

EGU2020-10050 https://doi.org/10.5194/egusphere-egu2020-10050 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

The RPW Low Frequency Receiver (LFR) on Solar Orbiter: in-situ LF electric and magnetic field measurements of the solar wind expansion

Thomas Chust¹, Olivier Le Contel¹, Matthieu Berthomier¹, Alessandro Retinò¹, Fouad Sahraoui¹, Alexis Jeandet¹, Paul Leroy^{1,2}, Jean-Christophe Pellion¹, Véronique Bouzid¹, Bruno Katra¹, Rodrigue Piberne¹, Yuri Khotyaintsev³, Andris Vaivads^{3,4}, Volodya Krasnoselskikh⁵, Matthieu Kretzschmar^{5,6}, Jan Souček⁷, Ondrej Santolík^{7,8}, Milan Maksimovic⁹, Stuart D. Bale^{10,11,12}, and the MMS team^{*}

²Université de Rennes 1, Rennes, France

³Swedish Institute of Space Physics (IRF), Uppsala, Sweden

⁴Department of Space and Plasma Physics, School of Electrical Engineering and Computer Science, Royal Institute of

Technology, Stockholm, Sweden

⁵LPC2E/CNRS, Orléans, France

⁶Université d'Orléans, Orléans, France

⁷Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czech Republic

⁸Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

⁹LESIA, Observatoire de Paris, Meudon, France

¹⁰Space Sciences Laboratory, University of California, Berkeley, CA, USA

¹¹Physics Department, University of California, CA, USA

¹²Stellar Scientific, Berkeley, CA, USA

*A full list of authors appears at the end of the abstract

Solar Orbiter (SO) is an ESA/NASA mission for exploring the Sun-Heliosphere connection which has been launched in February 2020. The Low Frequency Receiver (LFR) is one of the main subsystems of the Radio and Plasma Wave (RPW) experiment on SO. It is designed for characterizing the low frequency (~0.1Hz–10kHz) electromagnetic fields & waves which develop, propagate, interact, and dissipate in the solar wind plasma. In correlation with particle observations it will help to understand the heating and acceleration processes at work during its expansion. We will present the first LFR data gathered during the Near Earth Commissioning Phase, and will compare them with MMS data recorded in similar solar wind condition.

MMS team: Laurent Mirioni (1), Robert E. Ergun (13), Per-Arne Lindqvist (14), James L. Burch (15), Roy B. Torbert (16), Robert J. Strangeway (17), Barbara J Giles (18)