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Fast transient growth of hydrodynamic perturbations due to non-modal effects is shown to be
possible in an ablation flow relevant to inertial confinement fusion (ICF). Likely to arise in capsule
ablators with material inhomogeneities, such growths appear to be too fast to be detected by existing
measurement techniques, cannot be predicted by any of the methods previously used for studying
hydrodynamic instabilities in ICF, yet could cause early transitions to nonlinear regimes. These
findings call for reconsidering the stability of ICF flows within the framework of non-modal stability
theory.

I. INTRODUCTION

Inertial confinement fusion (ICF) has been proposed
some 50 years ago as a viable means for harnessing ther-
monuclear fusion with the aim of producing energy. This
scheme relies on the irradiation of spherical capsules of
millimeter size, filled with thermonuclear fuel, at high
energy fluxes capable of producing, over nanoseconds, a
fuel compression of thousands of times solid density [1].
Such high compressions critically depend, however, on a
mitigation of hydrodynamic instabilities during capsule
implosion, since these may hamper the compression and
heating of the fuel, possibly ruining the whole process.
In particular, the subsonic heat-wave flow, or ablation
flow, that results from the irradiation of the outer layer,
the ablator, of a fusion capsule and drives its implosion,
was right away considered as a dominant factor of hy-
drodynamic perturbation growth [2, 3]. Despite several
decades of dedicated numerical simulations, experiments,
theoretical works and improvements in the understand-
ing, prediction and mitigation of capsule implosion per-
turbations, ICF is still in practice impeded by issues of
hydrodynamic instability (e.g. Refs. 4–6).

The strongly compressible, nonuniform and unsteady
nature of capsule implosions, besides the complexity of
the high-temperature physics at stake, renders the study
of their hydrodynamic stability especially arduous. Two
types of approaches have then been pursued: (i) stability
analyses using simplified physical modelings and (ii) com-
putations of perturbation amplifications trying to be as
realistic as possible. The framework of compressible in-
viscid fluid dynamics with nonlinear heat conduction has
undoubtedly contributed to a better understanding of ab-
lation flow instabilities (cf. the review of Ref. 7). Corre-
sponding stability analyses have exclusively consisted in
applying the method of normal modes, or modal stability
analysis, for idealized reduced portions of the implosion
flow (e.g. steady, quasi-isobaric, constantly accelerated,
at times discontinuous, ablation flows) or more realis-
tic, i.e. simulated, flows under the frozen-time assump-
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tion. Such analyses, since they focus on the least stable
eigenmode of the flow, can only yield asymptotic sta-
bility results and are inevitably, given the implosion un-
steadiness, of restricted validity in time and perturbation
wavenumber ranges. Perturbation amplification compu-
tations belong to a different approach, sometimes called
amplification theory (AT), which consists in computing
responses of an arbitrary base flow, solution to an initial
and boundary value problem (IBVP), to selected initial
and/or boundary perturbations. Such computations are
not sufficient by themselves for obtaining results of sta-
bility. Nevertheless, this approach has been widespread
in ICF, especially using multi-dimensional hydrodynam-
ics codes dedicated to ICF physics since the restrictive
settings of theoretical models are thus avoided.

Yet another approach exists that has never been con-
sidered in ICF and which consists in applying methods of
non-modal stability theory [8], the sole capable of giving
stability results for unsteady flows, irrespective of time
horizons. However, given available computational means,
the task is daunting for a complete capsule implosion and
it is therefore logical to start with a simpler flow. In
the present work, we initiate this effort by performing a
non-modal stability analysis of an unsteady ablation flow
modeling the early stage of a capsule implosion.

Confidence in the ability of ICF hydrodynamics codes
to reproduce instability dynamics has been progressively
built through comparisons between AT computations
and specifically designed experiments where a dominant,
i.e. considered most detrimental, perturbation source is
selected by carefully controlling experimental conditions
(e.g. Refs. 9 and 10). However, AT computations, carried
out with these very codes, still display unexplained dis-
crepancies with ablation experiments on capsule ablators
at standard specifications for fusion [11, 12]. The short
history of ICF has shown that, among the many possible
explanations, overlooking some perturbation sources or
unappreciated effects is highest in the list [? , Sec. V].
For several decades, based on modal stability analyses,
AT computations and dedicated experiments, roughness
of the ablator surfaces was considered as the most detri-
mental perturbation source. Intensive efforts were spent
on this issue, leading to surface finish requirements for
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fusion. By then ablator material inhomogeneities were
thought to play a minor role. This way of thinking was
turned around by the experiments of Ref. [11]: ablator
inhomogeneities could be in fact a major perturbation
source [13]. In such experiments [11, 12], many pertur-
bation sources are competing, without an artificial dom-
inance of one on the others, and the characterization
of their initial or temporal contributions is insufficient
for setting up representative enough AT computations.
Besides, it is known that perturbation eigenmodes that
are stable according to modal stability theory can in-
duce, through their interaction, perturbation transient
growth [14]. Hence different perturbation sources—even
though each of them, separately, are identified to be
minor—could lead, upon proper combination, to pertur-
bation amplification. Modal stability theory, by assum-
ing that eigenmodes are orthogonal, ignores such inter-
actions, or non-modal effects. In principle, AT compu-
tations could capture such growths provided that they
are started from appropriate initial conditions. However,
identifying systematically these most detrimental initial
perturbations requires the use of methods that have never
been considered in ICF. The alternative—a brute force
use of AT computations for sampling the space of eligible
initial conditions so as to, hopefully, find those leading
to maximum amplification—is at best unrealistic. There-
fore a genuine risk exists of missing the most detrimental
perturbation sources due to a lack of a proper methodol-
ogy.

Non-modal stability theory precisely furnishes such a
methodology by fully exploiting the fact that the finite-
time dynamics of a system is not only ruled by the eigen-
values of its evolution operator but also by this operator
eigenmodes [15]. Elaborated over the last thirty years,
this theory has been successful in elucidating some with-
standing problems in hydrodynamic stability [8]. Until
proven otherwise, non-modal effects and associated tran-
sient growths cannot be ruled out nor held as negligi-
ble in ICF ablation flows. By performing a linear non-
modal analysis, local in space and time, we address the
questions (i) of whether or not an ICF ablation wave
may present non-modal effects, and (ii) of the associated
mechanism(s) of transient growth.

In the rest of this article, we first present the cho-
sen modelling and equations of motion for the base flow
and linear perturbations (Sec. II). Necessary notions of
non-modal analysis are then reviewed (Sec III A) and
a local non-modal stability analysis of linear perturba-
tions is performed, leading to initial conditions for max-
imal initial growth of perturbations (Sec. III B). Tem-
poral responses of these maximal growth initial condi-
tions are computed (Sec. III C) and the mechanisms un-
derlying these transient growths are analysed (Sec. IV).
The implications of the results in the context of ICF
are discussed (Sec. V) and the main results are recalled
(Sec. VI).

II. ABLATION FLOWS

The present stability analysis is conducted on a self-
similar ablation flow in slab symmetry representative of
the early stage of an ICF capsule implosion [16–19]. Dur-
ing this so-called shock transit stage, the leading shock
front of the ablation wave has not yet reached the abla-
tor inner surface and the capsule has not started its con-
verging motion. Since the ablator is thin compared to
the capsule radius, the approximation of slab symmetry
is amply justified. The chosen self-similar flow presents
the essential features of the subsonic heat wave that pre-
vails within the capsule ablator during this stage of the
implosion (compressibility, stratification, unsteadiness),
including its whole structure (Fig. 1): (i) a leading shock
front, (ii) a quasi-isentropic compression region, (iii) an
ablation layer, and (iv) an expansion wave where heat
conduction dominates (‘conduction region’).

A. Base flow

A dimensionless formulation of the equations of motion
is retained so as to keep the flow description as general
as possible [18, 20]. For one-dimensional motion along
the x-axis of a Cartesian coordinate system (O, x, y, z),
the equations of motion, written in the Lagrangian coor-
dinate m where dm = ρ dx, come as

∂t(1/ρ)− ∂mvx = 0,
∂tvx + ∂mp = 0, (1)
∂t(CvT + v2

x/2) + ∂m(pvx + ϕx) = 0,

where ρ, vx, p, T , ϕx denote, respectively, the fluid
density, velocity, pressure, temperature and heat flux as
functions of (m, t). The dimensionless equation of state
for a polytropic gas,

p = ρT, with Cv = 1/(γ − 1),

γ being the fluid adiabatic exponent, and the heat-flux
expression

ϕx = −ρ−µT νρ ∂mT, µ ≥ 0, ν > 1,

supplement this system. For the choice γ = 5/3, (µ, ν) =
(2, 13/2), Eq. (1) describes the motion of a monatomic
gas with the radiative conduction model of Kramers [21].
This modeling is an approximation for the ablation of
a fusion capsule ablator by hohlraum x rays in current
ICF laser facilities. This approximation is relevant to
the ablator opaque portion which stays at temperatures
below a few 106 Kelvin degrees and at thermodynamic
equilibrium. Radiation diffusive effects then dominate
those of thermal conduction and viscosity, and radiation
pressure and energy are negligible in front of their ma-
terial counterparts. If Eq. (1) cannot render non-gray
irradiation effects, it contains the basic diffusion mech-
anism at stake, at the hydrodynamic scale, in this ab-
lation process. Such a modeling of radiative ablation
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FIG. 1. Self-similar ablation-wave solution to Eq. (1) for
γ = 5/3, (µ, ν) = (2, 13/2) and boundary condition param-
eters (Bφ,Bp) = (0.8, 0.31). Dimensionless spatial profiles in
the coordinate x at time t0 = 1 of the fluid density ρ, longitu-
dinal velocity vx and heat flux ϕx. Correspondence with the
actual physical extent of the wave, relative to the shock front,
at the chosen reference time of a simulated capsule implosion
is also indicated (top axis) (see App.).

compares favorably with any of the models previously
used for investigating hydrodynamic stability of ablation
flows and designing experiments (e.g. see Ref. 7 and ref-
erences therein): it retains the same compressible invis-
cid fluid model for a polytropic gas with a nonlinear heat
conductivity in powers of the density and temperature.
However, none of the additional restrictive assumptions
(e.g. flow steadiness, constant and uniform acceleration
field, quasi-isobaric approximation, semi-infinite fluid do-
mains) that are commonly used in these other stability
studies of ablation flows, are invoked here.

Self-similar reductions of Eq. (1) occur when consid-
ering a semi-infinite slab (m ≥ 0), initially such that
(ρ, vx, T ) = (const, 0, 0), is subject to boundary condi-
tions, at the material surface m = 0, of the form

ϕx(0, t) = Bφt3α−3, p(0, t) = Bpt2α−2, for t ≥ 0,
(2)

with α = (2ν−1)/(2ν−2): cf. Refs. [17–19]. Self-similar
solutions to Eq. (1) with such initial and boundary con-
ditions are presently computed by means of an adaptive
multidomain Chebyshev method capable of a high accu-
racy description of the flow down to its finest scales [22].
This numerical method has been verified against results
from a hydrocode simulation [18, Fig. 11] of an IBVP de-
fined after Eqs. (1) and (2), and approximate analytical
solutions [19, App. A].

For the present study, the base-flow solution (Bφ,Bp) =
(0.8, 0.31) that has been retained (Fig. 1), is computed
using 39 domains with 50 collocation points each. This
solution has been chosen among a large set of self-similar
ablation waves [19], on the basis of its hydrodynamic
characteristic numbers which are typical of the early
stage of a capsule implosion: subsonic ablation Mach
number, high Froude number (> 80) at the ablation
front, steep ablation front, and fast expansion flow with
Chapman–Jouguet point (Fig. 1). In actual or simulated

implosions, neither the radiative heat flux at the cap-
sule external surface, nor the pressure exerted by the
hohlraum filling gas, nor the capsule ablator opacity com-
ply with the constraints required for self-similarity. Yet,
spatial profiles of self-similar flow variables possess essen-
tial features that resemble those obtained in simulations
of the shock transit stage of a realistic ICF capsule de-
sign: cf. Ref. 19, Fig. 2. In that respect, results obtained
with the chosen self-similar ablation wave may be equally
used in connection with a capsule ablation simulation.

B. Linear perturbations

The stability of flows ruled by Eq. (1) is studied us-
ing an Eulerian description of three-dimensional linear
perturbations in the coordinate system (x, y, z). Once
expressed with the Lagrangian coordinate m and Fourier
transformed in the variables (y, z), the corresponding sys-
tem of governing partial differential equations for the
Fourier components of the linear perturbations of the
density, ρ̂, longitudinal velocity, v̂x, transverse divergence
of the transverse velocity, d̂⊥, and temperature, T̂ , reads
(cf. Ref. 20 and Eq. 4 in Ref. 23)

∂tρ̂+ ρ2 ∂mv̂x + ρ ∂mvx ρ̂+ ρ ∂mρ v̂x + ρ d̂⊥ = 0,
∂tv̂x + T ∂mρ̂+ ρ ∂mT̂ − ρ−1 T ∂mρ ρ̂

+ ρ ∂mvx v̂x + ∂mρ T̂ = 0,

∂td̂⊥ − k2
⊥ ρ
−1 T ρ̂− k2

⊥ T̂ = 0,
∂tT̂ + C−1

v ρ ψT ′ ∂
2
m2 T̂ + C−1

v ψρ ∂mρ̂+ C−1
v p ∂mv̂x

+ C−1
v

[
∂m(ρ ψT ′) + ψT

]
∂mT̂

+ C−1
v

[
∂mψρ − ρ−1 ∂mψ

]
ρ̂+ ρ ∂mT v̂x + C−1

v T d̂⊥

+ C−1
v

[
ρ ∂mvx + ∂mψT − k2

⊥ ρ
−1 ψT ′

]
T̂ = 0,

or in vector form

∂tÛ = A(m, t, ∂m., k⊥) Û, Û =
(
ρ̂ v̂x d̂⊥ T̂

)>
, (3)

with the convention

ψ(ρ, T, ∂xT ) ≡ −ρ−µT ν ∂xT = −ρ−µT νρ ∂mT,

and the notations ψρ, ψT , ψT ′ for the partial derivatives
of the heat-flux function ψ with respect to the density,
the temperature, and the temperature gradient. The per-
turbation evolution operator, A, depends on space, time
and the wavenumber k⊥ =

√
(k2
y + k2

z). When consider-
ing self-similar ablation waves solutions to Eqs. (1) and
(2), boundary conditions for linear perturbations at the
location, m = msf(t), of the leading shock-wave front are
derived from the non-isothermal Rankine–Hugoniot re-
lations for a perturbed shock front [20, App. B]. At the
fluid external boundary, m = 0, perturbation boundary
conditions correspond to the continuity of the pressure
and heat flux supplemented by the kinematic boundary
condition at this material surface (Eq. 5 of Ref. 23). For



4

the present study, zero perturbations for the state up-
stream to the shock front and for the incident heat flux
and boundary pressure at the fluid external surface are
retained.

Solutions to IBVPs based on Eq. (3) are computed, in
space, using the same multidomain Chebyshev method as
for Eq. (1) and, in time, with a three-step implicit-explicit
Runge–Kutta scheme. Verification of this computational
method has been performed in several instances by com-
parisons with exact perturbation solutions [24–27]. This
method has also been previously used for computing lin-
ear perturbation responses in perturbed configurations
of ablation waves relevant to ICF and corresponding to
illumination asymmetries [17, 20, 28, 29] and to the abla-
tive Richtmyer–Meshkov instability [29]. Corresponding
results were analyzed to be in general agreement with
previous models of perturbation evolution for laser im-
printing [30, 31] and ablative Richtmyer–Meshkov insta-
bility [9, 32] with, however, distinctive differences em-
phasizing, in particular, the influence of the base-flow
unsteadiness and stretching: see [17, 20, 29] for details
and discussions.

III. LOCAL NON-MODAL STABILITY
ANALYSIS

A. Necessary notions of non-modal analysis

Modal stability analysis infers the stability of a dynam-
ical system, ruled by an equation like Eq. (3), from the
sole basis of the least stable eigenvalue of its evolution op-
erator, A. This analysis is correct if the eigenmodes of A
form an orthogonal set—equivalently, if the operator A
is normal—and is otherwise only indicative of the long-
time behavior of the system. For finite-time horizons,
a non-normal operator A may induce transient growth
of the system state variable through eigenmode interac-
tions, even if the system is stable according to modal
analysis [8, 15]. For a time-dependent evolution opera-
tor as in Eq. (3), the growth of the state variable Û can
be assessed at any given time t∗ from the instantaneous
growth rate of some chosen norm ‖Û‖, namely [14]

σ(t∗) ≡
(

1
‖Û‖2

d‖Û‖2

dt

)∣∣∣∣
t∗

= 2 Re
(
〈Û,A Û〉
〈Û, Û〉

)∣∣∣∣
t∗

, (4)

where 〈·, ·〉 denotes the scalar product associated to this
norm. The global norm is here defined after the scalar
product

〈Û, V̂〉 = 1
2

∫ msf

0
ρ−1 Û†V̂ dm,

where the upperscript † indicates the transconjugate.
The ratio

〈Û,A Û〉
〈Û, Û〉

∣∣∣∣
t∗

,

is known as the numerical range of the operator A|t∗ and
defines a region of the complex plane which, in the case of
an operator A of finite dimension, contains the spectrum
of A|t∗ . For a non-normal operator, as it is generally the
case, the numerical range is larger than the convex hull of
the spectrum. In the case of a normal operator, the two
regions coincide [33]. In particular, this numerical range
may protrude into the unstable half-plane (Re > 0) even
though the spectrum of A|t∗ may be confined to the sta-
ble half-plane (Re < 0): cf. Fig. 2(c). In such a case
non-modal growth occurs, i.e. an initial amplification—
transient growth—of Û may be observed, although all
eigenvalues are stable according to modal stability analy-
sis. The potential for such a transient growth is measured
by means of the maximum of the instantaneous growth
rate σ(t∗) over all non-zero possible states, or numerical
abscissa of A|t∗ , say

σ∗ ≡ max
Û

σ(t∗). (5)

This numerical abscissa is given by the largest eigen-
value of the normal operator (A+A†)|t∗ and is achieved
when Û is the principal eigenmode of this operator (cf.
Ref. 14), thus defining the optimal-growth initial con-
dition at time t∗, say Ûopt

∗ . The situation of non-
normal growth described above corresponds to the case
max Re(Λ) < 0 < σ∗, where Λ denotes the eigenval-
ues of A|t∗ . However non-modal effects are not re-
stricted to this specific configuration. Indeed, when
0 < max Re(Λ) < σ∗ [Fig. 2(b)], the system is unstable
at all time horizons but may display a transient growth
that is faster than the exponential growth of the least
stable eigenmode. For max Re(Λ) < σ∗ ≤ 0 [Fig. 2(a)],
the system is stable, here again at all time horizons, but
with an eventual transient decay that is slower than the
exponential decay of the least stable eigenmode.

B. Maximal initial growth rate

The possibility of perturbation short-time growth for
the self-similar ablation wave of Fig. 1 is investigated by
means of a local analysis, in time and space, of Eq. (3).
In effect, for some reference time t0 > 0 and at any loca-
tion x◦ = x(m◦, t0) within the wave extent, we consider
perturbations of longitudinal characteristic lengths that
are shorter than the smallest local gradient length of the
flow, say l∇(x◦). Under this assumption of a weakly
stratified flow the operator A|t0 may be held as uni-
form over a neighborhood of x◦, reducing the analysis of
Eq. (3) to that of them-Fourier transform ofA|t0 , sayA0,
under the condition κx(x◦) ≡ ρ(x◦) km l∇(x◦)� 1 bear-
ing on the longitudinal wavenumber km. Perturbation
transient growth is then assessed at t∗ = t0 by computing
the maximum instantaneous growth rate σ0(km, k⊥,m◦),
which, in this configuration of longitudinal Fourier trans-
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FIG. 2. Schematic layouts in the complex plane of eigenvalues
and numerical ranges corresponding to: (a) modal stability
with slower non-modal transient decay, (b) modal instability
with faster non-modal transient growth, and (c) modal sta-
bility with non-modal transient growth.

form amounts to

σ0(km, k⊥) ≡ max
Ũ∗

(
1

‖Ũ∗‖2

d‖Ũ∗‖2

dt

)∣∣∣∣
t0

, (6)

where Ũ∗ stands for the m-Fourier component of the re-
striction of Û to a neighborhood of m∗. Such compu-
tations [34] are carried out for m◦ covering the whole
extent of the ablation wave, for ranges of km such that
κx(x◦) ≥ 10, and for different values of k⊥. Maps of σ0
as a function of the flow location x◦ and of the nor-
malized longitudinal wavenumber κx are thus obtained
(Fig. 3). Regions of non-modal growth, i.e. regions of
modal stability but with positive σ0 [configuration of
Fig. 2(c)], are identified (colored areas in Fig. 3a) and
distinguished from regions of modal instability [config-
uration of Fig. 2(b)] (black areas). Sizable portions of
the conduction region (−1.15 / x / −0.12), the ab-
lation layer (x ≈ −0.12), for extended ranges of κx,
and the compression region (−0.12 < x < 0), for re-
stricted κx, are prone to non-modal growth. In regions
of modal instability [black areas in Fig. 3(a)], the numeri-
cal range is larger than max Re(Λ) (Fig. 3b), indicating a
configuration of faster transient growth [configuration of
Fig. 2(b)]. These observations depict a situation where
the local short-term dynamics of flow fluctuations are
determined by non-modal effects, implying that modal
stability analysis is nowhere suitable for their predictions
and that perturbation transient amplifications have to be

taken into account and searched for. In short, for all the
perturbation wavelengths that have been tested, the per-
turbation evolution operator for an ablation wave driven
by nonlinear heat conduction is non normal.

(a)

(b)

FIG. 3. Intensity map, in the plane (x,κx), of log σ0, σ0 >
0, obtained from Eq. (5) for k⊥ = 1.2: (a) regions of non-
modal growth but modal stability (color) and regions of modal
instability (black), and (b) σ0−max Re(Λ) everywhere. Same
horizontal axis conventions as in Fig. 1.

C. Responses to optimal-growth initial
perturbations

The actual occurrence of non-modal growth is con-
firmed by means of AT computations of Û by solving
Eq. (3) for t ≥ t0 = 1 with the aforementioned bound-
ary conditions at the external surface and shock front
(Sec. II B). Initial conditions, inferred from the above
non-modal stability analysis, are defined so as to com-
ply with the assumption of a weakly stratified flow. For
a given longitudinal wavenumber km, the solution is re-
constructed from Ũopt

0 (see Sec. III A) as

Û(m, t0, k⊥) = w(m, km) Re
(
Ũopt

0 (m◦, km, k⊥) eikmm
)
,

(7)
where w is a sufficiently smooth mask function, non-zero
over a limited domain centered on m = m◦. The com-
parison of the measured initial growth rate σAT of the
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intial condition (7) with the numerical abscissa, or op-
timal growth rate, σ0 assesses the relevance of the local
non-modal analysis. If σAT and σ0 are close, then the
dominant mechanisms are captured by the local analysis.
Otherwise the local analysis misses some major features.

Results obtained at a midpoint location within the
compression region for normalized wavenumbers κx,
κ⊥ = k⊥ l∇(x◦) for which the method of normal mode
predicts stability, are exemplified in Table I(a) and illus-
trated in Figs. 4(a), 5 and IV(a). Additional results at a
location immediately upstream to the ablation layer are
illustrated in Figs. 4(b) and IV(b). Growth rates σAT, ex-
tracted from AT computations with initial conditions (7),
are in good agreement with the values of σ0(km, k⊥) given
by Eq. (5). This agreement and growth times, σ−1

AT, much
smaller than the base-flow characteristic time, here t ≈ 1,
validate the local analysis leading to Eq. (5). Through
these simulations, initial transient growth is verified at
flow locations where modal stability analysis predicts de-
caying perturbations, thus substantiating the reality of
local non-modal effects in a typical ablation flow. The

TABLE I. (a) Characteristic growth times: σ−1
0 ‘predicted’

via Eq. (5) for the flow location x◦ = −0.06, and σ−1
AT ex-

tracted from AT computations. (b) Corresponding values ob-
tained for the chosen reference time of a simulated capsule
implosion(see App.) at the equivalent location, 1.1µm down-
stream to the shock front.

(a)
(κx,κ⊥) (1758., 1.40) (1758., 5.26) (1758., 131.5)
σ−1

0 (10−5) 15.7 15.7 8.06
σ−1

AT (10−5) 15.2 15.2 7.87
(b)

(λ̄x, λ̄⊥) (µm) (0.080, 100.) (0.080, 26.6) (0.080, 1.06)
σ̄−1

AT (ps) 0.22 0.22 0.11

corresponding transient growths, with significant ampli-
fications of the perturbation norm (event A, Fig. 4a),
result from the constructive interaction between the lo-
calized entropy and acoustic waves that dominate the
optimal-growth initial conditions (7) [event A, Figs. 5(a–
d)]. The ensuing perturbation dynamics proceed from
further mutual interactions of these waves [events A and
C, Figs. 4a and 5(a-c)], their propagation [Figs. 5(b,c,d)],
and interactions with the ablation layer [event B, Figs. 4a
and 5(a,b,d)] and shock front [event D, Figs. 4a and
5(a,b)].

Hydrodynamic disturbances are classically detected in
ICF through measurements of longitudinal optical depth
perturbation [10], presently amounting to

ÔD =
∫ msf

0
ρ−1 (κρ ρ̂+ κT T̂ ) dm+ [∂xκ x̂]sf

es

where κ = 4 ρµT 3−ν is the fluid opacity [35], and x̂es|sf ,
the deformation of the external surface|shock front. The
perturbation of the longitudinal optical depth is notably

(a)

(b)

FIG. 4. Amplification of the perturbation norm, ‖Û‖/‖Û‖|t0 ,
(thick lines—left axis) and of the optical depth perturba-
tion, ÔD/ÔD|t0 (thin lines—right axis), for initial condi-
tions Eq. (7) at (a) a midpoint location within the compres-
sion region, x◦ = −0.06, and (b) a location immediately up-
stream to the ablation layer, x◦ = −0.11, with κx = 1758.,
κ⊥ = 1.40 (solid) or κ⊥ = 131.5 (dash). Remarkable events
in the evolution of ‖Û‖ are identified by letters A to D.

insensitive to the transient growth, varying only when
waves interact with the ablation layer and shock front
(events B and D, Fig. 4a).

IV. TRANSIENT GROWTH MECHANISM:
CONSTRUCTIVE INTERACTION OF

COMPRESSIBLE WAVES

The dynamics of perturbations in the flow compres-
sion region, i.e. between the shock front and the ablation
layer, during the shock transit stage of a capsule implo-
sion deserve special attention. These dynamics are espe-
cially important for the outcome of the implosion since
they set the initial conditions for the subsequent acceler-
ation stage during which major perturbation amplifica-
tion occurs due to the ablative Rayleigh–Taylor instabil-
ity. The computations of perturbation evolutions, started
from the optimal-growth initial conditions of Eq. (7) at
locations within the compression region, show that the
fastest transient growth comes from the constructive in-
teraction between the different fundamental waves—or
Kovásznay modes [36]—that constitute these initial per-
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FIG. 5. Evolution of Û in the compression region for initial conditions Eq. (7) at x◦ = −0.06, in the case (κx,κ⊥) = (1758, 1.40).
Same conventions as in Fig. 1 with shock (sf) and ablation (af) front trajectories. (a) Local Euclidean norm. Components
(absolute value) in longitudinal pseudo-characteristic variables [23]: (b) forward and (d) backward acoustic waves, (c) entropy
waves. (e) Transverse potential vorticity. Labelled circles in (a) relate to the events identified in Fig. 4a.

turbations (see Fig. 5) for t ' 1). For the sample of
transverse wavelengths considered (Table I), these funda-
mental waves are dominantly of the acoustic and entropy
types, the initial vorticity waves being of negligible con-
tributions. This mechanism of wave interaction is intrin-
sic to compressible fluid motion and is expected to occur
in the compression regions of actual ablation flows since
in such regions effects of advection prevail over those of
heat transfer.

Corresponding dimensional data obtained in connec-
tion with a simulation of a chosen ICF capsule implosion
(see App.) are given in Table I(b), on upper axes of
Figs. 4 and IV, and upper and right axes of Fig. 5. The
associated figures are indicative of characteristic lengths
of perturbations that are susceptible to yield transient
growth. The perturbations presently identified are in the

tens of nanometers in the longitudinal (or radial) direc-
tion and within the range 1–100 microns in the trans-
verse (or azimuthal) direction, corresponding for the cho-
sen capsule to Legendre modes ranging from 60 to 6000.
These lengths fall within the characteristic sizes of known
bulk inhomogeneities of currently used ablator materi-
als [12].

In the flow compression region during the shock tran-
sit stage, these materials are in a complex liquid state
(densities of several g cm−3, temperatures around 1 eV),
partially dissociated and ionized, which is far from be-
ing known with sufficient details and is still the object
of ongoing studies. The characteristic growth times σ−1

AT
of the identified transient growths are especially small:
tenths of a picosecond [Table 1(b)]. For CH plastic abla-
tors, such times are an order of magnitude larger than the
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acoustic transit time between atoms and thus compatible
with the assumption of local thermodynamic equilibrium
for translation motions. Non-equilibrium effects associ-
ated to rotation and vibration motions cannot be ruled
out but their assessment would require a more detailed
knowledge of these ablator materials under these liquid
state conditions. Effects of thermal conduction and of
viscosity on this transient growth mechanism would also
need to be assessed at the perturbation scales of tens
of nanometers which are involved [Table 1(b)]. But here
again adequate data and modelings relevant to these spe-
cific liquid states are currently unsufficient for doing so.

Past the initial growth, the contructive interaction of
acoustic and entropy waves associated to the present
transient growth leads to perturbation amplifications in
the range 5–20 in a few picoseconds (Fig. 4). These am-
plifications, as the instantaneous growth rates, are en-
hanced by a reduction of the transverse wavelength: com-
pare the perturbation norm responses, ‖Û‖/‖Û‖|t0 , for
the two wavenumbers κ⊥ = 1.40 (λ⊥ ≈ 100µm) and
κ⊥ = 131.5 (λ⊥ ≈ 1µm) in Fig. 3. The residual ampli-
fications, once the initial wave interactions have ended
[i.e. after event A in Figs. 4 and 5(a)], slowly decrease
over tenths of nanoseconds while remaining at significant
levels. Such evolutions correspond to the advection, or
propagation, (see Fig. 4) of the three kinds of waves (i.e.
entropy waves plus forward and backward propagating
acoustic waves) that are present in the initial perturba-
tions, and to their subsequent interactions with either the
ablation layer (event B) or the shock front (event D). All
of these processes and trends are reproduced for other lo-
cations of the optimal-growth initial conditions Eq. (7),
with a systematic enhancement of amplifications when
the zone of transient growth, or transient-growth spot,
is close and upstream to the ablation layer, as illus-
trated in Fig. 4(b) by comparison with 4(a). This in-
creased influence of a transient-growth spot located close
to the ablation layer is also obvious from the dynam-
ics of the ablation front deformations (Fig. IV). ht!]
(a)

(b)

Time evolutions of the ablation front deformation,
normalized by ‖Û‖|t0 , for initial conditions Eq. 4 at
(a) a midpoint location within the compression region,
x◦ = −0.06, and (b) a location immediately upstream
to the ablation layer, x◦ = −0.11, with κx = 1758.,
κ⊥ = 1.40 (solid) or κ⊥ = 131.5 (dash).

V. DISCUSSION

This analysis of the consequences of constructive in-
teractions of compressible waves on the compression re-
gion and ablation layer of an ablation flow presently in-
volves isolated transient-growth spots that are of lim-
ited spatial extents (in effect, five longitudinal wave-
lengths). The conditions for the occurrence of such con-
structive interactions—the presence of acoustic and en-
tropy plane waves of identical, or proportional, longitu-
dinal wavelengths—are likely to be met in ablators pre-
senting bulk material inhomogeneities. In such configu-
rations, the leading shock front of the ablation wave, en-
countering these inhomogeneities, emits backward propa-
gating acoustic waves and leaves entropy/vorticity waves
in the flow compression region downstream (cf. Ref. [?
]). These waves will trigger emission, from the ablation
layer, of forward propagating acoustic waves—as in the
case of event B in Fig. 4(a)—which will in turn interact
with upstream acoustic and entropy waves, at times con-
structively. For randomly distributed material inhomo-
geneities, constructive interactions will occur repeatedly
giving birth to distributions of transient-growth spots
within the compressed portion of the ablator. The repet-
itive encounters of these spots with the ablation layer
could result in an enhanced level of perturbations, in-
cluding ablative Rayleigh–Taylor modes, at the onset of
the acceleration phase of a capsule implosion. Besides,
this process could foster a build up of perturbations over
a wide range of characteristic lengths and over times
shorter than the duration of the shock transit phase, lead-
ing possibly to local transitions to nonlinear regimes. As-
sessing the possibility of such mechanisms and their con-
sequences for an ICF capsule ablation would require flow
simulations not only at extremely fine spatial resolutions,
which so far have been undertaken only once [5], their
results showing enhanced shock-front perturbations, but
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also, given the nature of the transient-growth mechanism,
capable of a high fidelity rendering of acoustic phenom-
ena at very disparate scales—something for which ICF
hydrodynamics codes are not particularly suited.

The insensitivity of the longitudinal optical depth to
transient growth and the growth time scales (Fig. 4a),
way below current experimental measurement capabili-
ties, make the experimental detection of the above fast
amplification dynamics most unlikely in practice. Abla-
tor materials with bulk inhomogeneities, such as those
used in the experiments of Ref. [12], are likely to induce
constructive interactions of fluid waves since such inho-
mogeneities trigger emissions by the shock front (abla-
tion layer) of acoustic and entropy (respectively, acous-
tic) fluctuations. High density carbon or beryllium mate-
rials for ablators can hardly be processed so as to impose
controlled bulk inhomogeneities, similarly to what has
been done for oxygen concentration in CH plastic abla-
tors. Therefore the detection of transient growth events
mainly relies on improved diagnostics. Firstly, current
diagnostics do not have sufficient temporal resolutions to
capture sub-nanosecond growth phenomena. Secondly,
optical depth measurements in the longitudinal direction
are blind to compressible perturbation modes, as shown
on Figs. 4a and 4b. Optical depth measurements in a di-
rection transverse to the flow could yield some informa-
tion about the dynamics and spatial structures of pertur-
bations in the flow compression region, but under condi-
tions of sufficiently high temporal and spatial resolutions
that so far are not available.

Simulations with surface roughness alone could not
explain the levels of shock-front non-uniformities that
were observed in these experiments. However the lead-
ing mechanisms responsible for such perturbation levels
are still uncertain and cannot be unraveled on the sole
basis of available experimental and simulation data. The
present transient growth mechanism is potentially one of
them, contributing to perturbation amplification in the
compression region and the ablation layer, and thus to
an enhanced seeding of ablative Rayleigh–Taylor modes
for the subsequent acceleration stage of a capsule implo-
sion. Assessing the importance of this mechanism in cap-
sule implosions requires therefore experimental diagnos-
tics and/or detailed analyses of high-fidelity simulations
that have yet to come.

VI. CONCLUSION

The present work brings the first evidences of non-
modal effects in the stability of an ablation flow related
to ICF. In effect, local transient growth of perturbations
may occur in flow regions that are stable according to
the classical method of normal modes. The identified

mechanism of transient growth is intrinsic to compress-
ible fluid motion and thus generic to any ICF ablation
flow. This mechanism puts forth the possibility, in an
ablator with material inhomogeneities, of fast perturba-
tion amplifications, not directly detectable by existing
experimental diagnostics but contributing to perturba-
tion enhancement. Such amplifications, compatible with
trends observed in inhomogeneous ablator experiments
and simulations, could induce transitions to perturbation
nonlinear regimes earlier than foreseen by modal stability
analysis. Global non-modal stability analyses and high-
fidelity simulations would at least be needed to investi-
gate such a possibility, which cannot be neglected until
proven otherwise. More generally these findings call for
applying methods of non-modal stability theory to ICF
implosions so as to establish on firmer grounds their pre-
dictions, thus reducing uncertainties thereof.

Appendix: Connection with a capsule implosion
simulation

Considering a particular ICF capsule design (here that
given in Ref. 37, Fig. 1) and its implosion simulation
with an ICF hydrocode (code FCI2, cf. Ref. 38), time
and length scales may be defined respectively from the
duration of the ablation flow regime within the period
of the shock transit stage, and the distance travelled by
the leading shock front during this period. The starting
time of this ablation regime is established as being one
of the earliest times for which, in the simulation, an ab-
lation wave structure with a non-vanishing extent of its
shock-compressed region is clearly identified within the
ablator, presently t̄0 = 2.8 ns. This starting time is as-
sociated to the reference time of the self-similar ablation
wave which may be set arbitrarily to be t0 = 1. The
final time of the ablation regime, in the simulation, is
taken to be the time of the leading shock-front breakout
at the ablator inner surface, here t̄1 = 12.9 ns. Over the
flow period thus defined, a linear perturbation initiated
at the ablation front may propagate as a forward acoustic
wave towards the shock front then back to the ablation
front as an advected entropy wave [23], the whole being
repeated a limited number of times. This finite sequence
of propagation-then-advection of perturbations between
the ablation and shock fronts is a key mechanism of per-
turbation dynamics during the shock transit stage: e.g.
see Refs. [9, 30]. Seeking to reproduce the same wave
sequence in the present self-similar flow is therefore de-
sirable, and presently sets a lower bound on the maxi-
mum time horizon for this flow, here t1 = 8. The corre-
spondence of flow durations and shock travelled distances
between the simulated flow and the self-similar solution
defines then time and length scales for the latter, in effect
t? = 1.44 ns and l? = 19.04µm.
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