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Abstract. This paper states that Model-Free Control (MFC), which
must not be confused with Model-Free Reinforcement Learning, is a new
tool for Machine Learning (ML). MFC is easy to implement and should
be substituted in control engineering to ML via Artificial Neural Net-
works and/or Reinforcement Learning. A laboratory experiment, which
was already investigated via today’s ML techniques, is reported in order
to confirm this viewpoint.
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1 Introduction

The huge popularity today of Machine Learning (ML) is due to many beau-
tiful achievements of Artificial Neural Networks (ANNs) (see, e.g., [41, 42, 67])
and Reinforcement Learning (RL) (see, e.g., [72]). Let us quote [63]: “Reinforce-
ment Learning is the subfield of machine learning that studies how to use past
data to enhance the future manipulation of a dynamical system. A control en-
gineer might be puzzled by such a definition and interject that this precisely
the scope of control theory. That the RL and the control theory communities
remain practically disjoint has led to the co-development of vastly different ap-
proaches to the same problems. However, it should be impossible for a con-
trol engineer not to be impressed by the recent successes of the RL community
such as solving Go [68].” Many concrete case-studies have already been inves-
tigated: see, e.g., [3, 9, 13, 14, 16, 17, 21, 22, 32, 35, 40, 43–45, 47, 52–54, 56, 59–61,
70, 76, 77, 79, 80, 83, 85, 87–89]. Although those works are most promising, they
show that ANNs and RL have perhaps not provided in this field such stunning
successes as they did elsewhere.
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Remark 1. The connection of RL with optimal control is known since ever (see,
e.g., [15, 38, 63]). According to [48, 49] tools stemming from advanced control
theory should enhance RL in general.

This communication suggests another route: Model-Free Control (MFC ) in
the sense of [25].

Remark 2. The meaning of Model-Free Reinforcement Learning is quite distinct.
In model-free RL there is no transition probability distribution, i.e., no model
(see, e.g., [71, 72]). Q-learning is an example which has been used several times
in control engineering.

MFC, which is easy to implement both from software [25] and hardware [33]
viewpoints, leads to many acknowledged applications (see the bibliographies in
[25], [6] for most references until 2018).4 The relationship with ML is sketched
below.

Consider a system S with a single input u and a single output y. Under
rather weak assumptions S may be approximated (see [25] and Section 2) by the
ultra-local model :

ẏ(t) = F (t) + αu(t) (1)

where F encompasses not only the poorly known structure of S but also the
disturbances. Since α is a constant that is easy to nail down (see Section 2.2),
the main task is to determine the time-dependent quantity F (t). A real-time
estimate Fest(t) is given thanks to a new parameter identification technique [26,
27, 69] by the following integral of the input-output data

Fest(t) = − 6

τ3

∫ t

t−τ
[(τ − 2σ)y(σ) + ασ(τ − σ)u(σ)] dσ (2)

where τ > 0 is small. Formula (2), which ought to be viewed as a kind of unsu-
pervised learning (see, e.g., [65]) procedure, takes into account the time arrow:
the structure of S and especially the disturbances might be time-varying in an
unexpected way. Moreover the unavoidable corrupting noises are attenuated by
the integral, which is a low pass filter (see Remark 3). Associate the feedback
loop [25]

u = −Fest − ẏ? +KP e

α
(3)

where

– y? is a reference trajectory,

– e = y − y? is the tracking error,

– KP ∈ R is a gain.

4 Some applications are patented. Others have been published more recently (see, e.g,
[1, 2, 7, 8, 18–20, 28–31, 36, 51, 55, 57, 58, 62, 64, 66, 73–75, 78, 81, 84, 86]).
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It has been baptised intelligent proportional controller (iP), already some time
ago [24]: this unsupervised learning permits not only to track the reference tra-
jectory but also to limit the effects of the disturbances and of the poor system
understanding (see Section 2.3 for further details). Note that ANNs and RL,
and the corresponding methods from computer sciences and mathematics, are
not employed.5

In order to support our viewpoint a lab experiment has been selected. A
half-quadrotor is available to one of the authors (C.J.). Moreover quadrotors
and half-quadrotors have been already examined via ANNs and RL: see, e.g.,
[32, 40, 61, 79].6 Our results are not only excellent but also easy to obtain. The
interested reader is invited to compare with the above references. It has been
moreover shown [20] that the performances of MFC with respect to quadrotors
are superior to those of PIDs (see, e.g., [4, 5]).7

This communication is organized as follows. MFC is reviewed in Section 2.
Section 3 discusses the lab experiment. Some concluding remarks may be found
in Section 4.

2 MFC as a ML technique

2.1 The input-output system as a functional

Consider for notational simplicity a SISO system, i.e., a system with a single
control variable u(t) and a single output variable y(t), where t ≥ 0 is the time.
Even without knowing any “good” mathematical model we may assume that the
system corresponds to a functional (see, e.g., [37]), i.e., a function of functions,

y(t) = F (u(t) | 0 ≤ t ≤ t) (4)

F depends not only on initial conditions at t = 0, but also on the unavoidable
disturbances.

2.2 The ultra-local model

It has been demonstrated [25] that, under mild assumptions, the input-output
behavior (4) may be well approximated by the ultra-local model :

y(n)(t) = F (t) + αu(t)

where the order n ≥ 1 of derivation is in all known examples equal to 1 or 2.
In most concrete case-studies, n = 1. The case n = 2 arises, for instance, with
weak frictions [25] (see, e.g., [50] for a concrete case-study). Consider from now
on only the case n = 1, i.e, Equation (1), which works well in Section 3:

5 It is perhaps worth mentioning that some other fields of computer sciences might
benefit from MFC (see, e.g., [10, 34]).

6 Numerous other references do not use any traditional AI techniques.
7 Proportional-Integral-Derivative (PID) controllers ought to be regarded as the

“bread and butter” of control engineering!
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– The time-dependent quantity F is not only encompassing the internal struc-
ture of the system, which may be poorly known, but also the disturbances.
Write Fest its estimate which is derived in Section 2.4.

– The constant α ∈ R is chosen by the practitioner such that the three terms
in Equation (1) are of the same magnitude. A precise determination of α
is therefore meaningless. In practice α is easily chosen via two possible ap-
proaches:

• the absolute value |αu(t)y(t) | is not too far from 1,

• trial and error, i.e., a kind of supervised learning (see, e.g., [65]).

2.3 Intelligent proportional controllers

Close the loop in Equation (1) with the iP (3). Equations (1) and (3) yield

ė+KP e = F − Fest

If the estimation Fest is “good”: F − Fest is “small”, i.e., F − Fest ' 0, then
limt→+∞ e(t) ' 0 if KP > 0. It implies that the tuning of KP is quite straight-
forward.8 This is a major benefit when compared to the tuning of “classic” PIDs
(see, e.g., [4, 5]).

2.4 ML via the estimation of F

Any function, for instance F in Equation (1), may be approximated under a
weak integrability assumption by a piecewise constant function (see, e.g., [12]).
The estimation techniques below are borrowed from [26, 27, 69].

First approach Rewrite Equation (1) in the operational domain (see, e.g.,
[82]):

sY =
Φ

s
+ αU + y(0)

where Φ is a constant. We get rid of the initial condition y(0) by multiplying
both sides on the left by d

ds :

Y + s
dY

ds
= − Φ

s2
+ α

dU

ds

Noise attenuation is achieved by multiplying both sides on the left by s−2. It
yields in the time domain the real-time estimate Formula (2) thanks to the
equivalence between d

ds and the multiplication by −t, where τ > 0 might be
quite small. This integral, which is a low pass filter, may of course be replaced
in practice by a classic digital linear filter.

8 See, e.g., in [74] an optimization procedure, which, in some sense, is closer to today’s
viewpoint on ML.
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Second approach Close the loop with the iP (3). It yields:

Fest(t) =
1

τ

[∫ t

t−τ
(ẏ? − αu−KP e) dσ

]
Remark 3. Noises, which are usually described in engineering and, more gener-
ally, in applied sciences via probabilistic and statistical tools, are related here
to quick fluctuations around 0 [23]: The integral of any such noise over a finite
time interval is close to 0. The robustness with respect to corrupting noises is
thus explained. See, e.g., [11, 69] for concrete applications in signal processing
where the parameter estimation techniques of [26, 27, 69] have been employed.

2.5 MIMO systems

Consider a multi-input multi-output (MIMO) system with m control variables
ui and m output variables yi, i = 1, . . . ,m, m ≥ 2. It has been observed in [39]
and confirmed by all encountered concrete case-studies (see, e.g., [75]), that such
a system may usually be regulated via m monovariable ultra-local models:

y
(ni)
i = Fi + αiui (5)

where Fi may also depend on uj , yj , and their derivatives, j 6= i.

3 Experiments: A half-quadrotor

3.1 Process description

Our half-quadrotor (see Fig. 1), called AERO, is manufactured by Quanser.9 Two
motors driving the propellers, which might turn clockwise or not, are controlling
the angular positions: the azimuth (horizontal) velocity and pitch (vertical) po-
sition of the arms. Outputs y1 and y2 ares respectively mesures of the azimuth
velocity (rad/ms) and pitch position (rad). Write vi, i = 1, 2, the supply voltage
of motor i, where −24v ≤ vi ≤ 24v (volt). Measures and control inputs are
updated each 10ms.

3.2 Control

It is clear that yi, i = 1, 2, is mainly influenced by vi. Equations (5) and (3)
become

ẏi = Fi + αiui (6)

ui = −Fi,est − ẏ
? +KP,iei
αi

(7)

The control variable ui in Equation (6) is defined by

– if ui > 0, then vi = 10 + ui,
– if ui < 0, then vi = −10 + ui.

In Equations (6)-(7), set α = 0.001, KP,1 = 0.5, α2 = 5, KP,2 = 500. Everything
is programed in C# and stored in the server.

9 See the link https://www.quanser.com/products/quanser-aero/
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Fig. 1. The Quanser AERO half-quadrotor

3.3 Experiments

Nominal half-quadrotor Consider two scenarios:

– scenario 1 – simple reference trajectory (see Fig. 3 and 4 ),
– scenario 2 – complex reference trajectory (see Fig. 5 and 6).

The tracking is excellent in both cases in spite of the rotating blades, the gyro-
scopic effects, and the frictions, which are all taken into account by Fi.

Adding a mass Fig. 2. shows that a mass of 4 grams is added. It is taken into
account by Fi, i = 1, 2. There is no new calibration. Keep the previous scenarios:

– scenario 3 – simple reference trajectory (see Fig. 7 and 8),
– scenario 4 – complex reference trajectory (see Fig. 9 and 10).

The tracking does not deteriorate.



Model-free control 7

Fig. 2. Additive masses on the AERO

4 Conclusion

Of course further studies are needed in order to support the thesis of this paper.
MFC might not be able to provide a satisfactory fault detection.10 The rôle of
ANNs and RL might then be compelling (see, e.g., [46]).

The epistemological connections of MFC with other existing approaches in
AI (see, e.g., [65]), Wiener’s cybernetics and expert systems for instance, will be
analyzed elsewhere.

10 See [25, 39] for fault accommodation.



8 Michel Fliess and Cédric Join

References

1. Abbaker, A.M.O., Wang, H., Tian, Y., 2020. Voltage control of solid oxide fuel cell
power plant based on intelligent proportional integral-adaptive sliding mode control
with anti-windup compensator. Trans. Inst. Measur. Contr., 42, 116-130.
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https://hal.archives-ouvertes.fr/hal-02546750/en/

35. Kahn, S.G., Hermann, G., Lewis, F.L., Pipe, T., Melhuish, C., 2012. Reinforcement
learning and optimal adaptive control: An overview and implementation examples.
Annu. Rev. Contr., 36, 42-52.

36. Kizir, S., Bingül, Z., 2019. Design and development of a Steward platform assisted
and navigated transphenoidal surgery. Turk. J. Elec. Eng. Comp. Sci., 27, 961-972.

37. Kolmogorov, A.N., Fomin, S.V., 1957 & 1961. Elements of the Theory of Functions
and Functional Analysis, vol. 1 & 2 (translated from the Russian). Graylock.



10 Michel Fliess and Cédric Join

38. Kiumarsi, B., Vamvoudakis, K.G., Modares, H., Lewis, F.L., 2018. Optimal and
autonomous control using reinforcement learning: A survey. IEEE Trans. Neural
Netw. Learn. Syst., 29, 2042-2062.

39. Lafont, F., Balmat, J.-F., Pessel, N., Fliess, M., 2015. A model-free control strat-
egy for an experimental greenhouse with an application to fault accommodation.
Comput. Electron. Agricul., 110, 139-149.

40. Lambert, N.O., Drew, D.S., Yaconelli, J., Levine, S., Calandra, R., Pister, K.S.J.,
2019. Low-level control of a quadrotor with deep model-based reinforcement learn-
ing. IEEE Robot. Automat. Lett., 4, 4224-4230.

41. Le Cun, Y., 2019. Quand la machine apprend. Odile Jacob, 2019.
42. LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature, 521, 436-444.
43. Li, S., Zhang, Y., 2018. Neural Networks for Cooperative Control of Multiple

Robot Arms. Springer.
44. Lucia, S., Karg, B., 2018. A deep learning-based approach to robust nonlinear

model predictive control. IFAC PapersOnLine, 51-20, 511-516.
45. Luo, B., Liu, D., Huang, T., Wang, D., 2016. Model-free optimal tracking control

via critic-only Q-learning. IEEE Trans. Neural Netw. Learn. Syst., 27, 2134-2144.
46. Lv, F., Wen, C., Bao, Z., Liu, M., 2016. Fault diagnosis based on deep learning.

Amer. Contr. Conf., Boston.
47. N. Ma, G. Song, H.-J. Lee. Position control of shape memory alloy actuators with

internal electrical resistance feedback using neural networks. Smart Mater. Struct.,
13, 777-783, 2004.

48. Matni, N., Proutiere, A., Rantzer, A., Tu, S., 2019. From self-tuning regulators to
reinforcement learning and back again. 58th Conf. Decis. Contr., Nice, 2019.

49. Matni, N., Tu, S., 2019. A tutorial on concentration bounds for system identifica-
tion. 58th Conf. Decis. Contr., Nice.

50. Menhour L., d’Andréa-Novel, B., Fliess, M., Gruyer, D., Mounier, H., 2018. An
efficient model-free setting for longitudinal and lateral vehicle control: Validation
through the interconnected Pro-SiVIC/RTMaps. IEEE Trans. Intel. Transp. Syst.,
19, 461-475.

51. Michailidis, I.T., Schild, T., Sangi, R., Michailidis, P., Korkas, C., Fütterer, J.,
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des concentrations résiduelles. J. Water Sci., 31, 61-73.

65. Russel, S., Norvig, P., 2016. Artificial Intelligence – A Modern Approach (3rd ed.).
Pearson.

66. Sancak, C., Yamac, F., Itik, M., Alici, G., 2019. Model-free control of an electro-
active polymer actuator. Mater. Res. Expr., 6, 055309.

67. Sejnowski, T.J., 2020. The unreasonable effectiveness of deep learning in artificial
intelligence. Proc. Nat. Acad. Sci., https://doi.org/10.1073/pnas.1907373117

68. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,
S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., Hassabis, D., 2016. Mastering the game of Go with
deep neural networks and tree search. Nature, 529, 484-489.
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(a) Azimuth velocity (blue −−), reference trajectory (red −−)

(b) Control u1

Fig. 3. Scenario 1: Azimuth
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(a) Pitch position (blue −−), reference trajectory (red −−)

(b) Control u2

Fig. 4. Scenario 1: Pitch
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(a) Azimuth velocity (blue −−), reference trajectory (red −−)

(b) Control u1

Fig. 5. Scenario 2: Azimuth
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(a) Pitch position (blue −−), reference trajectory (red −−)

(b) Control u2

Fig. 6. Scenario 2: Pitch
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(a) Azimuth velocity (blue −−), reference trajectory (red −−)

(b) Control u1

Fig. 7. Scenario 3: Azimuth
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(a) Pitch position (blue −−), reference trajectory (red −−)

(b) Control u2

Fig. 8. Scenario 3: Pitch
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(a) Azimuth velocity (blue −−), reference trajectory (red −−)

(b) Control u1

Fig. 9. Scenario 4: Azimuth
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(a) Pitch position (blue −−), reference trajectory (red −−)

(b) Control u2

Fig. 10. Scenario 4: Pitch


