, y, h̵Dy)
1
2Rc(0,0, y, h̵Dy)

1
2 ) < ∞
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by (2) provided that f satisfies (3) and R ∈ D2(H). This argument uses Lemma 2.2
with T = Q(x, ξ) and A = c(0,0, y, h̵Dy) before it is known that

traceH(Q(x, ξ)1/2c(0,0, y, h̵Dy)Q(x, ξ)1/2) < ∞ for a.e. (x, ξ) ∈ Rd ×Rd .

Let R ∈ D(H). The Wigner transform of R is

(4) Wh̵(R)(x, ξ) ∶= 1
(2π)d ∫

Rd
r(x + 1

2
h̵y, x − 1

2
h̵y)e−iξ⋅ydy ,

where r ≡ r(x, y) is the integral kernel of R. It is a well known fact that Wh̵(R)
is real-valued (since R = R∗). It is also well known that Wh̵(R) is not necessarily

nonnegative a.e. on Rd ×Rd. For instance, if r(X,Y ) = ψ(X)ψ(Y ) with ψ odd,
one has

Wh̵(R)(0,0) = − 1
(2π)d ∫

Rd
∣ψ( 1

2
h̵y)∣2dy < 0 .

The Husimi transform of R henceforth denoted W̃h̵(R) is defined in terms of its
Wigner transform by the formula

(5) W̃h̵(R) ∶= eh̵∆x,ξ/4Wh̵(R) .

Finally, we recall the definition of a Töplitz operator. The family of Schrödinger
coherent states is

∣q, p⟩(x) ∶= (πh̵)−d/4e−∣x−q∣
2/2h̵eip⋅(x−q/2)/h̵ , x, q, p ∈ Rd .

Let µ be a positive Borel measure on Rd ×Rd; the Töplitz operator with symbol µ
is

OPTh̵ (µ) ∶= 1
(2πh̵)d ∫

Rd×Rd
∣q, p⟩⟨q, p∣µ(dqdp) .

One easily checks that, if µ is the Lebesgue measure (denoted by 1), then

OPTh̵ (1) = I .
Moreover, one easily checks that, if µ is a Borel probability measure on Rd ×Rd,
then OPTh̵ ((2πh̵)dµ) ∈ D(H). In addition, if µ has finite second order moment as in

(3), then one has OPTh̵ ((2πh̵)dµ) ∈ D2(H). One could also use non-Gaussian wave-
packets, but we shall avoid this in the present paper: see the remarks following
Proposition 2.6.

The pseudo-metric Eh̵ is obviously reminiscent of distances used in the context
of optimal transport. Henceforth, we denote by distMK,2 the Monge-Kantorovich,
or Wasserstein distance with exponent 2 defined on the set of Borel probability
measures satisfying the finite second order moment condition (3) (see chapter 7 in
[20]), whose definition is recalled below.

Definition 2.5. For all ρ and ρ′, Borel probability measures on R2d, we set

distMK,2(ρ, ρ′) ∶= inf
π∈Π(ρ,ρ′)

(∫
R2d

(∣q − q′∣2 + ∣p − p′∣2)π(dqdpdq′dp′))
1/2

,

where Π(ρ, ρ′) designates the set of couplings of ρ and ρ′. More precisely, Π(ρ, ρ′)
is the set of Borel probability measures on R2d×R2d with first and second marginals
ρ and ρ′ resp., i.e. such that

∫
R2d×R2d

(φ(q, p) + φ′(q′, p′))π(dqdpdq′dp′)

= ∫
R2d

φ(q, p)ρ(dqdp) + ∫
R2d

φ′(q′, p′)ρ′(dq′dp′)
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for all φ,φ′ ∈ Cb(R2d).

The proposition below explains precisely how the somewhat mysterious pseudo-
metric Eh̵ compares to the better known Monge-Kantorovich, or Wasserstein dis-
tance distMK,2. This proposition is Theorem 2.4 in [10], and its proof can be found
in section 3 of [10].

Proposition 2.6. Let R ∈ D2(H) and let f be a probability distribution on Rd×Rd

with finite second order moment (3).
(a) One has

Eh̵(f,R)2 ≥ dh̵ .
(b) One has

Eh̵(f,R)2 ≥ distMK,2(f, W̃h̵(R))2 − dh̵
(c) For each Borel probability measure µ on Rd×Rd with finite second order moment
as in (3), one has

Eh̵(f,OPTh̵ ((2πh̵)dµ))2 ≤ distMK,2(f, µ)2 + dh̵ .

The pseudo-metric Eh̵ can be used to obtain a quantitative formulation of the
classical limit of quantum mechanics, as explained in [10]. We start from a Töplitz
initial density operator, which is evolved under the von Neumann and time-splitting
dynamics, and we compare the exact solution with its numerical approximation at
time t > 0. Choosing a Töplitz operator as initial data has the following advantage:
the symbol of the initial density operator is the best approximation of this quantum
density by a classical density in terms of the Eh̵ pseudo-distance, as shown by
Proposition 2.6 (a) and (c). The evolved exact and approximate density operators
at time t are in general no longer Töplitz operators, but their Husimi transforms
can be compared by means of the lower bound in Proposition 2.6 (b). Statement
(b) in Proposition 2.6 is another reason for using the distance distMK,2 between
the Husimi transforms of the exact and the numerical solutions in this context, in
addition to the motivations already mentioned in the last paragraph of section 1.

As mentioned above, one can define notions analogous to Töplitz operators and
Husimi transforms in terms of non-Gaussian wave-packets instead of the Schrödinger,
Gaussian coherent states introduced above. The analysis in the present paper can
be adapted to this more general setting, with some modifications. While Proposi-
tion 2.6 (a) holds without modifications, statements (b) and (c) should be modified
by following closely the proofs of Theorems 2.2 and 3.1 in [11].

Henceforth, we denote by V a real-valued function satisfying

(6) V − ∈ Ld/2(Rd) , and V ∈ C1,1(Rd) .
(Here, the notation V − designates the function x↦ V −(x) ∶= max(−V (x),0).)

Let λ ≥ 0, and set

Hλ(x, ξ) ∶= 1
2
λ∣ξ∣2 + V (x) .

(From the physical point of view, the parameter λ ≥ 0 which appears in the defini-
tion of the Hamiltonian Hλ can be thought of as the reciprocal mass of the particle
whose dynamics is defined in terms of the Hamiltonian flow associated to Hλ, whose
definition is recalled below. In the present paper, the parameter λ is used only as a
convenient notation for defining the various time-splitting algorithms considered.)
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Since V satisfies the second condition in (6), we deduce from the Cauchy-
Lipschitz theorem that the Hamiltonian Hλ generates a globally defined flow de-
noted

(X(t;x, ξ),Ξ(t;x, ξ))
on Rd×Rd. In other words, t↦ (X(t;x, ξ),Ξ(t;x, ξ)) is the solution to the Cauchy
problem

Ẋ = λΞ , Ξ̇ = −∇V (X) , (X(0;x, ξ),Ξ(0;x, ξ)) = (x, ξ) .

Equivalently, for each probability distribution f in on Rd × Rd satisfying (3), the
function f in ○ Φ−t, where Φt is the map (x, ξ) ↦ Φt(x, ξ) ∶= (X(t;x, ξ),Ξ(t;x, ξ)),
is the solution to the Cauchy problem for the Liouville equation

(7) ∂tf + {Hλ, f} = 0 , f ∣
t=0

= f in .

Here, the notation {⋅, ⋅} designates the Poisson bracket defined on Rd ×Rd by the
relations

{xj , xk} = {ξj , ξk} = 0 , {ξj , xk} = δjk .
Likewise consider the quantum Hamiltonian

Hλ ∶= − 1
2
h̵2λ∆y + V (y) .

The parameter λ that appears in the definition of the operator Hλ has the same
meaning, and is used similarly as in the classical setting.

The first condition in (6) implies that Hλ has a self-adjoint extension (still de-
noted by Hλ) on H (see Lemma 4.8b in chapter VI, §4 of [17]). By the Stone

theorem, U(t) ∶= eitHλ/h̵ is a unitary group on H, and, for each Rin ∈ D(H), the
density operator R(t) ∶= U∗(t)RinU(t) is the generalized solution to the Cauchy
problem for the von Neumann equation

(8) ih̵∂tR = [Hλ,R] , R∣
t=0

= Rin .

Theorem 2.7. Let Rin ∈ D2(H) and let f in be a probability density on Rd ×Rd

satisfying (3). Then

Eh̵(f in ○Φ−t, U(t)∗RinU(t)) ≤ Eh̵(f in,Rin) exp ( 1
2
t(λ +max(1,Lip(∇V )2))) .

This is a straightforward variant of Theorem 2.7 in [10] with an external potential
and without interaction potential (i.e. in the special caseN = n = 1). The parameter
λ ≥ 0 appearing in the statement above is the other (unessential) difference with
the situation discussed in [10]. The interested reader is referred to Appendix A for
a proof of Theorem 2.7.

3. Main Results

The simple time-splitting method for the von Neumann equation is

(9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0
h̵ = Rinh̵ ,

ih̵∂tAh̵ = [− 1
2
h̵2∆x,Ah̵] , Ah̵∣t=0

= Rnh̵ , n ∈ N ,

ih̵∂tBh̵ = [V (x),Bh̵] , Bh̵∣t=0
= Ah̵(∆t) ,

Rn+1
h̵ = Bh̵(∆t) .
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Theorem 3.1. Let V satisfy (6), and assume that Rin ∈ D2(H) is a Töplitz op-
erator on H. Let t ↦ Rh̵(t) be the solution of the Cauchy problem (8), and let Rnh̵
be the sequence of density operators constructed by the simple splitting method (9).
Let T > 0, and pick a time step ∆t ∈ (0, 1

2
). Then, for each n = 0, . . . , [T /∆t],

the simple splitting method satisfies the following error estimate, stated in terms
of the quadratic Monge-Kantorovich or Wasserstein distance between the Husimi
functions of the approximate and the exact quantum density operators:

distMK,2(W̃h̵(Rn), W̃h̵(R(n∆t)))
≤ CT∆t + 2

√
dh̵ (1 + exp ( 1

2
T (1 +max(1,Lip(∇V )2)))) ,

where the constant CT depends only on T , ∇V (0) and Lip(∇V ), and is defined in
formula (14) below.

Instead of the simple splitting method, one can instead consider the Strang
splitting method

(10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0
h̵ = Rinh̵ ,

ih̵∂tAh̵ = [− 1
2
h̵2∆x,Ah̵] , Ah̵∣t=0

= Rnh̵ ,
ih̵∂tBh̵ = [V (x),Bh̵] , Bh̵∣t=0

= Ah̵( 1
2
∆t) , n ∈ N ,

ih̵∂tGh̵ = [− 1
2
h̵2∆x,Gh̵] , Gh̵∣t=0

= Bh̵(∆t) ,
Rn+1
h̵ = Gh̵( 1

2
∆t) .

Strang splitting is a second order (in ∆t) method, so that the convergence rate
obtained in the previous theorem can be improved as indicated below.

Theorem 3.2. Let V satisfy (6) and

∇mV ∈ L∞(Rd) , m = 1,2,3 .

Let Rin ∈ D2(H) be a Töplitz operator on H, and let t↦ Rh̵(t) be the solution of the
Cauchy problem (8). On the other hand, let Rnh̵ be the sequence of density operators
constructed by the Strang splitting method (10). Let T > 0, and pick a time step
∆t ∈ (0, 1

2
). Then, for each n = 0, . . . , [T /∆t], the Strang splitting method satisfies

the following error estimate, stated in terms of the quadratic Monge-Kantorovich
or Wasserstein distance between the Husimi functions of the approximate and the
exact quantum density operators:

distMK,2(W̃h̵(Rn), W̃h̵(R(n∆t)))
≤DT∆t2 + 2

√
dh̵ (1 + exp ( 1

2
T (1 +max(1,Lip(∇V )2)))) ,

where the constant DT depends only on T and ∥∇mV ∥L∞ for m = 1,2,3, and is
defined in formula (17) below.

Our strategy is the following. First, Theorem 2.7 gives the error between the
solution of the von Neumann solution (8) and that of the classical Liouville equation
(7). Then we obtain an analogous error between the time split von Neumann and
the time split Liouville. Finally we estimate the time splitting error of the classical
Liouville equation, measured in distance distMK2. Then a triangle type inequality
leads to the results in Theorem 3.1 and 3.2. This strategy is best illustrated by
Figure 1.
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Figure 1. The limits ∆t→ 0 and h̵→ 0.

The error estimates Theorems 3.1 and 3.2 do not provide a uniform in h̵ error
estimate, since they contain an O(h̵1/2) term in their right hand side. In particular,
these error estimates are useful only in the vanishing h̵ limit. Yet these two theorems
contain all the new information on the time splitting methods for quantum dynamics
in the semiclassical regime that can be obtained with our approach. Besides, these
two theorems are of independent interest, and lead to better convergence rates that
the uniform error estimate given below in the vanishing h̵ regime. In contrast, a
classical L2 norm estimate gives an error of order O(∆t/h̵)m [1] (for some positive
integer m that depends on the order of the splitting), which blows up as h̵→ 0.

In order to obtain uniform in h̵ error estimates for the simple and the Strang
splitting methods, we need to optimize these estimates with the error estimates for
the time splitting method in the case of the Schrödinger equation with fixed h̵ (or
equivalently for h̵ = 1). Such error estimates have been studied in detail and can be
found for instance in [5]. The idea of combining and optimizing the error estimates
in the asymptotic (macroscopic) regime and the microscopic regime is often used in
numerical methods for kinetic and hyperbolic equations involving multiple scales,
a computational methodology known as Asymptotic-Preserving Schemes [9, 15].

Our final uniform error estimate will be formulated in terms of an optimal trans-
port distance denoted dist1, already used in [12] (see formula (13) in [12]). All
the convergence statements in Theorems 3.1 and 3.2 are ultimately formulated
in terms of the Monge-Kantorovich-Wasserstein distance distMK,2, to which the
“pseudo-metric” Eh̵ can be conveniently compared (see Proposition 2.6), the uni-
form in h̵ error estimates stated below as Corollaries 3.4 and 3.5 are all based on
some optimization procedure comparing the L1 and the distMK,2 distances between
the Husimi transforms of the exact and of the approximate solutions of the quan-
tum dynamical problem. This optimization procedure is precisely the reason for
using the distance dist1, a weaker variant of the Monge-Kantorovich-Wasserstein
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distance of exponent 1, with a transportation cost that is truncated at infinity. The
definition of dist1 is recalled below for the reader’s convenience.

Definition 3.3. For all ρ and ρ′, Borel probability measures on R2d, we set

dist1(ρ, ρ′) ∶= inf
π∈Π(ρ,ρ′)

∫
R2d

min(1,
√

∣q − q′∣2 + ∣p − p′∣2)π(dqdpdq′dp′) .

Here, the notation Π(ρ, ρ′) designates the set of couplings of ρ, ρ′ already used to
define the Monge-Kantorovich-Wasserstein distance distMK,2 (Definition 2.5).

Our uniform estimates for the simple splitting method is given in the following
statement, which is a consequence of Theorem 3.1 and of the error estimate in
Theorem 2 of [5].

Corollary 3.4. Let V ∈ C2(Rd) satisfy (6), and let Rin = OPTh̵ ((2πh̵)dµin), where
µin is a Borel probability measure on R2d such that

∫
R2d

(∣q∣2 + ∣p∣2)µin(dqdp) < ∞ .

Let t↦ Rh̵(t) be the solution of the Cauchy problem (8), and let Rnh̵ be the sequence
of density operators constructed by the simple splitting method (10). Let T > 0, and
pick a time step ∆t ∈ (0, 1

2
). Then, for each n = 0, . . . , [T /∆t], the simple splitting

method satisfies the following uniform in h̵ error estimate:

dist1(W̃h̵(Rnh̵), W̃h̵(Rh̵(n∆t))) ≤ 2C[T,V,µin]∆t1/3 ,
where C[T,V,µin] is defined in (21). In particular, the constant C[T,V,µin] is
independent of h̵.

Likewise, Theorem 3.2 and the error estimate in Theorem 3 of [5] lead to the
following statement.

Corollary 3.5. Let V ∈ W 4,∞(Rd) satisfy (6), and let Rin = OPTh̵ ((2πh̵)dµin),
where µin is a Borel probability measure on R2d such that

∫
R2d

(∣q∣2 + ∣p∣2)µin(dqdp) < ∞ .

Let t↦ Rh̵(t) be the solution of the Cauchy problem (8), and let Rnh̵ be the sequence
of density operators constructed by the Strang splitting method (9). Let T > 0, and
pick a time step ∆t ∈ (0, 1

2
). Then, for each n = 0, . . . , [T /∆t], the simple splitting

method satisfies the following uniform in h̵ error estimate:

dist1(W̃h̵(Rnh̵), W̃h̵(Rh̵(n∆t))) ≤ 2D[T,V,µin]∆t2/3 ,
where D[T,V,µin] is defined in (23). In particular, the constant D[T,V,µin] is
independent of h̵.

As will be clear from the proofs, the uniform in h̵ estimates obtained in these
two corollaries involve the O(h̵1/2) term in the convergence rates in Theorems 3.1
and 3.2, and the nonuniform bounds in Theorems 2 and 3 resp. of [5]. The uniform

error bounds in ∆t1/3 for the simple splitting and in ∆t2/3 for the Strang splitting
are not expected to be sharp. These estimates involve the dh̵ term that is a lower
bound of Eh̵ as explained in Proposition 2.6 (a), and that appears in the inequalities
in Proposition 2.6 (b)-(c). Perhaps using metrics other than Eh̵ to compare the
quantum and classical dynamics could improve these uniform error bounds — but
such metrics remain to be constructed at the time of this writing.
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Specifically, the uniform O(∆t1/3) error bound in Corollary 3.4 is obtained as

the minimum of the O(h̵1/2) term in Theorem 3.1 and of the (nonuniform) O(∆t/h̵)
error bound in Theorem 2 of [5]. This O(∆t1/3) uniform error estimate corresponds

to the “worst” possible distinguished asymptotic regime h̵ ∼ ∆t2/3. Although the
O(∆t) term in Theorem 3.1 is smaller than the O(∆t1/3) uniform error estimate in

Corollary 3.4, the O(∆t+ h̵1/2) error estimate in Theorem 3.1 is still of independent
interest in all cases where h̵ is small and satisfies h̵ = O(∆t2).

Likewise, the uniform O(∆t2/3) error bound in Corollary 3.5 comes as the min-

imum of the O(h̵1/2) term in the convergence rates in Theorem 3.2 and of the
(nonuniform) O(∆t2/h̵2) error bound in Theorem 3 of [5]. In this case, the “worst”

possible distinguished asymptotic regime is h̵ ∼ ∆t4/5. Here again, the O(∆t2) term

in Theorem 3.2 is smaller than the O(∆t2/3) uniform error estimate in Corollary

3.5. Nevertheless, the O(∆t2 + h̵1/2) error estimate in Theorem 3.2 is of interest

independently of the uniform O(∆t2/3) bound in Corollary 3.5 whenever h̵ is small
and satisfies h̵ = O(∆t4). Observe that the Strang splitting method is of second
order in time in that regime, for the quantum dynamics as well as for the classical
dynamics.

The uniform in h̵ error bounds obtained in Corollaries 3.4 and 3.5 are expected
to carry over to the case of a time-dependent potential V ≡ V (t, x), provided that
V (t, ⋅) ∈ C1,1(Rd) with sup0≤t≤T Lip(∇xV (t, ⋅)) < ∞ for each T > 0. For instance,
Theorem 2.7 is easily seen to hold for such potentials (with essentially the same
proof). Since our final results depend on Theorems 3 and 4 from [5], and this
reference only treats the case of potentials that are independent of the time variable,
we have chosen the same setting to avoid tedious verifications of the nonuniform in h̵
error bounds analogous to Theorems 3 and 4 from [5] in the case of time-dependent
potentials.

A more significant generalization of our results in Corollaries 3.4 and 3.5 would
be to obtain analogous uniform in h̵ error bounds for the full discretization of the
von Neumann equation — that is to say, when the spatial derivatives are also
discretized. Unfortunately, at the time of this writing, there does not exist any
numerical method known to capture the correct physical solutions by using h̵-
independent spatial mesh sizes. Among direct solvers for the Schrödinger equation,
the most competitive method dealing with highly oscillatory solutions is the time-
splitting spectral method, which requires O(h̵) mesh size in order to capture the
physical observables: see [2]. The Gaussian beam, or Gaussian wave packet type

methods require the mesh size to be of order O(
√
h̵): see [16]. Since the analysis

developed in the paper is aimed at obtaining h̵-independent error estimates, it is
less scientifically interesting to apply it to h̵-dependent spatial discretizations. This
is the reason why the present paper focusses on the time-discretization and does
not discuss the fully discretized (in the time and space variable) problem.

Finally, as mentioned in the introduction, one can also express all these error
bounds directly in terms of some appropriate distance between the density operator
that is the exact solution of the von Neumann equation and its time-split approxi-
mation. This metric on density operators, and the corresponding error bounds can
be found in Appendix B.
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4. The Simple Splitting Algorithm

4.1. The Simple Splitting Algorithm for the von Neumann Equation in
the Semiclassical Regime. In this subsection we estimate the error between the
time split von Neumann and the time split Liouville equations. By analogy with
the simple splitting method (9) for the von Neumann equation, consider the simple
time-splitting method for the Liouville equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0 = f in ,
∂ta + { 1

2
∣ξ∣2, a} = 0 , a∣

t=0
= fn , n ∈ N ,

∂tb + {V (x), b} = 0 , b∣
t=0

= a(∆t) ,
fn+1 = b(∆t) .

Applying Theorem 2.7 to one time step of the free dynamics, i.e. with V ≡ 0 and
λ = 1 shows that

Eh̵(a(∆t),Ah̵(∆t)) ≤ Eh̵(fn,Rn) exp( 1
2
∆t) .

Next we apply the same Theorem 2.7 to the Hamiltonian dynamics defined by the
potential V , with λ = 0: thus

Eh̵(fn+1,Rn+1) =Eh̵(b(∆t),Bh̵(∆t))
≤Eh̵(a(∆t),Ah̵(∆t)) exp( 1

2
∆tmax(1,Lip(∇V )2)) .

Putting both estimates together shows that

Eh̵(fn+1,Rn+1) ≤ Eh̵(fn,Rn) exp( 1
2
∆t(1 +max(1,Lip(∇V )2))) .

Let T > 0; then for each n = 0, . . . , [T /∆t] + 1, one has

(11)
Eh̵(fn,Rn) ≤Eh̵(f in,Rin) exp( 1

2
n∆t(1 +max(1,Lip(∇V )2)))

≤Eh̵(f in,Rin) exp( 1
2
T (1 +max(1,Lip(∇V )2))) .

Observe that the amplification rate exp( 1
2
T (1+max(1,Lip(∇V )2))) in this estimate

is uniform in (i.e. independent of) h̵. This is the key point in our analysis.

4.2. The Simple Splitting Algorithm for the Liouville Equation. In this
subsection, we estimate the distance between the classical Liouville equation and its
time split approximation. While the error analysis for the simple splitting method is
well known in general, its formulation in terms of distMK,2 is perhaps less classical.

One expresses the solutions a and b of the kinetic and the potential part of the
Liouville evolution as follows, by using the method of characteristics:

a(t, y, η) = fn(Kt(y, η)) where Kt(y, η) ∶= (y − tη, η) ,
b(t, y, η) = a(∆t, Pt(y, η)) where Pt(y, η) ∶= (y, η + t∇V (y)) .

Thus, one step of simple splitting corresponds to setting

(12) fn+1(y, η) = fn ○ P∆t ○K∆t(y, η) = fn(y −∆tη, η +∆t∇V (y −∆tη)) .
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Since the transformation P∆t ○K∆t has Jacobian one, the formula (12) means that
fn+1(y, η)dydη is the image of the measure fn(y, η)dydη by P∆t ○K∆t. One finds

distMK,2(f in ○Φ−(n+1)∆t, f
in ○ (P∆t ○K∆t)n+1)2

≤∫ ∣X(−∆t, x, ξ) − (y −∆tη)∣2qn(dxdξdydη)

+ ∫ ∣Ξ(−∆t, x, ξ) − (η +∆t∇V (y −∆tη))∣2qn(dxdξdydη)

where qn is any coupling of f(n∆t, ⋅, ⋅) and fn. This makes it clear that finding
an error bound in the metric distMK,2 for a splitting method applied to the Liou-
ville equation is mostly a question pertaining to the numerical analysis of ordinary
differential equations. Our reference for such questions is [13].

First we seek to bound

∣(X,Ξ)(−t, x, ξ) − (Y,H)(−t, y, η)∣2 ,
where

(Y,H)(−t, y, η) = Pt ○Kt(y, η) = (y − tη, η + t∇V (y − tη))
is the numerical particle trajectory. As in the modified equation method described
in chapter IX.4 of [13], we write dynamical equations for (Y,H). Inverting these
relations, and denoting Yt ∶= Y (t; y, η) and Ht ∶=H(t; y, η) for simplicity, one has

(y, η) = (Y−t + t(H−t − t∇V (Y−t)),H−t − t∇V (Y−t)) .
Differentiating in time, we find that

Ẏ =H + t(−∇V (Y ) − t∇2V (Y )Ẏ ) + 2t∇V (Y ) + t2∇2V (Y )Ẏ
=H + t∇V (Y ) ,

Ḣ = −∇V (Y ) − t∇2V (Y ) ⋅H − t2∇2V (Y ) ⋅ ∇V (Y ) .
Thus, we seek to compare the trajectories of the two following differential systems:

⎧⎪⎪⎨⎪⎪⎩

Ẋ = Ξ ,

Ξ̇ = −∇V (X) ,
and

⎧⎪⎪⎨⎪⎪⎩

Ẏ =H + t∇V (Y ) ,
Ḣ = −∇V (Y ) − t∇2V (Y ) ⋅H − t2∇2V (Y ) ⋅ ∇V (Y ) .

Clearly

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d

dt
∣X − Y ∣2 ≤ ∣X − Y ∣2 + ∣Ξ −H ∣2 + ∣z(t)∣2 + ∣X − Y ∣2 ,

d

dt
∣Ξ −H ∣2 ≤ ∥∇2V ∥L∞(∣X − Y ∣2 + ∣Ξ −H ∣2) + ∣ζ(t)∣2 + ∣Ξ −H ∣2 ,

with
⎧⎪⎪⎨⎪⎪⎩

z(t) ∶= t∇V (y + tη) ,
ζ(t) = −t∇2V (y + tη) ⋅ (η − t∇V (y + tη)) − t2∇2V (y + tη) ⋅ ∇V (y + tη) .

Set E ∶= ∣∇V (0)∣. Then, by the mean value inequality,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣z(t)∣ ≤∣t∣(E + ∥∇2V ∥L∞(∣y∣ + ∣t∣∣η∣)) ,
∣ζ(t)∣ ≤∥∇2V ∥L∞ ∣t∣(∣η∣ + ∣t∣(E + ∥∇2V ∥L∞(∣y∣ + ∣t∣∣η∣)))

+ t2∥∇2V ∥L∞(E + ∥∇2V ∥L∞(∣y∣ + tη)) .
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By Gronwall’s inequality, setting Λ ∶= max(1,E, ∥∇2V ∥L∞)), and assuming that
0 ≤ t ≤ 1

2
for simplicity, one has

∣X − Y ∣2(t) + ∣Ξ −H ∣2(t) ≤(∣x − y∣2 + ∣ξ − η∣2)e(2+Λ)∣t∣

+ e
(2+Λ)∣t∣ − 1

2 +Λ
9
4
Λ2( 1

2
+Λ)2t2(1 + ∣y∣2 + ∣η∣2) .

Choosing at this point an optimal coupling qn of f(n∆t, ⋅, ⋅) and fn (see Theorem
1.3 in [20] for the existence of an optimal coupling), one has

distMK,2(f((n + 1)∆t, ⋅, ⋅), fn+1)2 = ∫ (∣X − Y ∣2 + ∣Ξ −H ∣2)qn+1(dXdΞdY dH)

= ∫ (∣X(−∆t;x, ξ) − Y (−∆t; y, η)∣2 + ∣Ξ(−∆t;x, ξ) −H(−∆t; y, η)∣2)qn(dxdξdydη)

= distMK,2(f(n∆t, ⋅, ⋅), fn)2e(2+Λ)∆t

+ 9
4
Λ2( 1

2
+Λ)2∆t2

e(2+Λ)∆t − 1

2 +Λ
(1 + ∫ (∣y∣2 + ∣η∣2)fn(y, η)dydη)

and we need to bound the last term in the right hand side. Since fn(y, η)dydη is
the image of the measure fn−1(y, η)dydη by the transformation P∆t ○K∆t, one has

µn ∶= ∫ (∣y∣2 + ∣η∣2)fn(y, η)dydη

= ∫ (∣y +∆tη∣2 + ∣η −∆t∇V (y +∆tη)∣2)fn−1(y, η)dydη

(by substitution in the left hand side), since

∣y +∆tη∣2 + ∣η −∆t∇V (y +∆tη)∣2

≤ (∣y∣2 + ∣η∣2)(1 +∆t)2(1 + 2Λ2∆t(1 +∆t)) + 2∆t(1 +∆t)E2 .

We easily check that

µn ≤ (1 +∆t + 2Λ2∆t(1 +∆t)2)(1 +∆t)µn−1 + 2∆t(1 +∆t)E2 ,

and since 1 + α ≤ eα,

µn ≤ (1 +∆t + 2Λ2∆t(1 +∆t)2)n(1 +∆t)nµ0

+2∆t(1 +∆t)E2 (1 +∆t + 2Λ2∆t(1 +∆t)2)n(1 +∆t)n − 1

(1 +∆t + 2Λ2∆t(1 +∆t)2)(1 +∆t) − 1

≤ exp(2n∆t(1 +Λ2(1 +∆t)2))µ0

+2(1 +∆t)E2 exp(2n∆t(1 +Λ2(1 +∆t)2)) − 1

1 + (1 +∆t)(1 + 2Λ2(1 +∆t)2) .

Thus, we arrive at the inequality

distMK,2(f((n + 1)∆t, ⋅, ⋅), fn+1)2 ≤ distMK,2(f(n∆t, ⋅, ⋅), fn)2e(2+Λ)∆t

+ 9
4
Λ2( 1

2
+Λ)2∆t2

e(2+Λ)∆t − 1

2 +Λ
(1 + exp(2n∆t(1 +Λ2(1 +∆t)2))µ0

+2(1 +∆t)E exp(2n∆t(1 +Λ2(1 +∆t)2)) − 1

1 + (1 +∆t)(1 + 2Λ2(1 +∆t)2) ) .

Iterating in n, we conclude that, for n = 0,1, . . . , [T /∆t],
(13) distMK,2(f(n∆t, ⋅, ⋅), fn) ≤ CT∆t ,
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where

(14)

C2
T ∶= 9

4
Λ2( 1

2
+Λ)2 e

(2+Λ)T − 1

2 +Λ
(1 + exp(2T (1 +Λ2(1 +∆t)2))µ0

+2(1 +∆t)E exp(2T (1 +Λ2(1 +∆t)2)) − 1

1 + (1 +∆t)(1 + 2Λ2(1 +∆t)2)) .

4.3. Error Estimate for the Simple Splitting Method. By Theorem 2.7, for
each n = 0,1, . . . , [T /∆t], one has

Eh̵(f(n∆t, ⋅, ⋅),R(n∆t)) ≤ Eh̵(f in,Rin) exp ( 1
2
n∆t(1 +max(1,Lip(∇V )2)))

and in particular

(15) Eh̵(f(n∆t, ⋅, ⋅),R(n∆t)) ≤ Eh̵(f in,Rin) exp ( 1
2
T (1 +max(1,Lip(∇V )2))) .

Putting together (11), (13) and (15) shows that

Eh̵(fn,Rn) + distMK,2(f(n∆t, ⋅, ⋅), fn) +Eh̵(f(n∆t, ⋅, ⋅),R(n∆t))
≤ 2Eh̵(f in,Rin) exp ( 1

2
T (1 +max(1,Lip(∇V )2))) +CT∆t .

According to Proposition 2.6 (b) and using the triangle inequality for distMK,2, we
conclude that

distMK,2(W̃h̵(Rn), W̃h̵(R(n∆t)))
≤ 2Eh̵(f in,Rin) exp ( 1

2
T (1 +max(1,Lip(∇V )2))) +CT∆t + 2

√
dh̵ .

If Rin is the Töplitz operator with symbol (2πh̵)df in, this inequality and Proposi-
tion 2.6 (c) imply the desired inequality in Theorem 3.1.

5. The Strang Splitting Algorithm

In this subsection we estimate the error between the time split von Neumann
and the time split Liouville equations. The Strang time-splitting method for the
Liouville equation is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0 = f in ,
∂ta + { 1

2
∣ξ∣2, a} = 0 , a∣

t=0
= fn ,

∂tb + {V (x), b} = 0 , b∣
t=0

= a( 1
2
∆t) , n ∈ N ,

∂tg + { 1
2
∣ξ∣2, g} = 0 , g∣

t=0
= b(n∆t) ,

fn+1 = g( 1
2
∆t) .

Applying Theorem 2.7 to one time step of the free dynamics, i.e. with V ≡ 0 and
λ = 1 shows that

Eh̵(a( 1
2
∆t),Ah̵( 1

2
∆t)) ≤ Eh̵(fn,Rn) exp( 1

4
∆t) .

Next we apply the same Theorem 2.7 to the Hamiltonian dynamics defined by the
potential V , with λ = 0: thus

Eh̵(b(∆t),Bh̵(∆t)) ≤ Eh̵(a( 1
2
∆t),Ah̵( 1

2
∆t)) exp( 1

2
∆tmax(1,Lip(∇V )2)) .
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Finally, we apply again Theorem 2.7 to the last time step of the free dynamics, so
that

Eh̵(fn+1,Rn+1
h̵ ) = Eh̵(g( 1

2
∆t),Gh̵( 1

2
∆t)) ≤ Eh̵(b(∆t),Bh̵(∆t)) exp( 1

4
∆t)

≤ Eh̵(a( 1
2
∆t),Ah̵(

1

2
∆t)) exp( 1

4
∆t + 1

2
∆tmax(1,Lip(∇V )2))

≤ Eh̵(fn,Rn) exp( 1
4
∆t + 1

2
∆tmax(1,Lip(∇V )2) + 1

4
∆t)

= Eh̵(fn,Rn) exp( 1
2
∆t(1 +max(1,Lip(∇V )2)) .

Hence the uniform in h̵ estimate (11) also holds for the Strang splitting method.
Next we analyze the Strang splitting method for the Liouville equation in terms

of the Monge-Kantorovich or Wasserstein distance. With the same notation as in
the previous section, we seek to bound

distMK,2(f in ○Φ−(n+1)∆t, f
in ○ (K 1

2 ∆t ○ P∆t ○K 1
2 ∆t)n+1)2 .

In order to do so, we seek to bound

∣(X,Ξ)(−t, x, ξ) − (Z,Ω)(−t, z, ω)∣2 ,
where the numerical particle trajectory or bi-characteristic flow of the Liouville
equation is

(Z,Ω)(−t, z, ω) =Kt/2 ○ Pt ○Kt/2(z,ω)
= (z − tω − 1

2
t2∇V (z − 1

2
tω)), ω + t∇V (z − 1

2
tω)) .

Writing Zt ∶= Z(t, z, ω) and Ωt ∶= Ω(t, z, ω) for simplicity, we first observe that

Zt − 1
2
tΩt = z + 1

2
tω , Ωt = ω − t∇V (Zt − 1

2
Ωt) .

Differentiating both sides of each equality in t, and eliminating ω from the leading
order terms in t≪ 1, we obtain the numerical bi-characteristic field for the Strang
splitting method in the form

Żt =Ωt − 1
4
t2∇2V (Zt − 1

2
tΩt)ω

=Ωt + s(t)
Ω̇t = −∇V (Zt) − 1

2
t(∇2V (Zt − 1

2
tΩt) − ∇2V (Zt))Ωt

− 1
2
t2∇2V (Zt − 1

2
tΩt)∇V (Zt − 1

2
tΩt)

− 1
8
t2∇3V (Zt − 1

2
θtΩt) ∶ Ω⊗2

t

= −∇V (Zt) + σ(t)
where

s(t) ∶= − 1
4
t2∇2V (z + 1

2
tω)ω

σ(t) ∶= − 1
2
t(∇2V (z + 1

2
tω) − ∇2V (z + 1

2
tω + 1

2
tΩt))Ωt

− 1
2
t2∇2V (z + 1

2
tω)∇V (z + 1

2
tω)

− 1
8
t2∇3V (Zt − 1

2
θtΩt) ∶ Ω⊗2

t

Here again, we seek to compare the solution (Zt,Ωt) to the Strang splitting
differential equation with the solution (Xt,Ξt) of the Newton system of motion
equations, i.e. we apply the modified equation approach in chapter IX.4 of [13].
Arguing as in the case of the simple splitting method, we observe that

⎧⎪⎪⎨⎪⎪⎩

Ẋ − Ż = (Ξ −Ω) − s ,
Ξ̇ − Ω̇ = −(∇V (X) − ∇V (Z)) − σ(t) ,
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so that
d

dt
∣X −Z ∣2 =2(X −Z) ⋅ (Ξ −Ω) − 2(X −Z) ⋅ s

≤∣X −Z ∣2 + ∣Ξ −Ω∣2 + ∣X −Z ∣2 + ∣s∣2 ,
d

dt
∣Ξ −Ω∣2 = − 2(Ξ −Ω) ⋅ (∇V (X) − ∇V (Z)) − 2(Ξ −Ω) ⋅ σ

≤Lip(∇V )(∣Ξ −Ω∣2 + ∣X −Z ∣2) + ∣Ξ −Ω∣2 + ∣σ∣2 .
Setting

M ∶= max(1, ∥∇V ∥2
L∞ , ∥∇2V ∥2

L∞ , ∥∇3V ∥2
L∞) ,

we see that

∣s(t)∣2 + ∣σ(t)∣2 ≤t4( 1
6
M ∣ω∣2 + 1

2
M(∣ω∣4 + t4M2) + 1

4
M2 + 1

32
M(∣ω∣2 + t2M))

≤ 1
2
M3t4(1 + t2 + t4 + ∣ω∣2 + ∣ω∣4) .

Choosing an optimal coupling qn of f(n∆t, ⋅, ⋅) and fn, one has

distMK,2(f((n + 1)∆t, ⋅, ⋅), fn+1)2 ≤ ∫ (∣X −Z ∣2 + ∣Ξ −Ω∣2)qn+1(dXdΞdZdΩ)

=∫ (∣X(−∆t;x, ξ)−Z(−∆t; z,ω)∣2+∣Ξ(−∆t;x, ξ)−Ω(−∆t; z,ω)∣2)qn(dxdξdzdω)

≤ e(2+Λ)∆t distMK,2(f(n∆t, ⋅, ⋅), fn)2

+e
(2+Λ)∆t − 1

2 +Λ
1
2
M3∆t4 (1 +∆t2 +∆t4 + ∫ (∣ω∣2 + ∣ω∣4)fn(dzdω)).

Arguing as in the case of the simple splitting algorithm, one has

νn ∶= ∫ (∣ω∣2 + ∣ω∣4)fn(dzdω) = ∫ (∣Ω(−∆t; z,ω)∣2 + ∣Ω(−∆t; z,ω)∣4)fn−1(dzdω)

≤ ∫ ((∣ω∣ +
√
M∆t)2 + (∣ω∣ +

√
M∆t)4)fn−1(dzdω)

by substitution in the integral on the left hand side, since fn(y, η)dydη is the image
of the measure fn−1(y, η)dydη by the transformation K 1

2 ∆t ○ P∆t ○K 1
2 ∆t. Since

(∣ω∣ +
√
M∆t)2 ≤ ∣ω∣2 +∆t(M + ∣ω∣2) +M∆t2 ≤ (1 +∆t)(∣ω∣2 +M∆t)

and

(∣ω∣ +
√
M∆t)4 ≤ (1 +∆t)2(∣ω∣2 +M∆t)2 ≤ (1 +∆t)3(∣ω∣4 +M2∆t) ,

one has

νn ≤ (1 +∆t)3(νn−1 +M(1 +M)∆t) ≤ e3∆t(νn−1 +M(1 +M)∆t) ,

so that

νn ≤e3n∆tν0 +M(1 +M)∆te3∆t e
3n∆t − 1

e3∆t − 1

≤e3n∆tν0 +M(1 +M)(1 +∆t)(e3n∆t − 1) .
Hence

distMK,2(f((n + 1)∆t, ⋅, ⋅), fn+1)2 ≤ e(2+Λ)∆t distMK,2(f(n∆t, ⋅, ⋅), fn)2

+e
(2+Λ)∆t − 1

2 +Λ
1
2
M3∆t4 (1 +∆t2 +∆t4 + e3n∆tν0 +M(1 +M)(1 +∆t)(e3n∆t − 1))
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so that, iterating in n,

distMK,2(f(n∆t, ⋅, ⋅), fn)2

≤ e
(2+Λ)n∆t − 1

2 +Λ
1
2
M3∆t4 (1 +∆t2 +∆t4 + e3n∆tν0 +M(1 +M)(1 +∆t)(e3n∆t − 1))

≤ e
(2+Λ)T − 1

2 +Λ
M3∆t4 (1 + e3T (ν0 + 2M2))

for n = 0,1, . . . , [T /∆t] with 0 < ∆t ≤ 1
2
. In other words

(16) distMK,2(f(n∆t, ⋅, ⋅), fn) ≤DT∆t2

for n = 0,1, . . . , [T /∆t] with 0 < ∆t ≤ 1
2
, with

(17) D2
T = e

(2+Λ)T − 1

2 +Λ
M3 (1 + e3T (ν0 + 2M2)) .

Putting together (11), (16) and (15) shows that

Eh̵(fn,Rn) + distMK,2(f(n∆t, ⋅, ⋅), fn) +Eh̵(f(n∆t, ⋅, ⋅),R(n∆t))
≤ 2Eh̵(f in,Rin) exp ( 1

2
T (1 +max(1,Lip(∇V )2))) +DT∆t2 .

By Proposition 2.6 (b) and the triangle inequality for distMK,2,

distMK,2(W̃h̵(Rn), W̃h̵(R(n∆t)))
≤ 2Eh̵(f in,Rin) exp ( 1

2
T (1 +max(1,Lip(∇V )2))) +DT∆t2 + 2

√
dh̵

for n = 0,1, . . . , [T /∆t] with 0 < ∆t ≤ 1
2
. If Rin is the Töplitz operator with

symbol (2πh̵)df in, this bound and Proposition 2.6 (c) imply the desired inequality
in Theorem 3.2.

6. Uniform in h̵ Error Estimates

Proof of Corollary 3.4. Throughout this section, we denote

U(t) ∶= exp(−it(− 1
2
h̵2∆ + V (x))/h̵) ,

and
UK(t) ∶= exp( 1

2
ith̵∆) , UV (t) ∶= exp(−itV (x)/h̵) .

For the first order time splitting, one has

Rnh̵ −Rh̵(n∆t)
= (UV (∆t)UK(∆t))nRinh̵ (UK(∆t)∗UV (∆t)∗)n − U(n∆t)Rinh̵ U(n∆t)∗

= ∫
Rd×Rd

((UV (∆t)UK(∆t))n − U(n∆t)) ∣q, p⟩⟨q, p∣(UK(∆t)∗UV (∆t)∗)nµin(dqdp)

+∫
Rd×Rd

U(n∆t)∣q, p⟩⟨q, p∣ ((UK(∆t)∗UV (∆t)∗)n − U(n∆t)∗)µin(dqdp) .

Hence

∥Rnh̵−Rh̵(n∆t)∥1 ≤ 2∫
Rd×Rd

∥(UV (∆t)UK(∆t))n − U(n∆t)) ∣q, p⟩∥L2(Rd) µ
in(dqdp) .

At this point, we apply Theorem 2 from [5] for the error of the simple splitting
scheme:

∥(UV (∆t)UK(∆t))n − U(n∆t)) ∣q, p⟩∥L2(Rd)

≤ 2
∆t

h̵
M(V ) (M(V )t2 + h̵∥ ∣q, p⟩∥H1(Rd)) ,
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where

M(V ) ∶= max(2∥∇V ∥L∞(Rd), ∥∇2V ∥L∞(Rd)) .
One has

h̵2 (∥ ∣q, p⟩∥2
L2(Rd) + ∥∇∣q, p⟩∥2

L2(Rd)) = h̵
2 + ∣p∣2 + d

2
h̵ ≤ 2h̵2 + ∣p∣2 + d2

so that

(18) ∥Rnh̵ −Rh̵(n∆t)∥1 ≤ 4
∆t

h̵
M(V ) (M(V )t2 +

√
2h̵ + d + ∫

R2d
∣p∣µin(dqdp)) .

Next we apply Lemmas 8.2 and 8.1 in [12]:
(19)

dist1(W̃h̵(Rnh̵), W̃h̵(Rh̵(n∆t)))
≤ min(∥W̃h̵(Rnh̵) − W̃h̵(Rh̵(n∆t))∥L1(R2d),distMK,2(W̃h̵(Rnh̵), W̃h̵(Rh̵(n∆t))))

≤ min(∥Rnh̵ −Rh̵(n∆t)∥1,distMK,2(W̃h̵(Rnh̵), W̃h̵(Rh̵(n∆t)))) .

Using (18) and Theorem 3.1 to bound the right hand side of (19) shows that

(20)

dist1(W̃h̵(Rnh̵),W̃h̵(Rh̵(n∆t)))

≤ min
⎛
⎝

4
∆t

h̵
M(V ) (M(V )t2 +

√
2h̵ + d + ∫

R2d
∣p∣µin(dqdp)) ,

CT∆t + 2
√
dh̵ (1 + exp ( 1

2
t(1 +max(1,Lip(∇V )2))))

⎞
⎠

so that

dist1(W̃h̵(Rnh̵), W̃h̵(Rh̵(n∆t))) ≤ C[T,V,µin] (∆t +min(∆t

h̵
,
√
h̵))

= C[T,V,µin] (∆t +∆t1/3)

with
(21)

C[T,V,µin] ∶= max
⎛
⎝

4
√

2M(V ),CT ,4M(V ) (M(V )T 2 + d + ∫
R2d

∣p∣µin(dqdp))

2
√
d (1 + exp ( 1

2
T (1 +max(1,Lip(∇V )2))))

⎞
⎠
.

�

Proof of Corollary 3.5. Arguing as in the proof of Corollary 3.4 for the Strang
splitting, we write

S(∆t) ∶= UK(∆t
2
)UV (∆t)UK(∆t

2
)

and

Rnh̵ −Rh̵(n∆t) =S(∆t)nRinh̵ (S(∆t)∗)n − U(n∆t)Rinh̵ U(n∆t)∗

=∫
Rd×Rd

(S(∆t)n − U(n∆t))∣q, p⟩⟨q, p∣(S(∆t)∗)nµin(dqdp)

+ ∫
Rd×Rd

U(n∆t)∣q, p⟩⟨q, p∣(S(∆t)∗)n − U(n∆t)∗)µin(dqdp) ,
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so that

∥Rnh̵ −Rh̵(n∆t)∥1 ≤ 2∫
Rd×Rd

∥(S(∆t)n − U(n∆t))∣q, p⟩∥L2(Rd) µ
in(dqdp) .

By Theorem 3 from [5]:

∥(S(∆t)n − U(n∆t))∣q, p⟩∥L2(Rd) ≤M
′[T,V,µin]∆t2

h̵

where the constant M ′ depends on the final time T , on ∥V ∥W 4,∞(Rd), and on

∫
R2d

∣p∣2µin(dqdp) < ∞ ,

since
h̵∥∣q, p⟩∥H1(Rd) = O(∣p∣) while h̵2∥∣q, p⟩∥H2(Rd) = O(∣p∣2) .

Thus
(22)

dist1(W̃h̵(Rnh̵), W̃h̵(Rh̵(n∆t)))

≤ min(M ′[T,V,µin]∆t2

h̵
,DT∆t2 + 2

√
dh̵ (1 + exp ( 1

2
t(1 +max(1,Lip(∇V )2)))))

≤D[T,V,µin] (∆t2 +min(∆t2

h̵
,
√
h̵)) ,

where
(23)

D[T,V,µin] ∶= max (DT ,M
′[T,V,µin],2

√
d (1 + exp ( 1

2
T (1 +max(1,Lip(∇V )2))))) .

Optimizing in h̵ leads to

dist1(W̃h̵(Rnh̵), W̃h̵(Rh̵(n∆t))) ≤D[T,V,µin](∆t2 +∆t2/3)
corresponding to the choice h̵ = ∆t4/3. �

Appendix A. Proof of Theorem 2.7

Let Qin ∈ C(f in,Rin). Set

Q(t,X,Ξ) ∶= U(t)∗Qin ○Φ−t(X,Ξ)U(t)
for all t ∈ R and a.e. (x, ξ) ∈ Rd ×Rd, and

E(t) ∶= ∬
R2d

traceH(Q(t,X,Ξ)1/2c(X,Ξ, y, h̵Dy)Q(t,X,Ξ)1/2)dXdΞ .

Since Φt leaves the phase space volume element dxdξ invariant

E(t)=∬
R2d

traceH(
√
Qin(x, ξ)U(t)c(Φt(x, ξ), y, h̵Dy)U(t)∗

√
Qin(x, ξ))dxξ .

By construction, Q(t, ⋅, ⋅) ∈ C(f(t, ⋅, ⋅),R(t)). Indeed, for a.e. (X,Ξ) ∈ Rd,

0 ≤ Qin(Φ−t(X,Ξ)) = Qin(Φ−t(X,Ξ))∗ ∈ L(H)
so that Q(t,X,Ξ) ∈ L(H) satisfies

Q(t,X,Ξ) =U(t)Qin(Φ−t(X,Ξ))U(t)∗

=U(t)Qin(Φ−t(X,Ξ))U(t)∗ = Q(t,X,Ξ)∗ ≥ 0 .
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Besides

traceH(Q(t,X,Ξ)) = traceH(Qin(Φ−t(X,Ξ))) = f in(Φ−t(X,Ξ)) = f(t,X,Ξ)

while

∬
Rd×Rd

Q(t,X,Ξ)dXdΞ = U(t) (∬
Rd×Rd

Qin(Φ−t(X,Ξ))dXdΞ)U(t)∗

= U(t) (∬
Rd×Rd

Qin(x, ξ)dxdξ)U(t)∗ = U(t)RinU(t)∗ = R(t) .

In particular

E(t) ≥ Eh̵(f(t),R(t)) , for each t ≥ 0 .

Let ej(x, ξ, ⋅) for j ∈ N be a H-complete orthonormal system of eigenvectors of

Qin(x, ξ) for a.e. x, ξ ∈ Rd. Hence

traceH(
√
Qin(x, ξ)U(t)c(Φt(x, ξ), y, h̵Dy)U(t)∗

√
Qin(x, ξ))

= ∑
j∈N

ρj(x, ξ)⟨U(t)ej(x, ξ)∣c(Φt(x, ξ), y, h̵Dy)∣U(t)ej(x, ξ)⟩

where ρj(x, ξ) is the eigenvalue of Qin(x, ξ) defined by

Qin(x, ξ)ej(x, ξ) = ρj(x, ξ)ej(x, ξ) , for a.e. (x, ξ) ∈ Rd ×Rd .

If φ ≡ φ(y) ∈ C∞
c (Rd), the map

t↦ ⟨U(t)φ∣c(Φt(x, ξ), y, h̵Dy)∣U(t)φ⟩

is of class C1 on R, and one has

d

dt
⟨U(t)φ∣c(Φt(x, ξ), y, h̵Dy)∣U(t)φ⟩

= ⟨ i
h̵
HU(t)φ∣c(Φt(x, ξ), y, h̵Dy)∣U(t)φ⟩

+⟨U(t)φ∣c(Φt(x, ξ), y, h̵Dy)∣
i

h̵
HU(t)φ⟩

+⟨U(t)φ∣{H(Φt(x, ξ)), c(Φt(x, ξ), y, h̵Dy)}∣U(t)φ⟩ .

In other words

d

dt
⟨U(t)φ∣c(Φt(x, ξ), y, h̵Dy)∣U(t)φ⟩

= ⟨U(t)φ∣ i
h̵
[H, c(Φt(x, ξ), y, h̵Dy)]∣U(t)φ⟩

+⟨U(t)φ∣{H(Φt(x, ξ)), c(Φt(x, ξ), y, h̵Dy)}∣U(t)φ⟩ .
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A straightforward computation shows that

{Hλ(Φt(x, ξ)), c(Φt(x, ξ), y, h̵Dy)} +
i

h̵
[Hλ, cλ(Φt(x, ξ), y, h̵Dy)]

= λ
d

∑
k=1

((Xk − yk)(Ξk − h̵Dyk) + (Ξk − h̵Dyk)(Xk − yk))

−
d

∑
k=1

((∂kV (X) − ∂kV (y))(Ξk − h̵Dyk) + (Ξk − h̵Dyk)(∂kV (X) − ∂kV (y)))

≤ λ
d

∑
k=1

(∣Xk−yk ∣2+∣Ξk−h̵Dyk ∣2)+
d

∑
k=1

(∣∂kV (X)−∂kV (y)∣2+∣Ξk−h̵Dyk ∣2)

≤ λ
d

∑
k=1

(∣Xk − yk ∣2 + ∣Ξk − h̵Dyk ∣2) +max(1,Lip(∇V )2)
d

∑
k=1

(∣Xk − y∣2 + ∣Ξk − h̵Dyk ∣2)

≤ (λ +max(1,Lip(∇V )2)) c(X,Ξ, y, h̵Dy) .

Hence

⟨U(t)φ∣c(Φt(x, ξ), y, h̵Dy)∣U(t)φ⟩ ≤ ⟨φ∣c(x, ξ, y, h̵Dy)∣φ⟩

+ (λ +max(1,Lip(∇V )2))∫
t

0
⟨U(s)φ∣c(Φs(x, ξ), y, h̵Dy)∣U(s)φ⟩ds

so that

⟨U(t)φ∣c(Φt(x, ξ), y, h̵Dy)∣U(t)φ⟩
≤ ⟨φ∣c(x, ξ, y, h̵Dy)∣φ⟩ exp ((λ +max(1,Lip(∇V )2)) t)

for each φ ∈ C∞
c (Rd). By density of C∞

c (Rd) in the form domain of c(x, ξ, y, h̵Dy)

0 ≤ ⟨U(t)ej(x, ξ)∣c(Φt(x, ξ), y, h̵Dy)∣U(t)ej(x, ξ)⟩
≤ ⟨ej(x, ξ)∣cλ(x, ξ, y, h̵Dy)∣ej(x, ξ)⟩ exp ((λ +max(1,Lip(∇V )2)) t)

for a.e. (x, ξ) ∈ Rd ×Rd, so that

traceH(
√
Qin(x, ξ)U(t)c(Φt(x, ξ), y, h̵Dy)U(t)∗

√
Qin(x, ξ))

= ∑
j∈N

ρj(x, ξ)⟨U(t)ej(x, ξ)∣c(Φt(x, ξ), y, h̵Dy)∣U(t)ej(x, ξ)⟩

≤ exp ((λ +max(1,Lip(∇V )2)) t) ∑
j∈N

ρj(x, ξ)⟨ej(x, ξ)∣c(x, ξ, y, h̵Dy)∣ej(x, ξ)⟩

= exp ((λ +max(1,Lip(∇V )2)) t) traceH(
√
Qin(x, ξ)c(x, ξ, y, h̵Dy)

√
Qin(x, ξ)) .

Integrating both side of this inequality over Rd ×Rd shows that

E(t) ≤ E(0) exp ((λ +max(1,Lip(∇V )2)) t) .

Hence, for each t ≥ 0 and each Qin ∈ C(f,R), one has

Eh̵(f(t),R(t))2 ≤ E(0) exp ((λ +max(1,Lip(∇V )2)) t) .

Minimizing the right hand side of this inequality as Qin runs through C(f in,Rin)
leads to the desired inequality.
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Appendix B. Expressing Theorems 3.1, 3.2
in Terms of Density Operators

In this appendix, we express our main results, Theorems 3.1, 3.2 with their
Corollaries 3.4 and 3.5, as upper bounds on some appropriate distance between the
exact solution of the von Neumann equation and its time-splitting approximation.

Definition B.1. For all R,S ∈ D(H) and each integer M ≥ 0, we set

dM(R,S) ∶= sup
max

∣α∣,∣β∣≤M
∥Dα

−ih̵∇D
β
xF ∥1≤1

∣ trace (F (R − S))∣ ,

where DA = 1
ih̵

[A, ⋅] for each (possibly unbounded) self-adjoint operator A on H.

One might worry that the definition of dM involves h̵ through the operator −ih̵∇
and in the definition of DA. However, the correspondence principle in quantum me-
chanics stipulates that i

h̵
[⋅, ⋅] is the quantum analogue of the usual Poisson bracket

{⋅, ⋅}, while −ih̵∇ is the momentum operator, that is the quantum analogue of the
momentum variable in the Hamiltonian formulation of classical mechanics. There-
fore, both expressions i

h̵
[⋅, ⋅] and −ih̵∇ should be thought of as being “of order h̵0 ”

in the semiclassical regime.

First we check that dM metrizes D(H). The (uninteresting) case M = 0 corre-
sponds to the distance associated to the operator norm: d0(R,S) = ∥R − S∥.
Lemma B.2. The function dM ∶ D(H) × D(H) → [0,+∞[ is a distance.

Proof. That dM is symmetric and satisfies the triangle inequality is obvious by
construction. The only thing to check is the separation property.

Let f ≡ f(q, p) ∈ S(Rd ×Rd) and set F ∶= OPTh̵ (f). Elementary computations
show that

[xj ,OPTh̵ (f)] = OPTh̵ (−ih̵∂pf) , [−ih̵∂xj ,OPTh̵ (f)] = OPTh̵ (ih̵∂qf) .
Moreover, for each bounded Borel measure µ on Rd ×Rd, one has

∥OPTh̵ (µ)∥1 ≤ 1
(2πh̵)d∬

Rd×Rd
∣µ∣(dqdp) .

(To see this, split µ into its positive and negative parts as µ+−µ−, and observe that

∥OPTh̵ (µ±)∥1 = traceH(OPTh̵ (µ±)) = 1
(2πh̵)d∬

Rd×Rd
µ±(dqdp) ,

together with the fact that µ± ≥ 0 implies that OPTh̵ (µ±) ≥ 0, while ∣µ∣ = µ+ + µ−.)
Therefore

(24)

dM(R,S) ≥ sup
f∈S(Rd×Rd)

max
∣α∣,∣β∣≤M

∥∂αξ ∂
β
x f∥L∞≤1

∣ traceH(OPTh̵ (f)(R − S))∣

= sup
f∈S(Rd×Rd)

max
∣α∣,∣β∣≤M

∥∂αξ ∂
β
x f∥L∞≤1

∬
Rd×Rd

f(q, p)(W̃h̵(R) − W̃h̵(S))(q, p)dqdp .

Therefore dM(R,S) = 0 implies that W̃h̵(R) = W̃h̵(S) in S ′(Rd×Rd) and therefore

pointwise on Rd ×Rd (since W̃h̵(R), W̃h̵(S) are analytic functions on phase space).
Since any density operator on H is uniquely determined by its Husimi transform
(see Remark 2.3 on p. 64 in [10]), this implies in turn that R = S. �
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Next we formulate our main results, i.e. Theorems 3.1, 3.2 with their Corollaries
3.4 and 3.5 in terms of the distance dM between the exact solution of the von
Neumann equation and its time-splitting approximation. Here is the result for the
simple splitting method.

Theorem B.3 (Simple splitting). Under the same assumptions and with the same
constants as in Theorem 3.1, one has

d[d/2]+2(Rn,R(n∆t)) ≤ CT∆t + 2
√
dh̵ (Dd + exp ( 1

2
T (1 +max(1,Lip(∇V )2)))) ,

where the constant Dd > 0 depends only on the dimension d and is defined in (25).
Under the same assumptions and with the same constants as in Corollary 3.4,

d[d/2]+2(Rn,R(n∆t)) ≤ C ′[T,V,µin]∆t1/3 ,

where C ′[T,V,µin] is defined in (27).

As for the Strang splitting method, one has the following convergence estimate.

Theorem B.4 (Strang splitting). Under the same assumptions and with the same
constants as in Theorem 3.2, one has

d[d/2]+2(Rn,R(n∆t)) ≤DT∆t2 + 2
√
dh̵ (Dd + exp ( 1

2
T (1 +max(1,Lip(∇V )2)))) ,

where the constant Dd > 0 depends only on the dimension d and is defined in (25).
Under the same assumptions and with the same constants as in Corollary 3.5,

d[d/2]+2(Rn,R(n∆t)) ≤D′[T,V,µin]∆t2/3 ,

where D′[T,V,µin] is defined in (28).

These four results are obvious or straightforward corollaries of Theorems 3.1 and
3.2, and of Corollaries 3.4 and 3.5, and of the following proposition.

Proposition B.5. Let R,S ∈ D2(H), with Wigner transforms Wh̵(R),Wh̵(S) and

Husimi transforms W̃h̵(R), W̃h̵(S). For each integer M ≥ 0, define

δM(Wh̵(R),Wh̵(S))

∶= sup
f∈L2(R2d)

max
∣α∣,∣β∣≤M

∥∂αx ∂
β
ξ
f∥L∞≤1

∣∫ (Wh̵(R)(x, ξ) −Wh̵(S)(x, ξ))f(x, ξ)dxdξ∣ .

Then

d[d/2]+2(R,S) ≤ δ[d/2]+2(Wh̵(R),Wh̵(S)) ≤ distMK,2(W̃h̵(R), W̃h̵(S)) +Cd
√
h̵

where Cd > 0 depends only on the dimension d and is given by (29). Moreover

δ[d/2]+1(Wh̵(R),Wh̵(S)) ≤ ∥R − S∥1 .

Indeed, the first inequality in Proposition B.5 together with Theorem 3.1 (resp.
Theorem 3.2) immediately implies the first inequality in Theorem B.3 (resp. The-
orem B.4), with

(25) Dd ∶= 1 + Cd

2
√
d
.
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For the uniform bounds in Theorems B.3 and B.4, we proceed as follows: first,
Proposition B.5 implies that

(26)
d[d/2]+2(Rnh̵ ,Rh̵(n∆t))

≤ min(∥Rnh̵ −Rh̵(n∆t)∥1,distMK,2(W̃h̵(Rnh̵), W̃h̵(Rh̵(n∆t))) +Cd
√
h̵) .

Now, in the case of the simple splitting method, we bound ∥Rnh̵ −Rh̵(n∆t)∥1 as

in (18), and distMK,2(W̃h̵(Rnh̵), W̃h̵(Rh̵(n∆t))) as in Theorem 3.1. This gives the
inequality

d[d/2]+2(Rnh̵ ,Rh̵(n∆t))

≤ min
⎛
⎝

4
∆t

h̵
M(V ) (M(V )t2 +

√
2h̵ + d + ∫

R2d
∣p∣µin(dqdp)) ,

CT∆t + 2
√
dh̵ (Dd + exp ( 1

2
T (1 +max (1,Lip(∇V )2))))

⎞
⎠
.

This implies the second inequality in Theorem B.3 by the same argument as in the
proof of Corollary 3.4, with
(27)

C ′[T,V,µin] ∶= max
⎛
⎝

4
√

2M(V ),CT ,4M(V ) (M(V )T 2 + d + ∫
R2d

∣p∣µin(dqdp))

2
√
d (Dd + exp ( 1

2
T (1 +max(1,Lip(∇V )2))))

⎞
⎠
.

The case of the Strang splitting method is treated similarly: in the right hand
side of (26), the first argument in the max, i.e. ∥Rnh̵ − Rh̵(n∆t)∥1 is bounded by
M ′[T,V,µin]∆t2/h̵ as in the proof of Corollary 3.5, while the second argument

in the max, i.e. distMK,2(W̃h̵(Rnh̵), W̃h̵(Rh̵(n∆t))) is bounded as in Theorem 3.2.
Proceeding in this way, one arrives at

d[d/2]+2(Rnh̵ ,Rh̵(n∆t))

≤ min(M ′[T,V,µin]∆t2

h̵
,DT∆t2 + 2

√
dh̵ (Dd + exp ( 1

2
t(1 +max(1,Lip(∇V )2)))))

This implies the second inequality in Theorem B.4 by the same argument as in the
proof of Corollary 3.5, with

(28)
D′[T,V,µin] ∶= max (DT ,M

′[T,V,µin],

2
√
d (Dd + exp ( 1

2
T (1 +max(1,Lip(∇V )2)))) ) .

Proof of Proposition B.5. The proof is split in several steps.
(a) Proof of the first right inequality. For each f ∈ S(Rd ×Rd), write

∬
Rd×Rd

f(x, ξ)(Wh̵(R − S))(x, ξ)dxdξ =∬
Rd×Rd

f(x, ξ)(W̃h̵(R − S))(x, ξ)dxdξ

−∬
Rd×Rd

g(x, ξ)(Wh̵(R − S))(x, ξ)dxdξ ,
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where g ∶= eh̵∆x,ξ/4f − f . Since R,S ∈ L1(H) ⊂ L2(H), and the Plancherel theorem
implies that

∥Wh̵(T )∥2
L2(Rd×Rd) =

1

(2πh̵)d ∥T ∥2
2

for each Hilbert-Schmidt operator T , by using the formula expressing ∥T ∥2 in terms
of the integral kernel of T , all the integrals above are well defined. First

∣∬
Rd×Rd

f(x, ξ)(W̃h̵(R − S))(x, ξ)dxdξ∣ ≤ Lip(f)distMK,2(W̃h̵(R), W̃h̵(S))

by using successively formulas (7.1) and formula (7.3) in chapter 7 of [20]. On the
other hand

∬
Rd×Rd

g(x, ξ)(Wh̵(R − S))(x, ξ)dxdξ = traceH(OPWh̵ (g)(R − S))

where OPWh̵ (a) is the Weyl operator of symbol a ≡ a(x, ξ) ∈ S(Rd × Rd), whose
integral kernel is the function

(x, y) ↦ 1
(2πh̵)d ∫

Rd
a ( 1

2
(x + y), ζ) eiζ⋅(x−y)/h̵dζ .

According to the Calderon-Vaillancourt theorem (see [3])

∥OPWh̵ (g)∥ ≤ γd max
∣α∣,∣β∣≤d/2+1

∥∂αx ∂βξ g∥L∞(Rd×Rd) .

On the other hand

∂αx ∂
β
ξ g(x, ξ) = ((eh̵∆x,ξ/4 − I)∂αx ∂βξ f) (x, ξ)

= 1
πd∬

Rd×Rd
(∂αx ∂βξ f(x + h̵

1/2z, ξ + h̵1/2ζ) − ∂αx ∂βξ f(x, ξ))e
−∣z∣2−∣ζ∣2dzdζ ,

so that

max
∣α∣,∣β∣≤d/2+1

∥∂αx ∂βξ g∥L∞(Rd×Rd)

≤
√
h̵ max

∣α∣,∣β∣≤d/2+2
∥∂αx ∂βξ f∥L∞(Rd×Rd)

1
πd∬

Rd×Rd
(∣z∣ + ∣ζ ∣)e−∣z∣

2−∣ζ∣2dzdζ

≤ dπ−1/2√h̵ max
∣α∣,∣β∣≤d/2+2

∥∂αx ∂βξ f∥L∞(Rd×Rd) .

Therefore

∣∬
Rd×Rd

f(x, ξ)(Wh̵(R − S))(x, ξ)dxdξ∣ ≤ Lip(f)distMK,2(W̃h̵(R), W̃h̵(S))

+ d√
π
γd

√
h̵ max

∣α∣,∣β∣≤d/2+2
∥∂αx ∂βξ f∥L∞(Rd×Rd)(∥R∥1 + ∥S∥1)

≤ distMK,2(W̃h̵(R), W̃h̵(S)) + 2d√
π
γd

√
h̵

for all f ∈ S(Rd ×Rd) such that

max
∣α∣,∣β∣≤d/2+2

∥∂αx ∂βξ f∥L∞(Rd×Rd) ≤ 1 .

By density of S(Rd × Rd) in L2(Rd × Rd), this implies the first right inequality
with

(29) Cd ∶= 2d√
π
γd

where γd is the constant that appears in the Calderon-Vaillancourt theorem (as
stated in [3]).
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(b) Proof of the first left inequality. Elementary computations show that

Wh̵(T )(x, ξ) = traceH(TN(x, ξ)) ,
where N(x, ξ) is the operator defined, for each φ ∈ H, by the formula

(N(x, ξ)φ)(Y ) = 1

(πh̵)dφ(2x − Y )e−2iξ⋅(x−Y )/h̵ .

Moreover

N(x, ξ) = 1

(πh̵)d e
i
h̵ ξ⋅Y e−

i
h̵ (−ih̵x⋅∇Y )Je

i
h̵ (−ih̵x⋅∇Y )e−

i
h̵ ξ⋅Y

where Jφ(Y ) ∶= φ(−Y ). Hence

∂ξjN(x, ξ) = − 1

ih̵
[Yj ,N(x, ξ)] , ∂xjN(x, ξ) = 1

ih̵
[−ih̵∂Yj ,N(x, ξ)] , j = 1, . . . , d .

Since DYj and D−ih̵∂Yk commute for all j, k = 1, . . . , d by the canonical commutation
relations,

∂αx ∂
β
ξN(x, ξ) = (−1)∣β∣DβYD

α
−ih̵∂YN(x, ξ) ,

and therefore

∂αx ∂
β
ξWh̵(T )(x, ξ) =(−1)∣β∣ traceH(TDβYD

α
−ih̵∂YN(x, ξ))

=(−1)∣α∣ traceH(N(x, ξ)DβYD
α
−ih̵∂Y T )

=(−1)∣α∣Wh̵(DβYD
α
−ih̵∂Y T )(x, ξ)

=(−1)∣α∣ traceH(N(x, ξ)DβYD
α
−ih̵∂Y T )

for all α,β ∈ Nd and each T such that DβYDα−ih̵∂Y T ∈ L1(H). Hence

∥∂αx ∂βξWh̵(T )∥L∞(Rd×Rd) ≤
1

(πh̵)d ∥D
β
YD

α
−ih̵∂Y T ∥1

for all α,β ∈ Nd and each T such that DβYDα−ih̵∂Y T ∈ L1(H).
Now, for each R,S ∈ D(H) and each F ∈ L1(H), one has

traceH(F ∗(R − S)) = (2πh̵)d∬
Rd×Rd

Wh̵(F )(x, ξ)Wh̵(R − S)(x, ξ)dxdξ .

Thus

dM(R,S) ≤ sup
max∣α∣,∣β∣≤M ∥Dβ

Y
Dα
−ih̵∂Y

F ∥1≤1

∣ traceH(F (R − S))∣

≤ sup
max∣α∣,∣β∣≤M ∥(πh̵)d∂αx ∂

β
ξ
Wh̵(F )∥L∞≤1

(2πh̵)d∬
Rd×Rd

Wh̵(F )Wh̵(R − S)(x, ξ)dxdξ

≤ sup
f∈L2

(Rd×Rd)

(πh̵)dmax
∣α∣,∣β∣≤M ∥∂αx ∂

β
ξ
f∥L∞≤1

∣∬
Rd×Rd

(2πh̵)dfWh̵(R − S)(x, ξ)dxdξ∣

≤ sup
g∈L2

(Rd×Rd)

max
∣α∣,∣β∣≤M ∥∂αx ∂

β
ξ
g∥L∞≤1

2d ∣∬
Rd×Rd

gWh̵(R − S)(x, ξ)dxdξ∣

≤ 2dδM(Wh̵(R),Wh̵(S)) ,
which implies the first left inequality.
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(c) Proof of the second inequality. Proceeding as in step (a) above, one has, for
each g ∈ S(Rd ×Rd),

∣∬
Rd×Rd

gWh̵(R − S)(x, ξ)dxdξ∣ =∣ traceH(OPWh̵ (g)(R − S))∣

≤∥OPWh̵ (g)∥∥R − S∥1

≤γd max
∣α∣,∣β∣≤[d/2]+1

∥∂αx ∂βξ g∥L∞(Rd×Rd)∥R − S∥1

by the Calderon-Vaillancourt theorem (see [3]). This implies the second inequality
by density of S(Rd ×Rd) in L2(Rd ×Rd). �

Remark B.6. Two remarks are in order after this proof.

(1) The same argument as in step (a) of the proof of Proposition B.5 implies that,
for each probability density ρ on Rd ×Rd such that

∬
Rd×Rd

(∣x∣2 + ∣ξ∣2)ρ(x, ξ)dxdξ < ∞

one has

δ[d/2]+2(ρ,Wh̵(S)) ≤distMK,2(ρ, W̃h̵(S)) + 1
2
Cd

√
h̵

≤
√
Eh̵(ρ,S)2 + dh̵ + 1

2
Cd

√
h̵ ≤ Eh̵(ρ,S)) + ( 1

2
Cd +

√
d)

√
h̵ .

(The second inequality follows from Proposition 2.6 (b), the third being obvious.)
While we do not use this bound here, it may be of independent interest.
(2) Of course, one can also use the first right inequality in Proposition B.5 to ex-
press Theorems B.3 and B.4 in terms of δ[d/2]+2(Wh̵(Rnh̵),Wh̵(Rh̵(n∆t))) instead of
d[d/2]+2(Rnh̵ ,Rh̵(n∆t)). We have chosen not to add these bounds in the statements
of Theorems B.3 and B.4 for the sake of simplicity.
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