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Fast transient growth of hydrodynamic perturbations due to non-modal effects is shown to be
possible in an ablation flow relevant to inertial confinement fusion (ICF). Likely to arise in capsule
ablators with material inhomogeneities, such growths appear to be too fast to be detected by existing
measurement techniques, cannot be predicted by any of the methods previously used for studying
hydrodynamic instabilities in ICF, yet could cause early transitions to nonlinear regimes. These
findings call for reconsidering the stability of ICF flows within the framework of non-modal stability
theory.

PACS numbers:

Inertial confinement fusion (ICF) has been proposed
some 50 years ago as a viable means for harnessing ther-
monuclear fusion with the aim of producing energy. This
scheme relies on the irradiation of spherical capsules of
millimeter size, filled with thermonuclear fuel, at high
energy fluxes capable of producing, over nanoseconds, a
fuel compression of thousands of times solid density [1].
Such high compressions critically depend, however, on a
mitigation of hydrodynamic instabilities during capsule
implosion, since these may hamper the compression and
heating of the fuel, possibly ruining the whole process.
In particular, the subsonic heat-wave flow, or ablation
flow, that results from the irradiation of the outer layer,
the ablator, of a fusion capsule and drives its implosion,
was right away considered as a dominant factor of hy-
drodynamic perturbation growth [2, 3]. Despite several
decades of dedicated numerical simulations, experiments,
theoretical works and improvements in the understand-
ing, prediction and mitigation of capsule implosion per-
turbations, ICF is still in practice impeded by issues of
hydrodynamic instability (e.g. Refs. 4–6).

The strongly compressible, nonuniform and unsteady
nature of capsule implosions, besides the complexity of
the high-temperature physics at stake, renders the study
of their hydrodynamic stability especially arduous. Two
types of approaches have then been pursued: (i) stability
analyses using simplified physical modelings and (ii) com-
putations of perturbation amplifications trying to be as
realistic as possible. The framework of compressible in-
viscid fluid dynamics with nonlinear heat conduction has
undoubtedly contributed to a better understanding of ab-
lation flow instabilities (cf. the review of Ref. 7). Corre-
sponding stability analyses have exclusively consisted in
applying the method of normal modes, or modal stability
analysis, for idealized reduced portions of the implosion
flow (e.g. steady, quasi-isobaric, constantly accelerated,
at times discontinuous, ablation flows) or more realis-
tic, i.e. simulated, flows under the frozen-time assump-
tion. Such analyses, since they focus on the least stable
eigenmode of the flow, can only yield asymptotic sta-

bility results and are inevitably, given the implosion un-
steadiness, of restricted validity in time and perturbation
wavenumber ranges. Perturbation amplification compu-
tations belong to a different approach, sometimes called
amplification theory (AT), which consists in computing
responses of an arbitrary base flow, solution to an initial
and boundary value problem (IBVP), to selected initial
and/or boundary perturbations. Such computations are
not sufficient by themselves for obtaining results of sta-
bility. Nevertheless, this approach has been widespread
in ICF, especially using multi-dimensional hydrodynam-
ics codes dedicated to ICF physics since the restrictive
settings of theoretical models are thus avoided.

Yet another approach exists that has never been con-
sidered in ICF and which consists in applying methods of
non-modal stability theory [8], the sole capable of giving
stability results for unsteady flows, irrespective of time
horizons. However, given available computational means,
the task is daunting for a complete capsule implosion and
it is therefore logical to start with a simpler flow. In this
Letter, we initiate this effort by performing a non-modal
stability analysis of an unsteady ablation flow modeling
the early stage of a capsule implosion.

Confidence in the ability of ICF hydrodynamics codes
to reproduce instability dynamics has been progressively
built through comparisons between AT computations
and specifically designed experiments where a dominant,
i.e. considered most detrimental, perturbation source is
selected by carefully controlling experimental conditions
(e.g. Refs. 9, 10). However, AT computations, carried
out with these very codes, still display unexplained dis-
crepancies with ablation experiments on capsule ablators
at standard specifications for fusion [11, 12]. The short
history of ICF has shown that, among the many possi-
ble explanations, overlooking some perturbation sources
or unappreciated effects is highest in the list [6, Sec. V].
For several decades, based on modal stability analyses,
AT computations and dedicated experiments, roughness
of the ablator surfaces was considered as the most detri-
mental perturbation source. Intensive efforts were spent
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on this issue, leading to surface finish requirements for
fusion. By then ablator material inhomogeneities were
thought to play a minor role. This way of thinking was
turned around by the experiments of Ref. [11]: ablator
inhomogeneities could be in fact a major perturbation
source [13]. In such experiments [11, 12], many pertur-
bation sources are competing, without an artificial dom-
inance of one on the others, and the characterization
of their initial or temporal contributions is insufficient
for setting up representative enough AT computations.
Besides, it is known that perturbation eigenmodes that
are stable according to modal stability theory can in-
duce, through their interaction, perturbation transient
growth [14]. Hence different perturbation sources—even
though each of them, separately, are identified to be
minor—could lead, upon proper combination, to pertur-
bation amplification. Modal stability theory, by assum-
ing that eigenmodes are orthogonal, ignores such inter-
actions, or non-modal effects. In principle, AT compu-
tations could capture such growths provided that they
are started from appropriate initial conditions. However,
identifying systematically these most detrimental initial
perturbations requires the use of methods that have never
been considered in ICF. The alternative—a brute force
use of AT computations for sampling the space of eligible
initial conditions so as to, hopefully, find those leading
to maximum amplification—is at best unrealistic. There-
fore a genuine risk exists of missing the most detrimental
perturbation sources due to a lack of a proper methodol-
ogy.

Non-modal stability theory precisely furnishes such a
methodology by fully exploiting the fact that the finite-
time dynamics of a system is not only ruled by the eigen-
values of its evolution operator but also by this operator
eigenmodes [15]. Elaborated over the last thirty years,
this theory has been successful in elucidating some with-
standing problems in hydrodynamic stability [8]. Until
proven otherwise, non-modal effects and associated tran-
sient growths cannot be ruled out nor held as negligi-
ble in ICF ablation flows. By performing a linear non-
modal analysis, local in space and time, we address the
questions (i) of whether or not an ICF ablation wave
may present non-modal effects, and (ii) of the associated
mechanism(s) of transient growth.

The present stability analysis is conducted on a self-
similar ablation flow in slab symmetry representative of
the early stage of an ICF capsule implosion [16–19]. Such
a flow presents the essential features of the subsonic heat
wave that prevails within the capsule ablator during this
stage of the implosion (compressibility, stratification, un-
steadiness), including its whole structure (Fig. 1): (i) a
leading shock front, (ii) a quasi-isentropic compression
region, (iii) an ablation layer, and (iv) an expansion wave
where heat conduction dominates (‘conduction region’).
A dimensionless formulation of the equations of motion
is retained so as to keep the flow description as general

FIG. 1: Self-similar ablation-wave solution to Eq. (1) for
γ = 5/3, (µ, ν) = (2, 13/2) and boundary condition param-
eters (Bφ,Bp) = (0.8, 0.31). Dimensionless spatial profiles in
the coordinate x at time t0 = 1 of the fluid density ρ, longitu-
dinal velocity vx and heat flux ϕx. Correspondence with the
actual physical extent of the wave, relative to the shock front,
at the chosen reference time of a simulated capsule implosion
is also indicated (top axis)a.

aSee Supplemental Material, Sec. I.

as possible [18, 20]. For one-dimensional motion along
the x-axis of a Cartesian coordinate system (O, x, y, z),
the equations of motion, written in the Lagrangian coor-
dinate m where dm = ρdx, come as

∂t(1/ρ)− ∂mvx = 0, ∂tvx + ∂mp = 0,
∂t(CvT + v2

x/2) + ∂m(pvx + ϕx) = 0,
(1)

where ρ, vx, p, T , ϕx denote, respectively, the fluid
density, velocity, pressure, temperature and heat flux as
functions of (m, t). The dimensionless equation of state
for a polytropic gas, p = ρT , with Cv = 1/(γ − 1), γ
being the fluid adiabatic exponent, and the heat-flux ex-
pression ϕx = −ρ−µT νρ ∂mT , µ ≥ 0, ν > 1, supplement
this system. Self-similar reductions of Eq. (1) arise when
a semi-infinite slab (m ≥ 0), initially at rest and per-
fectly cold, is subject to particular time-power laws for
the incident heat-flux and pressure at the material ex-
ternal surface m = 0. (More details are given in the
Supplemental Material accompanying this Letter [24].)

The stability of flows ruled by Eq. (1) is studied us-
ing an Eulerian description of three-dimensional linear
perturbations in the coordinate system (x, y, z). Once
expressed with the Lagrangian coordinate m and Fourier
transformed in the variables (y, z), the corresponding sys-
tem of governing partial differential equations [25] reads
in vector form

∂tÛ = A(m, t, ∂m., k⊥) Û, Û =
(
ρ̂ v̂x d̂⊥ T̂

)>
, (2)

for the yz-Fourier components: f̂ , of the perturbations
of the base flow variables f = ρ, vx, T , and d̂⊥, of the
transverse divergence of the transverse velocity perturba-
tion. The perturbation evolution operator, A, depends
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on space, time and the wavenumber k⊥ =
√

(k2
y + k2

z).
Perturbation boundary conditions at the geometrically
deformed external surface (es) m = 0 and shock front
(sf) m = msf(t) complete this system [26].

The possibility of perturbation short-time growth for
the self-similar ablation wave of Fig. 1 is investigated by
means of a local analysis, in time and space, of Eq. (2).
In effect, for some reference time t0 > 0 and at any lo-
cation x∗ = x(m∗, t0) within the wave extent, we con-
sider perturbations of longitudinal characteristic lengths
that are shorter than the smallest local gradient length
of the flow, say l∇(x∗). Under this assumption the op-
erator A|t0 may be held as uniform over a neighborhood
of x∗, reducing the analysis of Eq. (2) to that of the
m-Fourier transform of A|t0 , say A0, under the condi-
tion κx(x∗) ≡ ρ(x∗) km l∇(x∗)� 1 bearing on the longi-
tudinal wavenumber km. Perturbation transient growth
is then assessed by computing the maximum instanta-
neous growth rate σ0(km, k⊥) [27] of a global norm of Û
[28], i.e.

σ0(km, k⊥) ≡ max
Ũ∗

(
1

‖Ũ∗‖2

d‖Ũ∗‖2

dt

)∣∣∣∣
t0

, (3)

where Ũ∗ stands for the m-Fourier component of the re-
striction of Û to a neighborhood of m∗. Such compu-
tations [21] are carried out for m∗ covering the whole
extent of the ablation wave, for ranges of km such that
κx(x∗) ≥ 10, and for different values of k⊥. Maps of σ0 as
a function of the flow location x∗ and of the normalized
longitudinal wavenumber κx are thus obtained (Fig. 2).
Regions of non-modal growth, i.e. regions of modal sta-
bility but with positive σ0 [29], are identified (colored
areas in Fig. 2) and distinguished from regions of modal
instability [30] (black areas). Sizable portions of the con-
duction region (−1.15 / x / −0.12), the ablation layer
(x ≈ −0.12), for extended ranges of κx, and the compres-
sion region (−0.12 < x < 0), for restricted κx, are prone
to non-modal growth. This analysis shows that locally
the perturbation evolution operator for an ablation wave
driven by nonlinear heat conduction is non normal for
a wide range of perturbation characteristic lengths [31].
This finding implies that the method of normal modes is
insufficient for assessing the stability property of such a
flow and that perturbation transient amplifications have
to be taken into account and therefore searched for.

The actual occurrence of non-modal growth is con-
firmed by means of AT computations of Û by solving
Eq. (2) for t ≥ t0 = 1 with the aforementioned boundary
conditions at the external surface and shock front [32].
Initial conditions, inferred from the above non-modal sta-
bility analysis, are defined as

Û(m, t0, k⊥) = w(m, km) Re
(
Ũopt

0 (m∗, km, k⊥) eikmm
)
,

(4)
where w is a specifically chosen mask function, suffi-
ciently smooth and non-zero over a limited domain cen-

FIG. 2: Intensity map, in the plane (x,κx), of log σ0, σ0 > 0,
obtained from Eq. (3) for k⊥ = 1.2: regions of non-modal
growth but modal stability (color) and regions of modal insta-
bility (black). Same horizontal axis conventions as in Fig. 1.

tered about m = m∗. The function Ũopt
0 is the principal

eigenmode of the operator (A0 + A†0), A†0 denoting the
adjoint operator of A0—i.e. the optimal-growth initial
condition yielding the maximum growth rate (3). Results
obtained at a location within the compression region for
normalized wavenumbers κx, κ⊥ = k⊥ l∇(x∗) for which
the method of normal mode predicts stability, are ex-
emplified in Table I(a) and illustrated in Figs. 3 and 4.
Growth rates σAT, extracted from AT computations with
initial conditions (4), are in good agreement with the
values of σ0(km, k⊥) given by Eq. (3). This agreement
and growth times, σ−1

AT, much smaller than the base-flow
characteristic time, here t ≈ 1, validate the local analy-
sis leading to Eq. (3). Through these simulations, initial
transient growth is verified at flow locations where modal
stability analysis predicts decaying perturbations, thus
substantiating the reality of local non-modal effects in a
typical ablation flow.

TABLE I: (a) Characteristic growth times: σ−1
0 ‘predicted’

via Eq. (3) for the flow location x∗ = −0.06, and σ−1
AT ex-

tracted from AT computations. (b) Corresponding values ob-
tained for the chosen reference time of a simulated capsule
implosiona at the equivalent location, 1.1µm downstream to
the shock front.

(a)
(κx,κ⊥) (1758., 1.40) (1758., 5.26) (1758., 131.5)
σ−1

0 (10−5) 15.7 15.7 8.06
σ−1

AT (10−5) 15.2 15.2 7.87
(b)

(λ̄x, λ̄⊥) (µm) (0.080, 100.) (0.080, 26.6) (0.080, 1.06)
σ̄−1

AT (ps) 0.22 0.22 0.11

aSee Supplemental Material, Sec. I.B.

Corresponding data obtained in connection with a sim-
ulation of a chosen ICF capsule implosion [33] are given in
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Table I(b). The associated figures are indicative of char-
acteristic lengths of perturbations that are susceptible to
yield transient growth. The perturbations presently iden-
tified are in the tens of nanometers in the longitudinal
(or radial) direction and within the range 1–100 microns
in the transverse (or azimuthal) direction, corresponding
for the chosen capsule to Legendre modes ranging from
60 to 6000. These features are compatible with char-
acteristic sizes of ablator material inhomogeneities [12].
The corresponding transient growths, with characteristic
times in the sub-picosecond range and significant amplifi-
cations of the perturbation norm (event A, Fig. 3), result
from the constructive interaction between the localized
entropy and acoustic waves that dominate the optimal-
growth initial conditions (4) [event A, Figs. 4(a–d)]. The

FIG. 3: Amplification of the perturbation norm, ‖Û‖/‖Û‖|t0 ,
(thick lines—left axis) and of the optical depth perturba-
tion, ÔD/ÔD|t0 (thin lines—right axis), for initial condi-
tions Eq. (4) at x∗ = −0.06, with κx = 1758., κ⊥ = 1.40
(solid) or κ⊥ = 131.5 (dash). Remarkable events in the evo-
lution of ‖Û‖ are identified by letters A to D.

ensuing perturbation dynamics proceed from further mu-
tual interactions of these waves [events A and C, Figs. 3
and 4(a-c)], their propagation [Figs. 4(b,c,d)], and in-
teractions with the ablation layer [event B, Figs. 3 and
4(a,b,d)] and shock front [event D, Figs. 3 and 4(a,b)].
The perturbation of the longitudinal optical depth, a
quantity used for detecting hydrodynamic disturbances
in ICF flow experiments [34], is notably insensitive to
the transient growth, varying only when waves interact
with the ablation layer and shock front (events B and D,
Fig. 3). This insensitivity and the growth time scales,
way below current experimental measurement capabili-
ties, make the direct detection of such fast amplification
dynamics most unlikely in practice. Ablator materials
with bulk inhomogeneities, such as those used in the ex-
periments of Ref. [12], are likely to induce constructive in-
teractions of fluid waves since such inhomogeneities trig-
ger emissions by the shock front (ablation layer) of acous-
tic and entropy (respectively, acoustic) fluctuations. Sim-
ulations with surface roughness alone could not explain
the levels of shock-front non-uniformities that were ob-

served in these experiments. Simulations modeling ab-
lator bulk inhomogeneities, due to their computational
cost, were not undertaken by that time and have been
performed only once since then [5], their results showing
enhanced shock-front perturbations. However the lead-
ing mechanisms responsible for such perturbation levels
are still uncertain and cannot be unraveled on the sole
basis of available experimental and simulation data. The
present transient growth mechanism is potentially one of
them, contributing to perturbation amplification in the
compression region and the ablation layer, and thus to
an enhanced seeding of ablative Rayleigh–Taylor modes
for the subsequent acceleration stage of a capsule implo-
sion [35]. Assessing the importance of this mechanism in
capsule implosions requires however experimental diag-
nostics and/or detailed analyses of high-fidelity simula-
tions that have yet to come.

FIG. 4: Evolution of Û in the compression region for initial
conditions Eq. (4) at x∗ = −0.06, in the case (κx,κ⊥) =
(1758, 1.40). Same conventions as in Fig. 1 with shock (sf)
and ablation (af) front trajectories. (a) Local Euclidean
norm. Components (absolute value) in longitudinal pseudo-
characteristic variables [22]: (b) forward and (d) backward
acoustic waves, (c) entropy waves. (e) Transverse potential
vorticity. Labelled circles in (a) relate to the events identified
in Fig. 3.

This Letter brings the first evidences of non-modal ef-
fects in the stability of an ablation flow related to ICF. In
effect, local transient growth of perturbations may occur
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in flow regions that are stable according to the classi-
cal method of normal modes. The identified mechanism
of transient growth is intrinsic to compressible fluid mo-
tion and thus generic to any ICF ablation flow. This
mechanism puts forth the possibility, in an ablator with
material inhomogeneities, of fast perturbation amplifica-
tions, not directly detectable by existing experimental
diagnostics but contributing to perturbation enhance-
ment. Such amplifications, compatible with trends ob-
served in inhomogeneous ablator experiments and sim-
ulations, could induce transitions to perturbation non-
linear regimes earlier than foreseen by modal stability
analysis. Global non-modal stability analyses and high-
fidelity simulations would at least be needed to investi-
gate such a possibility. More generally these findings call
for applying methods of non-modal stability theory to
ICF implosions so as to establish on firmer grounds their
predictions, thus reducing uncertainties thereof.
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0 ρ−1 (κρ ρ̂ + κT T̂ ) dm + [∂xκ x̂]sf
es, where κ =

4 ρµT 3−ν is the fluid opacity [23], and x̂es|sf , the de-
formation of the external surface|shock front.

[35] See Supplemental Material, Sec. IV B.


