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Fast transient growth of hydrodynamic perturbations due to non-modal effects is shown to be
possible in an ablation flow relevant to inertial confinement fusion (ICF). Likely to arise in capsule
ablators with material inhomogeneities, such growths appear to be too fast to be detected by existing
measurement techniques, cannot be predicted by any of the methods previously used for studying
hydrodynamic instabilities in ICF, yet could cause early transitions to nonlinear regimes. These
findings call for reconsidering the stability of ICF flows within the framework of non-modal stability
theory.

Inertial confinement fusion (ICF) has been proposed
50 years ago as a viable means for harnessing thermonu-
clear fusion with the aim of producing energy. Proceed-
ing from early works on “making the smallest possible
fusion explosion” (cf. Ref. 1), ICF relies on implosion
flows and inertia forces to bring and maintain fusible el-
ements at required conditions for thermonuclear ignition
and burn [2]. This scheme emerged with the advent of
lasers as an unprecedented means of irradiating spheri-
cal capsules of millimeter size, filled with thermonuclear
fuel, at high energy fluxes capable of producing, over
nanoseconds, a fuel compression of thousands of times
solid density. Such high compressions critically depend,
however, on a mitigation of hydrodynamic instabilities
during capsule implosion, since these may hamper the
compression and heating of the fuel, and possibly ruin
the whole process. Since the very beginning of works on
the subject, this issue was recognized to be critical for
the success of ICF. In particular, the subsonic heat-wave
flow, or ablation flow, that results from the irradiation of
the outer layer, the ablator, of a fusion capsule and drives
its implosion, was right away considered as a dominant
source of hydrodynamic perturbation growth. Despite
several decades of dedicated numerical simulations, ex-
periments, theoretical works and improvements in the
understanding, prediction and mitigation of capsule im-
plosion perturbations, ICF is still in practice impeded by
issues of hydrodynamic instability (e.g. Refs. 3, 4).

The strongly compressible, nonuniform and unsteady
nature of capsule implosions renders the study of their
hydrodynamic stability especially arduous. Linear sta-
bility analyses have exclusively consisted in applying the
method of normal modes for idealized reduced portions
of the implosion flow (e.g. steady, quasi-isobaric, dis-
continuous ablation flows) or more realistic, i.e. simu-
lated, flows under the frozen-time assumption (cf. Ref. 5
and references therein). Such analyses, however, can
only yield asymptotic stability results and are inevitably
of restricted validity in time and wavenumber ranges,
given the implosion unsteadiness. In fewer instances, dy-
namical perturbation models capable of accounting for
mean flow evolutions, yet in simplified settings, have been

used (e.g. Refs. 6, 7). A more global approach, free
from such limitations, consists in computing perturba-
tion amplifications about an arbitrary base flow, solu-
tion to an initial and boundary value problem (IBVP),
as responses to selected initial and/or boundary pertur-
bations. This approach, sometimes called amplification
theory (AT), has been largely applied in ICF, especially
with multi-dimensional hydrodynamics codes dedicated
to ICF physics when simulating experiments, including
capsule implosions. Good agreements between AT com-
putations and specifically designed experiments where
a dominant, most dangerous, perturbation source is se-
lected by carefully controlling experimental conditions,
have helped building confidence in the ability of such
codes to reproduce instability dynamics (e.g. Refs. 8, 9).

However AT computations, carried out with these very
codes, still display unexplained discrepancies with abla-
tion experiments on capsule ablators at standard speci-
fications for fusion [10, 11]. In such experiments, many
perturbation sources are competing, without a clear dom-
inance of one on the others, and the characterization of
their initial or temporal contributions is insufficient for
setting up representative enough AT computations. The
matter is further complicated by the fact that even in-
dividually decaying perturbations, thus held innocuous,
can induce, through their interaction, perturbation tran-
sient growth [12]. In principle, AT computations could
capture such growth provided that they are started from
appropriate initial conditions. Yet, performing AT com-
putations for a sufficiently large set of eligible initial or
boundary conditions so as to identify those leading to
perturbation amplification, and, above all, to the max-
imum amplification, is unfeasible. Therefore a genuine
risk exists of missing the most detrimental instabilities
due to a lack of a proper methodology.

In this Letter, we show that non-modal stability theory
which exploits the fact that the short-time dynamics of a
system is not only ruled by the eigenvalues of its evolution
operator but also by this operator eigenfunctions [13],
sheds new light on the evolution of hydrodynamic insta-
bilites in ICF. Elaborated over the last thirty years, this
theory has been successful in elucidating some withstand-
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ing problems in hydrodynamic stability [14] but had yet
to be applied to the stability of ICF flows. This Letter
reports results from a first linear non-modal analysis, lo-
cal in space and time, of an ablation flow relevant to ICF
with clear evidences of non-modal effects.

The present stability analysis is conducted on a self-
similar ablation flow in slab symmetry representative of
the early stage of an ICF capsule implosion [15–18]. Such
a flow presents the essential features of the deflagra-
tion wave that prevails within the capsule ablator dur-
ing this stage of the implosion (compressibility, strati-
fication, unsteadiness), including its complete structure
(Fig. 1): (i) a leading shock front, (ii) a quasi-isentropic
compression (‘postshock’) region, (iii) an ablation layer,
and (iv) an expansion wave where heat conduction domi-
nates (‘conduction region’). A dimensionless formulation
of the equations of motion [17, 19] is retained so as to
keep the flow description as general as possible. For one-
dimensional motion along the x-axis of a Cartesian coor-
dinate system (O, x, y, z), the equations of motion, writ-
ten in the Lagrangian coordinate m where dm = ρdx,
come as

∂t(1/ρ)− ∂mvx = 0, ∂tvx + ∂mp = 0,
∂t(CvT + v2

x/2) + ∂m(pvx + ϕx) = 0,
(1)

where ρ, vx, p, T , ϕx denote, respectively, the fluid
density, velocity, pressure, temperature and heat flux as
functions of (m, t). This system is closed by the dimen-
sionless equation of state for a polytropic gas, p = ρT ,
with Cv = 1/(γ − 1) where γ is the fluid adiabatic ex-
ponent, along with the heat flux ϕx = −ρ−µT νρ ∂mT ,
µ ≥ 0, ν > 1. Self-similar reductions of Eq. (1)
arise when a semi-infinite slab (m ≥ 0), initially such
that (ρ, vx, T ) = (1, 0, 0), is subject to boundary con-
ditions, at the material surface m = 0, of the form:
ϕx(0, t) = Bφt3α−3, p(0, t) = Bpt2α−2, for t ≥ 0, with
α = (2ν − 1)/(2ν − 2). For the choice γ = 5/3, (µ, ν) =
(2, 13/2), Eq. (1) describes the motion of a monatomic
gas with the radiative conduction model of Kramers [20].
This modeling is an approximation for the ablation of
a fusion capsule ablator by hohlraum x rays in current
ICF laser facilities. This approximation is relevant to
the ablator opaque portion which stays at temperatures
below a few 106 Kelvin degrees and at thermodynamic
equilibrium. Radiation diffusive effects then dominate
those of thermal conduction and viscosity, and radiation
pressure and energy are negligible in front of their ma-
terial counterparts. If Eq. (1) cannot render non-gray
irradiation effects, it contains the basic diffusion mecha-
nism at stake, at the hydrodynamic scale, in this ablation
process. The particular solution (Bφ,Bp) = (0.8, 0.31) is
chosen for its main features that are typical of the early
stage of a capsule implosion [18]: subsonic ablation Mach
number, high (> 80) ablation front Froude number, steep
ablation front, and fast expansion flow with Chapman–
Jouguet point (Fig. 1). A high accuracy computation

FIG. 1: Self-similar ablation-wave solution to Eq. (1) for
γ = 5/3, (µ, ν) = (2, 13/2) and boundary condition param-
eters (Bφ,Bp) = (0.8, 0.31). Dimensionless spatial profiles in
the coordinate x at time t0 = 1 of the fluid density ρ, lon-
gitudinal velocity vx and heat flux ϕx. Correspondence with
the actual physical extent of the wave, relative to the shock
front, at the chosen reference time of capsule implosiona is
also indicated (top axis).

aSee Supplemental Material, Sec. II.

of this flow, down to its finest scales, is provided by an
adaptive multidomain Chebyshev method [21].

The stability of flows ruled by Eq. (1) is studied us-
ing an Eulerian description of three-dimensional linear
perturbations in the coordinate system (x, y, z). Once
expressed with the Lagrangian coordinate m and Fourier
transformed in the variables (y, z), the corresponding sys-
tem of governing partial differential equations (Eq. 4 in
Ref. [22]) reads in vector form

∂tÛ = A(m, t, ∂m., k⊥) Û, Û =
(
ρ̂ v̂x d̂⊥ T̂

)>
, (2)

for the yz-Fourier components of wavenumber k⊥ =√
k2
y + k2

z : f̂ , of the perturbations of the base flow vari-

ables f = ρ, vx, T , and d̂⊥, of the transverse divergence
of the transverse velocity perturbation. The perturbation
evolution operator, A, depends on space, time and the
wavenumber k⊥. Perturbation boundary conditions at
the geometrically deformed external surface (es) m = 0
and shock front (sf) m = msf(t) are supplementing this
system. Solutions to associated IBVPs are computed,
in space, using the same multidomain pseudospectral
method as for Eq. (1) and, in time, with a three-step
implicit-explicit Runge–Kutta scheme.

Modal stability analysis infers the stability of a dynam-
ical system, ruled by an equation like Eq. (2), from the
sole basis of the least stable eigenvalue of its evolution
operator, A. This analysis is correct if the eigenfunc-
tions of A form an orthogonal set—equivalently, if the
operator A is normal— and is otherwise only indicative
of the long-time behavior of the system. For short-time
horizons, a non-normal operator A may induce transient
growth of the system state variable through eigenfunc-
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tion interactions, even if the system is stable according
to modal analysis [13, 14] [26].

The possibility of perturbation short-time growth for
the self-similar ablation wave of Fig. 1 is investigated by
means of a local analysis, in time and space, of Eq. (2).
In effect, for some reference time t0 > 0 and at any lo-
cation x∗ = x(m∗, t0) within the wave extent, we con-
sider perturbations of longitudinal characteristic lengths
that are shorter than the smallest local gradient length of
the flow, say l∇(x∗). Under this assumption the opera-
tor A|t0 may be held as uniform over a neighborhood
of x∗, reducing the analysis of Eq. (2) to that of its
Fourier transform in the variable m, under the condi-
tion κx(x∗) ≡ ρ(x∗) km l∇(x∗)� 1 bearing on the longi-
tudinal wavenumber km. Perturbation transient growth
is then assessed by computing the maximum instanta-
neous growth rate σ0(km, k⊥) [26] of a global norm of Û
[27], i.e.

σ0(km, k⊥) ≡ max
Ũ∗

(
1

‖Ũ∗‖2

d‖Ũ∗‖2

dt

)∣∣∣∣
t0

, (3)

where Ũ∗ stands for the m-Fourier component of the re-
striction of Û to a neighborhood of m∗. Such compu-
tations [23] are carried out for m∗ covering the whole
extent of the ablation wave, for ranges of km such that
κx(x∗) ≥ 10, and for different values of k⊥. Maps of σ0 as
a function of the flow location x∗ and of the normalized
longitudinal wavenumber κx are thus obtained (Fig. 2).
Regions of non-modal growth, i.e. regions of modal sta-
bility but with positive σ0 [28], are identified (colored
areas in Fig. 2) and distinguished from regions of modal
instability [29] (black areas). Sizable portions of the con-
duction region (−1.15 / x / −0.12), the ablation layer
(x ≈ −0.12), for extended ranges of κx, and the post-
shock region (−0.12 < x < 0), for restricted κx, are prone
to non-modal growth. Maximum growth rates increase
with a longitudinal wavelength reduction and non-modal
growth is enhanced at shorter transverse wavelengths,
both in terms of σ0 and ranges of κx. This analysis
shows that locally the perturbation evolution operator
for an ablation wave driven by nonlinear heat conduc-
tion is clearly non normal for a wide range of perturba-
tion characteristic lengths. This finding implies that the
method of normal modes is insufficient for assessing the
stability property of such a flow and that perturbation
transient amplifications have to be taken into account
and therefore searched for.

The actual occurrence of non-modal growth for the ab-
lation wave of Fig. 1 is confirmed by means of AT com-
putations of Û by solving Eq. (2) for t ≥ t0 = 1 with
the aforementioned boundary conditions at the external
surface and shock front. Initial conditions, inferred from
the above non-modal stability analysis, are defined as

Û(m, t0, k⊥) = w(m, km) Re
(
Ũopt

0 (m∗, km, k⊥) eikmm
)
,

(4)

FIG. 2: Intensity map, in the plane (x,κx), of log σ0, σ0 > 0,
obtained from Eq. (3) for k⊥ = 1.2: regions of non-modal
growth but modal stability (color) and regions of modal insta-
bility (black). Same horizontal axis conventions as in Fig. 1.

where w is a specifically chosen mask function, suffi-
ciently smooth and non-zero over a limited domain cen-
tered about m = m∗. The function Ũopt

0 is the princi-
pal eigenfunction of the operator (A0 + A†0), A†0 denot-
ing the adjoint operator of A0—i.e. the optimal-growth
initial condition yielding the maximum growth rate (3).
Results obtained at a location within the post-shock re-
gion for normalized wavenumbers κx, κ⊥ = k⊥ l∇(x∗) for
which the method of normal mode predicts stability, are
exemplified in Table I(a) and illustrated in Figs. 3 and
4. Growth rates σAT, extracted from AT computations
with initial conditions (4), are in good agreement with
the values of σ0(km, k⊥) given by Eq. (3). This agreement
and the fact that characteristic growth times, σ−1

AT, are
much smaller than the base-flow characteristic time, here
t ≈ 1, validate the frozen-time assumption and the local
analysis leading to Eq. (3). Through these simulations,
initial transient growth is verified at flow locations where
modal stability analysis predicts decaying perturbations,
thus substantiating the reality of local non-modal effects
in an elementary ablation flow.

TABLE I: (a) Characteristic growth times: σ−1
0 ‘predicted’

via Eq. (3) for the flow location x∗ = −0.06, and σ−1
AT ex-

tracted from AT computations. (b) Corresponding values ob-
tained for the chosen reference time of capsule implosiona at
the equivalent location, 1.1µm downstream to the shock front.

(a)
(κ⊥,κx) (1.40, 1758.) (5.26, 1758.) (131.5, 1758.)
σ−1

0 (10−5) 15.7 15.7 8.06
σ−1

AT (10−5) 15.2 15.2 7.87
(b)

(λ⊥, λx) (µm) (100., 0.080) (26.6, 0.080) (1.06, 0.080)
σ−1

AT (ps) 0.22 0.22 0.11

aSee Supplemental Material, Sec. II.
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Corresponding data obtained in connection with a cho-
sen ICF capsule implosion [30] are given in Table I(b).
The associated figures should be considered as indica-
tive of characteristic lengths of perturbations that are
susceptible to yield transient growth. The perturbations
presently identified are in the tens of nanometers in the
longitudinal (or radial) direction and within the range
1–100 microns in the transverse (or azimuthal) direction,
corresponding for the chosen capsule to Legendre modes
ranging from 60 to 6000. These features are, for exam-
ple, fully compatible with characteristic sizes of mate-
rial inhomogeneities found in high density carbon abla-
tors [11]. Characteristic growth times σ−1

AT are in the
sub-picosecond range, i.e. way below the time resolu-
tions of existing measurement techniques of flow modu-
lations in ICF ablation experiments, making the direct
detection of such fast dynamics most unlikely in prac-
tice. This initial growth, characterized by an amplifica-
tion by more than six of the perturbation norm (Fig. 3),
results from the constructive interaction between the lo-
calized entropy and acoustic waves that dominate the
optimal-growth initial condition (4): see Figs. 4(a–d).
The ensuing perturbation dynamics reflects further mu-

FIG. 3: Amplification of the perturbation norm, ‖Û‖/‖Û‖|t0 ,
(thick line—left axis) and of the optical depth perturbation,
ÔD/ÔD|t0 (thin line—right axis) for the case (κx,κ⊥) =
(1758., 1.40). Remarkable events in the evolution of ‖Û‖ are
identified by letters A to D.

tual interactions of these waves [events A and C, Figs. 3
and 4(a-c)], propagation [Figs. 4(b,c,d)], and interactions
with the ablation layer [event B, Figs. 3 and 4(a,b,d)]
and shock front [event D, Figs. 3 and 4(a,b)]. The op-
tical depth perturbation [31] turns out to be insensi-
tive to the transient growth, displaying variations only
for the perturbation interactions with the ablation layer
and shock front (events B and D). In the conduction re-
gion, local constructive interaction has also been found
to induce transient growth. Hence constructive inter-
action between localized compressible fluid waves comes
out from the present analysis as a mechanism of initial
transient growth for the current ablation wave modeling.
Furthermore, the constructive interaction evidenced here
is likely to arise in actual ablation flows since ablator ma-

terial inhomogeneities trigger acoustic and entropy emis-
sions from both the shock front and the ablation layer.

FIG. 4: Perturbation Û in the post-shock region as func-
tion of the variables (x, t), for initial conditions given by
Eq. (4) in the case (κx,κ⊥) = (1758, 1.40). (a) Local Eu-
clidean norm. Components (absolute value) in longitudinal
pseudo-characteristic variables (cf. Ref. [22]): (b) forward and
(d) backward acoustic waves, (c) entropy waves. (e) Trans-
verse potential vorticity. Labelled circles in (a) relate to the
events identified in Fig. 3.

This Letter brings the first evidences that non-modal
effects play a role in the stability of an ablation flow re-
lated to ICF capsule implosions. In effect, local pertur-
bation transient growth is found to occur for wide ranges
of characteristic lengths in flow regions that are stable
according to the classical method of normal modes. The
identified mechanism of transient growth—the construc-
tive interaction of compressible fluid waves—is intrinsic
to compressible fluid motion and thus generic to actual
ablation flows. In the cases put forth, transient growth
happens over time scales that are beyond current exper-
imental capabilities and without direct impact on opti-
cal depth signal. Hence fast amplifications, capable of
inducing transitions to instability nonlinear regimes ear-
lier than foreseen by modal stability analysis, can actu-
ally happen while remaining undetected. These findings
stress the necessity of performing global non-modal sta-
bility analyses of ablation flows in ICF so as to establish
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on firm grounds the prediction of their hydrodynamic in-
stabilities. Such analyses, despite the more involved and
demanding methods of non-modal stability theory [24]
that they require, are worth undertaking given their po-
tential benefits for the success of ICF.
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0 ρ−1 Û†V̂ dm.

[28] See Supplemental Material, Fig. 1(c).
[29] See Supplemental Material, Fig. 1(b).
[30] See Supplemental Material, Sec. II.
[31] Hydrodynamic disturbances are classically detected in

ICF flows through measurements of optical depth per-
turbations [9] , here ÔD =
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