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Abstract— Experimental flight tests are reported about
quadrotors UAVs via a recent model-free control (MFC) strat-
egy, which is easily implementable. We show that it is possible
to achieve acrobatic rate control of the UAV, which is beyond
the previous standard. The same remote controller is tested
on two physical vehicles without any re-tuning. It produces in
both cases low tracking error. We show that MFC is robust
even when the quadrotor is highly damaged. A video footage
can be found at: https://youtu.be/wtSLalA4szc
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I. INTRODUCTION

Quadrotors are today the most ubiquitous unmanned
aerial vehicles (UAVs) (see, e.g., [1]–[3], and the references
therein). Many remote control strategies, including machine
learning techniques, have been investigated (see, e.g., [1]–
[6], and the references therein). According to some authors
(see, e.g., [5], and the references therein) the simplicity
of PIDs explains why they behave better in practice than
more advanced controllers. Nevertheless the well-known
shortcomings of PIDs (see, e.g., [7], [8]) remain valid in
this UAV context. This is why we suggest here model-free
control (MFC) in the sense of [9] which might be viewed as
an improvement of PIDs. MFC, which has been successfully
applied to a number of concrete case-studies (see [9]–[11]
and the references therein for most publications until the
beginning of 2020), has already been employed several times
for UAVs [12]–[18]. This communication might be the first
one about experimental tests of MFC with quadrotors.

We are concerned here with the acrobatic flight1 of
quadrotors. This type of flight is important to tracking,
evasion, and rescue missions, as well as obstacle avoidance

1There is a legal definition for acrobatic, or aerobatic, flights:
https://www.law.cornell.edu/cfr/text/14/91.303
See, e.g., [19], [20] for brillant and recent contributions.

in dense environments. We propose a fully MFC-based flight
controller for robust rate tracking onboard quadrotor UAVs,
which is an improvement beyond the previous standard. The
proposed method is validated

• on-board various physical UAVs,
• via highly damaged vehicles.

In both cases
• no modification or re-tuning of the controller is needed,
• the UAVs are always well stabilized around the refer-

ence trajectory.
It highlights the method’s robustness and data-driven nature.
MFC requires little computational power to implement, thus
it is an exciting low-cost alternative to PID that is used on
most quadrotors today.

The paper is organized as follows. In Section II a short
review of MFC theory is provided. Section III outlines the
implementation and deployment of MFC on-board quadrotor
UAVs. Section IV reports experimental flight data for various
vehicles under MFC and compares the flight performance
achieved to that of a PID, the most common control tech-
nique used on small UAVs. Conclusions and future works
follow.

II. MODEL-FREE CONTROL: A SHORT REVIEW

A. The ultra-local model for a SISO systelm

It has been proved in [9] that under quite weak assump-
tions any SISO system, with input u and output y, may be
well approximated by the ultra-local model

y(m) = F (t) + αu (1)

where
• m ≥ 1 is the derivation order,
• the time-varying quantity F subsumes not only the un-

modeled dynamics, but also the external disturbances,



• the constant α ∈ R is such that the three quantities y(m),
F , αu in Eq. (1) are of the same order of magnitude.

Note that
• the poorly known plant is not necessarily of order m:
y(ν), where ν > m may be sitting in F ,

• in almost all the numerous concrete case-studies that
were encountered until now, m = 1, with only some
exceptions where m = 2,

• it is meaningless to try to estimate α precisely.

B. MIMO systems
Consider a multi-input multi-output (MIMO) system with

p control variables ui and p output variables yi, i = 1, . . . , p.
It has been observed in [21] and confirmed by all encountered
concrete case-studies (see, e.g., [22]), that such a system may
be regulated via p monovariable ultra-local models:

y
(mi)
i = Fi + αiui

where Fi may also depend on uj , yj , and their derivatives,
j = 1, . . . , p.

Remark 2.1: In our example p = 3, one with a first (resp.
second) order ultra-local model. Previous publications on
UAVs [13]–[15] teach us that m = 2 is often appropriate
(see also [23]–[26]) for other examples).2

C. iP and iPD
1) m = 2: Eq. (1) becomes

ÿ = F (t) + αu. (2)

Associate [9] to Eq. (2) the intelligent Proportional-
Derivative controller, or iPD,

u = − F̂ − ÿr +KP e+KD ė

α
(3)

where
• F̂ is an estimate of F ,
• yr is the reference trajectory,
• e = y − yr is the tracking error,
• KP ,KD ∈ R are the feedback gains

It yields
ë−KD ė−KIe = F − F̂ .

If the estimate F̂ is “good”, i.e., F − F̂ ≈ 0, the choice
of the gain KP , KD for ensuring “local” stability around
the reference trajectory is straightforward. This is a major
difference with classic PIs and PIDs (see, e.g., [7], [8]).
Moreover and obviously no anti-windup is needed for iPDs.

Remark 2.2: Here ė in Eq. (3) is given by an appropriate
sensor for measuring ẏ.

2) m = 1: Eq. (1) becomes

ẏ = F (t) + αu

The corresponding [9] intelligent Proportional controller, or
iP, reads

u = − F̂ − ẏr +KP e

α
. (4)

The adaptation of Section II-C.1 is straightforward.

2According to [9], the choice m = 2 is necessary if there is (almost) no
friction. The question however is far from being fully understood [27].

TABLE I: Control Parameters

Parameter: m α T Kd Kp

Roll: 2 1 0.02s 0.096 3.0
Pitch: 2 1 0.02s 0.096 2.7
Yaw: 1 1 0.02s 2.7

D. Estimation of F

A classic result from mathematical analysis (see, e.g.,
[28]) states that under a weak integrability condition any
function Φ : [a, b] → R, a, b ∈ R, a < b, may be
approximated by a step function, i.e., a piecewise constant
function. Then, according to [9], an estimate F̂ of F is
computed by averaging F (t) = y(m)(t) − αu(t), which is
deduced from Eq. (1), on a “short” sliding time window. If
m = 1, Remark 2.2 tells us that ẏ is obtained via a sensor. If
m = 2, set ÿ(t) ≈ ẏ(t)−ẏ(t−T )

T , where T > 0 is the sampling
period. A Finite Impulse Response, or FIR, filter is of course
used in practice.

Remark 2.3: The unavoidable noise corruptions are atten-
uated via the averaging integral (see [29] for a mathematical
explanation, and [30], [31] for applications to parameter
identification and signal processing).

III. QUADROTOR DYNAMICS & CONTROL

Many authors have reported models of quadrotor dynamics
[1], [2]. We refer interested readers to said models to build
some intuition about the behavior of such a vehicle and
to recognize their nonlinearities, which are potent during
acrobatic flight. Naturally, these are only approximate models
of the quadrotor’s dynamics; therefore, a controller that
builds its own model from data is highly desirable.

A. Quadrotor Attitude

A diagram of a quadrotor is shown in Figure 1 and is
useful when considering its behavior. We consider the case of
a 3 degree-of-freedom (DOF) quadrotor with controllable roll
(φ), pitch (θ), and yaw (ψ) axes. The UAV’s rate of rotation,
or attitude, about each of these axes—φ̇, θ̇, and ψ̇—is to be
controlled by automatically adjusting the speed of each of
the vehicle’s four propellers, ω1−ω4. The exact relationship
between the vehicle’s attitude and these speeds must be
inferred by the controller. Some intuition may be gained from
this figure. For instance, if one wanted to roll to the right,
they would increase the speed of motor 4 and decrease the
speed of motor 2. Pitching forward would entail increasing
the speed of motor 3 and decreasing that of motor 1. Finally,
yawing counter-clockwise would require increasing the speed
of the clockwise rotating motors and decreasing the speed
of the counter-clockwise motors. This intuition is used in
Section III-B in order to deliver control signals to the motors.
Only this low-level knowledge is given to the controller. All
other unknown dynamics must be accounted for numerically.

B. Quadrotor Control Scheme

A single instantiation of MFC will be assigned to each
of the quadrotor’s degrees of freedom: roll, pitch, and yaw.



Thus, a multi-variable control formulation will be imple-
mented as outlined in Section II-B. Three control inputs—
uφ, uθ, and uψ—will be used to manipulate the vehicle’s
attitude. The output of these monovariable controllers must
be translated into four separate control signals for each of
the vehicle’s four motors. The appropriate control signals for
motors 1–4 are as follows:

umotors =


u1
u2
u3
u4

 =


ut − uθ − uψ
ut − uφ + uψ
ut + uθ − uψ
ut + uφ + uψ

 . (5)

Here, ut is the baseline throttle given to the quadrotor by
its pilot. If the vehicle were stationary and undisturbed, ut
would be used by the pilot to adjust the height of the quad. A
block diagram visualization of the proposed control scheme
is shown in Figure 2.

In our physical implementation, iPDs are used to control
the pitch and roll axes. Due to the high level of drag
associated with the yaw axis, an iP is more appropriate.
In traditional linear control of quadrotors, it is common
to use PID on the pitch and roll axes while employing a
PI controller on the yaw axis. It has been shown that the
appropriate replacement to a PI is an iP and a the appropriate
replacement to a PID is an iPD [9]. Due to the decoupled
nature of control variables, we can use ultra-local models of
varying order without fear of cross-talk or adverse effects.

The control parameters used in our physical implementa-
tion are listed in Table I. In each installment of MFC, elemen-
tary numerical methods are employed for the implementation
(see Sect. II-D). The output of each of the three controllers
is appropriately saturated so that the commands sent to
each of the four motors is reasonable. Rate measurements
taken by a MPU6050 gyroscope are passed through a simple
complimentary filter. The output of the filter is a convex
combination of the current measurement and the previous
filter output. The controller must overcome the inherent noise
that is allowed through this low-level filter. Thus, quality
results will support the notion of robustness of the proposed
technique. The controller is implemented on an 8-bit Atmega
328 micro-controller and uses a refresh rate of 250 Hz.
The inexpensive hardware used here demonstrates that this
control technique can be implemented with relatively little
computational power (see also [32])—making it a very attrac-
tive nonlinear alternative to traditional PID used profusely on
small UAVs.

IV. EXPERIMENTAL RESULTS3

We demonstrate the robustness of the proposed technique
by using the same control scheme across vehicles with
varying dynamics. The controller is not re-tuned between
any of these experiments. All flights were flown outdoors on
the campus of Mercer University in Macon, GA, USA, on
the 18th of March, 2020. On this day there were southern
winds blowing upwards of 9 mph.

3A video is available at: https://youtu.be/wtSLalA4szc

A. DJI F450 Quadrotor

The first vehicle flown was a DJI F450 quadrotor equipped
with readily available brushless motors and affordable plastic
propellers. It is a light-weight drone whose center of gravity
is located at the center of the body of the vehicle. The
goal of the controller is to minimize the error between
rate commands provided by the UAV’s pilot and the rates
at which the vehicle is rotating. The pilot flew the drone
around an open field performing various maneuvers, i.e., the
reference trajectories are arbitrary and are generated in real
time. The performance of the drone is shown in Figure 3.
The mean absolute error for each degree of freedom was
under 10 degrees per second, which is remarkable since no
high-level filtering was used on sensor measurements.

B. DJI F450 Minus Half Its Propellers

The dynamics of the quadrotor were then changed by
cutting off significant portions of each of the vehicle’s
four propellers. Not only was the effectiveness of each
propeller reduced, the drone became unbalanced and began to
vibrate badly. This experiment has a myriad of applications.
The most interesting is perhaps in defense scenarios where
quadrotors are targeted with directed energy weapons or
artillery fire. Once the dynamics of the vehicle change, non-
adaptive control techniques tend to fail. Since the proposed
technique is data-driven and model-free, it is not affected
by the damage. Without re-tuning the controller, the perfor-
mance shown in Figure 4 was achieved. The mean absolute
error for each degree of freedom was under 20 degrees
per second. The rate measurements here seem very noisy;
however, this is reasonable given the unbalanced nature of the
injured vehicle. The authors refer the readers to the provided
YouTube video to observe the smooth performance generated
by the controller. An image of the vehicle with its damaged
rotors is shown in Figure 5.

C. A new vehicle: Tarot 650 Sport Quadrotor

The controller, without being re-tuned, was transferred to
a Tarot 650 Sport Quadrotor. This vehicle was equipped
with high-efficiency brushless motors, heavy carbon-fiber
propellers, a long-endurance flight battery, and retractable
landing gear. Its center of gravity was much lower than that
of the DJI. During this flight, one of the pieces of landing
gear retracted upon takeoff, while the other was obstructed
and remained in its initial position. This added to the
complexity of the vehicle’s behavior as it was unbalanced in
this configuration. The proposed control technique responded
well to both the vehicle swap and the unbalanced dynamics
of the Tarot Quadrotor. The potential real-world applications
of this experiment are again numerous as robotics rarely
behave as they are designed to. The results of this flight are
shown in Figure 7. Each of the three flights reported here
are replicated in the aforementioned footage.

D. Comparison to PID Control

In order to compare the robustness of MFC to PID, a
PID controller was properly tuned and deployed on the large



Tarot quadrotor. The results of this flight are shown in Figure
8. After a successful flight, the controller was transferred to
the DJI F450 and flown without re-tuning. The results of
this flight are shown in Figure 9. It is clear that MFC is
much more robust across vehicles with varying dynamics.
This might also suggest the ease of tuning associated with
MFC as compared to PID. Note that performance of PID
suggests, also, that MFC is a better multi-variable control
scheme. This is particularly apparent under PID control when
performing robust maneuvers on the roll axis, which seems
to degrade the performance of the pitch and yaw controllers.

V. CONCLUSIONS & FUTURE WORK

A highly promising control technique for quadrotors has
been derived without the need of any mathematical mod-
eling in the usual sense.4 Even as the dynamics of the
vehicle changed—either from having damage inflicted upon
it or from changing the vehicle altogether—the proposed
technique performed well. The little computational power
required to implement this algorithm means that it could
be utilized on micro and macro aerial vehicles alike. Our
future work is to demonstrate a full-scale Model-Free Control
architecture on a 6-DOF quadrotor—the three additional
DOF being longitude, latitude, and altitude, which will come
from equipping our fleet of UAVs with global positioning
systems and barometers. The control scheme will look very
much like the one outlined here.
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Fig. 1: A Tarot 650 Sport quadrotor. This vehicle is flown in the experiments discussed in Section IV.
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Fig. 2: Model-Free Control Scheme. “Sat” refers to passing the output of each control signal through a saturation function
such that only reasonable commands are given to the motors of the quadrotor. The block labelled “Error” represents de-
multiplexing the error signal and sending error values to the appropriate controller.
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Fig. 3: DJI F450 roll, pitch, and yaw performance.
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Fig. 4: DJI F450 roll, pitch, and yaw performance with severely damaged propellers.



Fig. 5: A DJI F450 with damaged rotors. This serves to simulate a quadrotor being damaged in flight.
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Fig. 6: Tarot roll, pitch, and yaw performance after failed landing gear deployment under MFC.



0 20 40 60 80 100 120 140 160 180

Time (s)

-100

0

100

R
o

ll 
(°

/s
)

y
r

y

0 20 40 60 80 100 120 140 160 180

Time (s)

-100

0

100

P
it
c
h

 (
°/

s
)

y
r

y

0 20 40 60 80 100 120 140 160 180

Time (s)

-100

0

100

Y
a

w
 (

°/
s
)

y
r

y

Fig. 7: Tarot roll, pitch, and yaw performance after failed landing gear deployment under MFC.
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Fig. 8: Tarot roll, pitch, and yaw performance under PID control.
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Fig. 9: F450 roll, pitch, and yaw performance under PID control. No re-tuning was conducted after moving the controller
from the Tarot.


