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Abstract

We present a novel learning-based approach for comput-
ing correspondences between non-rigid 3D shapes. Unlike
previous methods that either require extensive training data
or operate on handcrafted input descriptors and thus gen-
eralize poorly across diverse datasets, our approach is both
accurate and robust to changes in shape structure. Key to
our method is a feature-extraction network that learns di-
rectly from raw shape geometry, combined with a novel reg-
ularized map extraction layer and loss, based on the func-
tional map representation. We demonstrate through exten-
sive experiments in challenging shape matching scenarios
that our method can learn from less training data than ex-
isting supervised approaches and generalizes significantly
better than current descriptor-based learning methods. Our
source code is available at: https://github.com/
LIX-shape-analysis/GeomFmaps.

1. Introduction

Shape correspondence is a key problem in computer vi-
sion, computer graphics and related fields with a broad
range of applications, including texture or deformation
transfer and statistical shape analysis [7], among many oth-
ers. While classical correspondence methods have been
based on handcrafted features or deformation models [49],
more recent approaches have focused on learning an opti-
mal model from the data either in supervised [11, 53, 25, 16]
or even unsupervised settings [19, 43, 17].

Despite significant progress in recent years, however,
learning-based approaches for shape correspondence typ-
ically require large amounts of training data in order to
learn a model that generalizes well to diverse shape classes
[53, 16]. Several existing methods address this chal-
lenge by learning a derived representation, through a non-
linear transformation of pre-computed feature descriptors
[11, 25, 19, 43], rather than on the geometry of the shapes
themselves. Unfortunately, as we demonstrate below, this

Point Cloud 
Descriptors

Point-to-Point 
Map

Figure 1. Given a pair of shapes, our approach builds consistent de-
scriptors directly from the underlying point clouds (left), and auto-
matically computes an accurate pointwise correspondence (right).

reliance on a priori hand-crafted descriptors makes the re-
sulting learned models both less robust and less accurate
leading to a significant drop in generalization power to new
shape classes or instances.

In this work, we propose an approach that combines the
power of learning directly from the 3D shapes with strong
regularization based on a novel spectral correspondence ex-
traction layer. Our method is inspired by recent learn-
ing techniques employing the functional map representa-
tion [25, 43]; however, we extend them to learn the features
from 3D geometry rather than from some pre-computed de-
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scriptors. Furthermore, we introduce a regularizer into the
functional map computation layer that greatly improves the
speed and robustness of training. Finally, we demonstrate
how the spectral loss based on the functional map repre-
sentation in the reduced basis significantly reduces over-
fitting, while still leading to accurate correspondences cou-
pled with recent post-processing techniques. As a result,
our overall pipeline is both more robust and has greater gen-
eralization power than existing methods, while still being
able to learn from limited training data.

2. Related Work
Computing point-to-point maps between two 3D discrete

surfaces is a very well-studied area of computer vision. Be-
low, we review those closest to our method, or with the best
known results to serve as baselines, and refer to recent sur-
veys [49, 6, 44] for an in-depth discussion.

Our method is built upon the functional map representa-
tion, which was originally introduced in [32] as a tool for
non-rigid shape matching, and then extended in follow-up
works [33]. The key property of this representation is be-
ing able to express maps as small matrices, encoded in a
reduced basis, which greatly simplifies the associated opti-
mization problems.

The original work used only a basic set of constraints
on functional maps, which have been extended significantly
in, e.g., [24, 2, 20, 14, 9, 41, 31, 21, 40] among many other
works. These approaches both extend the generality and
improve the robustness of the functional map estimation
pipeline, by using regularizers, robust penalties and pow-
erful post-processing of the computed maps.

A key challenge in all of functional map estimation tech-
niques, however, is the strong reliance on given input de-
scriptors used for computing the maps. Several approaches
have suggested to use robust norms [24, 23], improved
pointwise map recovery [42, 15] or more principled reg-
ularizers [39] which can help alleviate noise in the input
descriptors to a certain extent but do not resolve strong in-
consistencies in challenging cases.

More recent techniques have advocated learning optimal
descriptors for functional map estimation directly from the
data [11, 25]. These methods compute a transformation
of given input descriptors so that the estimated functional
maps are close to ground truth maps given during training.
This idea was very recently extended to the unsupervised
setting [19, 43] where the supervised loss was replaced with
structural penalties on the computed maps.

Despite significant progress, however, in all of these
cases, the descriptors are optimized through a transforma-
tion of hand-crafted input features, such as SHOT [48],
Heat [45] or Wave kernel signatures [5]. This has two severe
consequences: first, any information not present in the input
features will be absent from the optimized descriptors, and

second, such approaches generalize poorly across datasets
as the input features can change significantly. This is par-
ticularly true of the commonly-used SHOT descriptors [48],
which are sensitive to the triangle mesh structure and, as we
show below, can vary drastically across different datasets.

A number of other techniques have also been proposed
for shape correspondence learning without using the func-
tional map representation. These include approaches that
exploit novel convolutional layers on triangle meshes [27,
8, 30, 36] and more general methods that use learning from
depth-maps [53] or in some feature space [46, 10] among
many others. Remarkably, relatively few methods aim to
learn directly from the raw 3D shape geometry for shape
correspondence, with the notable exceptions of [16, 12]. In
large part this is due to the complexity of the correspon-
dence problem, where unlike, e.g., shape segmentation, the
number of labels can be unbounded. As a result, exist-
ing techniques address this either by learning from precom-
puted features, or relying on template-based matching and
large training sets [16, 12], that might even require manual
curation. Although PointNet [37] and its variants [38, 4, 47]
achieve impressive results from raw point clouds for classi-
fication tasks, they are not yet competitive for shape corre-
spondence task.

Contribution

In this paper we show that feature learning for shape
matching can be done directly from the raw 3D geometry
even in the presence of relatively little training data, and
without relying on a template or an a priori parametric (e.g.,
human body) model. Our main contribution is a end-to-
end learnable pipeline that computes features from the 3D
shapes and uses them for accurate dense point-to-point cor-
respondence. We achieve this by introducing a novel map
extraction layer using the functional map representation in a
reduced basis, which provides a very strong regularization.
Finally, we demonstrate that recent refinement techniques
adapted to small functional maps [29], combined with our
efficient learning pipeline jointly result in accurate dense
maps at the fraction of the cost of existing methods.

3. Shape Matching and Functional Maps
One of the building blocks in our pipeline work is based

on the functional map framework and representation. For
completeness, we briefly review the basic notions for esti-
mating functional maps, and refer the interested reader to a
recent course [33] for a more in-depth discussion.

Basic Pipeline Given a pair of 3D shapes, M,N repre-
sented in a discrete setting as triangle meshes, and contain-
ing respectivelym and n vertices, this pipeline aims at com-
puting a map between them.

It consists in four main steps. First, the first few eigen-



functions of the discrete Laplace-Beltrami operator are
computed on each shape, namely kM and kN functions re-
spectively.

Second, a set of descriptor functions on each shape that
are expected to be approximately preserved by the unknown
map. For instance, a descriptor function can correspond to a
particular dimension of the Heat or Wave Kernel Signatures
[45, 5] computed at each point. Their coefficients are stored
in the respective basis as columns in matrices A,B.

Third, the optimal functional map C is then computed
by solving the following optimization problem:

Copt = arg min
C

Edesc
(
C
)

+ αEreg
(
C
)
, (1)

where the first term aims at preserving the descriptors:
Edesc

(
C
)

=
∥∥CA − B

∥∥2, whereas the second term reg-
ularizes the map by promoting the correctness of its overall
structural properties. It is common to use Frbenius norm to
compute the distance between these matrices. This Eq. (1)
leads to a simple least-squares problem with kM × kN un-
knowns, independent of the number of points on the shapes.

As a last step, the estimated functional map C, which
maps across the spectral domains and converted to a point-
to-point map. As a post processing step, called refinement,
a number of advanced techniques are available [42, 15, 40,
29]. Most of them iteratively take the map from spectral to
spatial domain, until it reaches a local optimum.

3.1 . Deep Functional Maps

Despite its simplicity and efficiency, being a sequen-
tial framework, the functional map estimation pipeline de-
scribed above is fundamentally error prone, due to the initial
choice of descriptor functions. To alleviate this dependence,
several approaches have been proposed to learn an optimal
transformation of initial descriptors from data [11, 25, 43].
These works aim at transforming a given set of descriptors
so that the optimal computed map satisfies some desired cri-
teria during training. This transformation can be learned
with a supervised loss, as in [11, 25], as well as with an
unsupervised loss as in the more recent works of [19, 43].

More specifically, the FMNet approach proposed in [25]
assumes to have as input, a set of shape pairs for which
ground truth point-wise maps are known, and aims to solve
the following problem:

min
T

∑
(S1,S2)∈Train

lF (Soft(Copt), GT(S1,S2)), where (2)

Copt = arg min
C

‖CAT (D1) −AT (D2)‖. (3)

Here, adopting the notation from [43] T is a non-linear
transformation, in the form of a neural network, to be ap-
plied to some input descriptor functions D, Train is the
set of training pairs for which ground truth correspondence

GT(S1,S2) is known, lF is the soft error loss, which penal-
izes the deviation of the computed functional map Copt, af-
ter converting it to a soft map Soft(Copt) from the ground
truth correspondence, and AT (D1) denotes the transformed
descriptors D1 written in the basis of shape 1. Thus, the
FMNet framework [25] learns a transformation T of de-
scriptors T (D1), T (D2) based on a supervised loss that
minimizes the discrepancy between the resulting soft map
and the known ground truth correspondence.

A related recent approach, SURFMNet [43] follows a
similar strategy but replaces lF with an unsupervised loss
that enforces the desired structural properties on the result-
ing map, such as its bijectivity, orthonormality and commu-
tativity with the Laplacian.

3D-CODED In contrast to the the methods described above
that primarily operate in the spectral domain, there are also
some approaches that never leave the spatial domain. With
the recent works on point clouds neural networks, pioneered
by PointNet [37], and significantly extended by [4, 47],
to name a few, it is now possible to learn 3D features di-
rectly from point clouds. 3D-CODED [16, 12] is based
on this approach, as it is a method built on a variational
auto-encoder with a PointNet architecture for the encoder.
Their method relies on a template that is supposed to be
deformable in a non-rigid but isometric way to any of the
shape of the datasets. It is a supervised method, and re-
quires the knowledge of all ground-truth correspondences
between any shape of the dataset and the deformable tem-
plate. 3D-CODED is trained on 230K shapes, introduced in
SURREAL [50], and generated with SMPL [26].

Motivation The two main classes of existing approaches
have their associated benefits and drawbacks. On the one
hand, spectral methods are able to use small matrices in-
stead of all the points of the shape, and operate on intrinsic
properties of the 3D surfaces, making them resilient to a
change in pose, and allowing them to train on really small
datasets. However, due to their use of input descriptors (typ-
ically SHOT [48]), they tend to overfit to the connectivity of
the training set, which can lead to catastrophic results even
in apparently simple cases. On the other hand, 3D-CODED
shows extreme efficiency when trained on enough data, re-
gardless of the connectivity, but with a small dataset, it is
prone to overfitting and fails to generalize the training poses
to predict the different poses of the test set.

Our method is a mix of the two approaches, and, as we
show below, can obtain accurate results with little training
data leading to state-of-the-art accuracy on a challenging
recent benchmark of human shapes in different poses and
with different connectivity [28].



4. Method

4.1 . Overview

In this paper, we introduce a novel approach to learn-
ing descriptors on shapes in order to get correspondences
through the functional map framework. Our method is com-
posed of two main parts, labeled as Feat and FMReg in Fig-
ure 2. The first aims at optimizing point cloud convolu-
tional filters [4, 47] to extract features from the raw geome-
try of the shapes. These filters are learned using a Siamese
network on the source and a target shapes by using shared
learnable parameters Θ, in a similar way as in [25]. How-
ever, unlike that approach and follow-up works [19, 43] we
learn the features directly from the geometry of the shapes
rather than computing a transformation of some pre-defined
existing descriptors. These learned descriptors are projected
in the spectral bases of the shapes and fed to the second
block of the method, which uses them in a novel regularized
functional map estimation layer. Finally, we use a spec-
tral loss, based on the difference between the computed and
the ground truth functional maps. This makes our approach
very efficient as it operates purely in the spectral domain,
avoiding expensive geodesic distance matrix computations
as in [25, 19] and moreover allows us to handle functional
or soft ground truth input maps without requiring the train-
ing shapes to have the same number of points or fixed mesh
connectivity.

We stress again that the two components: learning fea-
tures directly from the shapes and using the functional map
representation both play a crucial role in our setup. The for-
mer allows us to learn robust and informative features inde-
pendently from the mesh structure, while the latter allows
us to strongly regularize correspondence learning, resulting
in a method that generalizes even in the presence of a rela-
tively small training set.

4.2 . Architecture

The novelty of our architecture lies in its hybrid charac-
ter. The first part, which we will refer to as the feature ex-
tractor in the following, aims at computing point-wise fea-
tures on the input shapes. It corresponds to the Feat block
in Figure 2, and takes as input only the point clouds making
it robust towards changes in connectivity.

The purpose of the second part is to recover robust func-
tional maps using these learned features. This block is built
according to the pipeline of [32], first taking the features to
the spectral domain over the two shapes (which corresponds
to the dot products blocks after the Feat blocks in Figure
2), and then computing the map by minimizing an energy.
However, since our method is based on a neural network,
this operation should be differentiable with respect to the
features over the shapes for the back-propagation algorithm
to work. We extend the previously proposed functional map

Feat

Feat

FMreg

Figure 2. Overview of our approach: given a pair of shapes, we
optimize for a point cloud convolutional model to get point-wise
features for each shape, that we convert to a functional map using
our FMReg block. The loss that we put forward penalizes maps
according to their distance to the ground-truth map between the
two shapes.

layers [25] to also incorporate a differentiable regularizer,
which results in the very robust map extraction, represented
as FMReg in Figure 2.

4.3 . The feature extractor

The goal of this block is to learn functional characteri-
zations of point clouds that will later be used to compute
spectral descriptors and then functional maps. To this end,
this network must be applied with the same weights to the
source and target shapes, as represented in Figure 2, and
must result in informative descriptors, extracted from the
point clouds of the two shapes.

For this part, we chose the state of the art point cloud
learning method KPConv [47], by extending the segmenta-
tion network proposed in that work. Our feature extractor
is thus a Siamese version of the segmentation network de-
scribed in KPConv, which we review for completeness in
the supplementary materials.

4.4 . The regularized FMap layer

This block provides a novel fully differentiable way to
compute a robust functional map from potentially low di-
mensional spectral descriptors.

The main goal is, as in Section 3, to recover the ground-
truth bijection between M and N , on which we have the
computed raw-data features F and G.

For this we first express the computed feature func-
tions in the respective spectral basis, which we denote by
ΦM and ΦN . This leads to the spectral descriptors A =
(ΦM)†F and B = (ΦM)†G, with Φ† the Moore pseudo-
inverse of Φ. We stress again that this step is where we
shift focus from the spatial to the spectral domain, and cor-
responds to the dot product blocks in Figure 2.

In the pipeline first introduced in [32] and then widely
used in the follow-up works [34], the standard strategy is to
compute the functional map C that optimizes the following
energy:



min
C

∥∥CA−B
∥∥2 + λ

∥∥C∆M −∆NC
∥∥2, (4)

where λ is a scalar regularization parameter.
Remark that the optimization problem in Eq. (4.4 ) is

quadratic in terms of C and can be solved e.g. via standard
convex optimization techniques. However, in the learning
context, we need to differentiate the solution with respect
to the spectral features A,B, which is challenging when C
is computed via an iterative solver. Alternatively, the prob-
lem in Eq. can be written directly in terms of a large least
squares system, by vectorizing the matrix C as was sug-
gested in [32]. However, for a k × k functional map, this
leads to a system of size k2×k2 which becomes prohibitive
even for moderate values of k. To avoid these issues, pre-
vious learning-based approaches based on functional maps
[25, 19, 43] have only optimized for C using the first part of
the energy in Eq. (4.4 ):

∥∥CA−B
∥∥2. This results in a sim-

ple linear system for which the derivatives can be computed
in closed form. This has two major limitations, however:
first the linear system is only invertible if there are at least k
linearly independent feature functions. This condition can
easily be violated in practice, especially in the early stages
of learning, potentially resulting in a fatal error. Further-
more, the lack of regularization makes the solved-for func-
tional map very sensitive to inconsistencies in the computed
descriptors, which leads to an overall loss of robustness.

In our work we address this problem by using the full en-
ergy in Eq. (4.4 ) in a fully differentiable way. In particular,
we use the fact that the operators ∆M and ∆N are diagonal
when expressed in their own eigen-basis.

Indeed we remark that the gradient of the energy in Eq.
(4.4 ) vanishes whenever CAAT +λ∆·C = BAT , where
the operation · represents the element-wise multiplication,
and ∆ij = (µMj − µNi )2, where µMl and µNl respectively
correspond to the eigenvalues of ∆M and ∆N . It is then
easy to see that this amounts to a separate linear system for
every row ci of C :

(AAT + λdiag((µ1
j − µ2

i )
2))ci = Abi (5)

where bi stands for ith row of B.
In total, if k is the number of eigenvectors used for rep-

resenting the functional map, this operation amounts to in-
verting k different k × k matrices. Since inverting a linear
system is a differentiable operation, which is already imple-
mented e.g. in TensorFlow, this allows us to estimate the
functional map in a robust way, while preserving differen-
tiability.

4.5 . The supervised spectral loss

Our method also uses a loss with respect to the ground
truth functional map in the spectral domain. This is similar
to the energy used in [11], but is different from the loss of

the original FMNet work [25], which converted a functional
map to a soft correspondence matrix and imposed a loss
with respect to the ground truth point-wise map, relying on
expensive geodesic distance matrix computation.

Specifically, calling C the functional map obtained by
the FMap block, and Cgt the ground truth spectral map, our
loss is defined as:

lspec =
∥∥C−Cgt

∥∥2
As mentioned above, we use a Frbenius norm to compute
the distance between matrices.

It is important to note that whenever a pointwise ground
truth map is given it is trivial to convert it to the functional
map representation. Conversely, the ground truth spectral
map is more general than the point-wise ground truth corre-
spondence. Indeed, with just a few precise landmarks one
can recover a functional map accurate enough to make this
loss efficient, for instance through the original pipeline of
[32], but also with more recent follow-up works, such as
[40] or [29], which we will further describe as baselines to
our method in Section 5.

This is useful, e.g., in the case of re-meshed datasets. In-
deed, complete ground truth correspondences between two
shapes of these datasets are not fully known. One can only
have access to the (often partial and not bijective) ground
truth pointwise map from a template mesh T to each re-
meshed shape Si. Ecah such map can be converted to a
functional map Ci and a very good approximation of the
spectral ground truth Cgti→j between Si and Sj can be ex-
pressed as C†jCi.

4.6 . Postprocessing

Once our model is trained, we can then test it on a pair of
shapes and get a functional map between these shapes. This
map can either directly be converted to a point to point map,
or refined further. We use a very recent and efficient re-
fining algorithm, called ZoomOut [29] based on navigating
between spatial and spectral domains while progressively
inceasing the number of spectral basis functions. This effi-
cient postprocessing technique allows us to get state-of-the-
art results, as described in Section 5.

4.7 . Implementation

We implemented our method in TensorFlow [1] by
adapting the open-source implementation of SURFMNet
[43] and KPConv [47].

Our feature extraction network is based on a residual
convolutional architecture of [47], consisting of 4 convolu-
tional blocks with leaky linear units, with successive pool-
ings and dimension augmentation from 128 to 2048, fol-
lowed by a 4 up-sampling blocks with shortcuts from cor-
responding pooling layers, and dimension reduction from



2048 back to 128. Please see the Supplementary materials,
part A, in [47] for more details. Following the pipeline of
KPConv, we start with a sub-sampled version of our point
clouds with a grid subsampling of step 0.03. The pooling
layers are therefore obtained with grid samplings of param-
eters 0.06, 0.12, 0.24 and 0.48.

Similarly to FMNet [25] and SURFMNet [43], our net-
work is applied in a Siamese way on the two shapes, using
the same learned weights for the feature extractor.

In the case of fully automatic spectral methods such as
BCICP [40] and ZoomOut [29], or the deep learning based
FMNet [25, 19] (supervised or unsupervised) and SURFM-
net [43], all results are invariant by any rigid transforma-
tion of the input shapes. However, in the case of meth-
ods using the 3D coordinates of the points to generate in-
formation about the input shape, this does not remain true.
Consequently, both 3D-CODED [16] and our method avoid
this dependency through data augmentation to be as close
as possible to the generality of fully spectral methods. To
that end, assuming the shapes are all aligned on one axis
(e.g. on human the natural up axis), both 3D-CODED and
our method perform data augmentation by randomly rotat-
ing the input shapes along that axis.

4.8 . Parameters

In addition to the architecture above, our method has two
key hyper-parameters: the size of the functional basis and
the regularizer λ in Equation 5. For the size of the basis,
we discovered if this number is too high, for instance, with
120 eigenvectors as in FMNet and SURFMNet, it can easily
lead to overfitting. However, by reducing this number to
30, the results of SURFMNet on FAUST re-meshed (here
reported in Table 1) go from 0.15 to 4.5. As a consequence,
we choose the number of eigenvectors to be 30 in all of
our experiments on our method. Regarding the weight λ in
Equation (5), we observed that setting it to λ = 10−3 helps
getting good results while drastically reducing the number
of training steps, as pointed out in the ablation study. We
use this value throughout all experiments.

We train our network with a batch size of 4 shape pairs
for a number of epochs depending on the number of shapes
in the dataset. We use a learning rate of .001 and gradually
decreasing it to 0.0001 with ADAM optimizer [13].

5. Results
Datasets

We test our method on a wide spectrum of human
datasets: first, the re-meshed versions of FAUST dataset [7]
containing 100 human shapes in 1-1 correspondence, and
of SCAPE [3], made publicly available by Ren et al. [40].
These re-meshed datasets offer significantly more variabil-
ity in terms of shape structures and connectivity, including

Method \ Dataset F S F on S S on F
BCICP 15. 16. * *
ZoomOut 6.1 7.5 * *
SURFMNet 15. 12. 32. 32.
SURFMNet+icp 7.4 6.1 19. 23.
Unsup FMNet 10. 16. 29. 22.
Unsup FMNet+pmf 5.7 10. 12. 9.3
FMNet 11. 17. 30. 33.
FMNet+pmf 5.9 6.3 11. 14.
3D-CODED 2.5 31. 31. 33.
Ours 3.1 4.4 11. 6.0
Ours+zo 1.9 3.0 9.2 4.3

Table 1. Comparative results (×100) of the different methods on
Experiment 1.

for instance point sampling density, making them harder
to match for existing algorithms. We also highlight that
the SCAPE dataset is slightly more challenging since the
shapes are less regular, and two shapes never share the same
pose. This is not true for FAUST, wherein all the poses
present in the test set also exist in the training set, with the
variation coming from body type only, making the pose re-
covery easier at test time.

We also use the re-meshed version of the more recent
SHREC’19 dataset [28], which, in theory, is the most chal-
lenging of the test sets, because of stronger distortions in the
poses, the presence of an incomplete shape, and the number
of test pairs (430 in total, so two times the number of test
pairs of FAUST or SCAPE). At last, we also use the generic
training dataset of 3D-CODED [16], originally consisting
in 230K synthetic shapes generated using Surreal [50], with
the parametric model SMPL introduced in [26]. We use
it only for training purposes in our second experiment, to
show that our method can generalize well to changes in con-
nectivity, being able to train on a synthetic, very smooth,
identical triangulation for the whole training set, and still
produce results of excellent quality on re-meshed datasets.

Ablation study
Our method is built with a number of building blocks,

all of which we consider essential to achieve optimal per-
formance. To illustrate this, in the supplementary materials
we provide an extensive ablation study of all the key com-
ponents of our algorithm.

Baselines
We compare our method to several state of the art meth-

ods: the first category includes fully automatic methods
without any learning component [40, 29]. These methods
are simply evaluated on the test sets without any training.
The second category includes FMNet [25] and its unsu-
pervised versions, referred to as Unsup FMNet [19] and
SURFMNet [43], with and without post-processing (PMF
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Figure 3. Comparison with 3D-CODED while varying training size of SURREAL dataset and simultaneously testing on other datasets.

[52] for FMNet, and standard functional map refinement
[32], referred to as ICP, for SURFMNet). All these variants
of FMNet give similar results, but SURFMNet is the only
one to train within a few hours, without requiring too much
space. This is due to the fact SURFMNet only operates in
the spectral domain, in contrast to other methods. Lastly,
we compare to the supervised 3D-CODED [16], described
earlier in more details in Section 3. For conciseness, we re-
fer to our method as Ours in the following text. We show
our results with and without ZoomOut [29] refinement, re-
ferred to as ZO, in order to prove that our method stands
out even without post processing. We compare these differ-
ent methods in two main settings named Experiment 1 and
Experiment 2 below.

Experiment 1 consists of evaluating the different meth-
ods in the following setting: we split FAUST re-meshed
and SCAPE re-meshed into training and test sets contain-
ing 80 and 20 shapes for FAUST, and 51 and 20 shapes
for SCAPE. We obtain results for training and testing on
the same dataset, but also by testing on a different dataset.
For instance, by training on SCAPE re-meshed train set and
testing on FAUST re-meshed test set. This experiment aims
at testing the generalization power of all methods to small
re-meshed datasets, as well as its ability to adapt to a differ-
ent dataset at test time.

Experiment 2 consists of sampling 100, 500, 2000, and
5000 shapes from the SURREAL dataset to be used for
training. We then test the trained models on the test sets of
FAUST re-meshed, SCAPE re-meshed, and SHREC19 re-
meshed. This experiment aims at testing the robustness and
generalization power of the different methods in the pres-
ence of varying amounts of training data, as well as adapt-
ability to train on a perfect synthetic triangulations and still
get results on challenging re-meshed shapes.

Quantitative results

To evaluate the results, we use the protocol introduced
in [22], where the per-point-average geodesic distance be-
tween the ground truth map and the computed map is re-

ported. All results are multiplied by 100 for the sake of
readability.

As we can see in Table 1, our method performs the best
overall on Experiment 1. Fully automatic methods do not
provide competitive results compared to the learning meth-
ods (except on crossed settings because they did not train on
anything and are thus not influenced by the training shapes).
As reported in the Section 3.1 , this highlights that hand-
crafted features can easily fail. It is noticeable that spectral
methods (FMNet variations, and Ours as a hybrid method)
get reasonable, or even good results in our case, with these
small datasets. In comparison, 3D-CODED seems to fail in
almost all cases. It is remarkable that it can learn on such a
small dataset as the training set of FAUST re-meshed. One
explanation for that is that FAUST contains the same set of
poses in the test set as in the train set.

Contrary to other baselines, our method gives good re-
sults on all settings, even without refinement, showing good
resilience to a really low number of shapes, even with re-
meshed geometry. We would like to stress that no other
method is able to achieve such a generalization with this
low number of shapes.

For a fair comparison with 3D-CODED, we complete
our study with a second experiment, in which the training
set is now made of the same shapes 3D-CODED uses for
training in their paper, namely SURREAL dataset. The aim
of this experiment is to further showcase the generalization
power of our method when compared to 3D-CODED. First,
by training on a very smooth synthetic dataset, on which
previous fully spectral methods tend to easily overfit due to
the obvious mismatch in triangulation in training and test
set. Our second goal is to observe the dependence of differ-
ent methods on size of the training set.

We report the results (multiplied by 100) of 3D-CODED
and Our method in Figure 3, as they are the only two com-
petitive algorithms in Experiment 2. These results once
again demonstrate that our method can achieve impressive
results even with a low number of training shapes. On
SHREC re-meshed, we achieve state of the art results with
an average error of 0.048 with only 500 training shapes. We
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Figure 4. Qualitative results obtained with texture transfers for the different methods on Experiment 2, training on two different numbers
of shapes in the SURREAL dataset, and testing on SHREC re-meshed shapes.

provide additional quantitative comparisons in the supple-
mentary materials.

It can be observed in Figure 3 that our results are consis-
tent and unaltered even with the drop in number of training
shapes. 3D-CODED, on the other hand, always suffers from
a reduced training set.

Qualitative results

In Figure 4 we show the results of our method (with and
without ZoomOut refinement [29]), 3D-CODED [16], FM-
Net [25] (with and without PMF refinement [51]), trained
on respectively 2000 and 100 shapes, as presented in Ex-
periment 2, via texture transfer.

With 2000 training shapes, both our method and 3D-
CODED lead to good or even excellent texture transfers,
while fully spectral methods fail due to the change of con-
nectivity from training to test set. However, with only 100
training shapes, 3D-CODED fails to get a good reconstruc-
tion in many cases, leading to bad texture transfer as in Fig-
ure 4. This highlights the fact that our method performs bet-
ter than any other existing method when only a few training
shapes are provided.

6. Conclusion, Limitations & Future Work

We presented a method for improving the robustness
and reducing overfitting in learning shape correspondences.
Key to our approach is a hybrid network structure, made of
a raw-data feature extractor that learns descriptors on a pair
of shapes, and a novel robust functional map layer. Our net-
work can thus operate in both the spectral and the spatial
domain, thus taking advantages of both representations.

Our approach has several limitations: first, as a super-
vised method it requires at least partial correspondences
(as discussed in Section 4.5 ) between the training shapes.
Also, it requires data augmentation to be able to predict
non-aligned shapes, which can be costly and unstable.

In the future, we plan to work towards an unsupervised
spectral loss, similar in spirit to SURFMNet [43], while
avoiding the symmetry ambiguity problem. We also plan
to try other, invariant feature extractors such as [18], or [35]
to avoid data augmentation.
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7. Supplement
A . Additional details on KPConv [47]

Here, we review briefly KPConv method and describe
the architecture we used in our implementation.

The input to this network is a 3D point cloud equipped
with a signal, such as the 3D coordinates of the points. Let



P ∈ RN×3 be a point cloud in R3. Let F ∈ RN×D be a
D-dimensional feature signal over P .

The goal of point cloud convolutional networks is to re-
produce the architecture of convolutional neural networks
on images. It boils down to transferring two key operations
on the point cloud structure: the convolution and the pool-
ing operators.

First, we define a convolution between F and a kernel
g at point x ∈ R3. Since we only want a signal over the
point cloud at each layer, we only need these convolutions
at x ∈ P .

The kernel will be defined as a local function centered
on 0 depending on some learnable parameters, taking a
D-dimensional feature vector as input and yielding a D′-
dimensional feature vector.

More specifically, the kernel is defined in the following
way : let r be its radius of action. Let Br3 be the correspond-
ing 3d ball. LetK be the number of points, thus the number
of parameter matrices in this kernel. Let {zk|k < K} ⊂ Br3
be these points, and {Wk|k < K} ⊂ M(D,D′)(R) be these
matrices. Then the kernel g is defined through the formula :

g(y) =
∑
k<K

h(y, zk)Wk

where we simply set h(y, z) = max(0, 1 − ‖y−z‖σ ), so
each point of the kernel has a linear influence of range σ
around it.

Then the convolution simply becomes :

(F ∗ g)(x) =
∑

i|xi∈Br
3

g(xi − x)fi

Where the learnable parameters are the matricesWk. We
set the points zk of the kernel to be uniformly organized in
Br3, so as to better encompass the variations of the convo-
luted signal at a given point of the point cloud, and a given
scale (see [47] supplementaries, Section B for more details).

For the pooling operator, we use a grid sampling that
allows us to get the point cloud at an adjustable density.
The network can then build hierarchical features over the
point clouds by both adjusting the radius of influence of
its kernels and the density of the mesh they are performed
upon.

Once these two operations are set up, it is easy to build
a convolutional feature extractor over the point cloud P . In
our work, we use the following architecture :

• Four strided convolutional blocks, each down-
sampling the point cloud to half its density, and taking
the feature space to another feature space (correspond-
ing to higher-level features) two times larger.

• Four up-sampling layers, taking the signal back on the
whole point cloud, through skipping connections fol-
lowed by 1D convolutions.

Method No Ref Ref
FMNet 17. 13.
PointNet 18. 14.
Old FMap 4.5 1.9
Ours 3.4 1.9

Table 2. Comparative results for the different ablations of our
method.

B . Ablation study

This section presents the extensive ablation study of all
the vital components of our algorithm.

We train all these ablations on 100 random shapes among
the 230K proposed by 3D-CODED, as in experiment 2. We
test them on the 20 test shapes of FAUST re-meshed, so that
the connectivity differs from train to test. The different parts
to ablate are :

• The point cloud feature extractor : as explained in the
previous sections, it learns descriptors from raw data
without relying too much on connectivity. The first
ablation consists of our method, but with FMNet [25]
feature extractor instead of ours. Similar to FMNet,
we use SHOT [48] descriptors. However, we use the
same number of eigenvectors as in our method, namely
30. As a general remark, we noticed that lowering this
number can often help prevent overfitting in the case
of FMNet-based architectures.

• The choice of KPConv [47]. The second ablation study
replaces KPConv sampling and feature extractor block
with that of PointNet [37]. For this ablation, we use
random sampling to 1500 points instead of KPConv
grid sampling. Indeed, grid sampling does not provide
any guarantee on the number of points after sampling,
so it can only be used in a network built to overcome
this issue, with batches of adaptable size, which is not
the case of PointNet.

• The regularized functional map layer. This third abla-
tion simply consists in replacing our regularized func-
tional map layer by the old functional map layer orig-
inally introduced by FMNet. Our layer is in theory
mildly heavier than the original one, but in practice
for less than 50 eigenvectors the computation times re-
main the same.

• Lastly, we remove the post-processing refinement step.
Here we show the results of every ablation with and
without refinement, thus proving it helps in getting bet-
ter results. As a refinement method, we use the state-
of-the-art ZoomOut [29], as mentioned in the main
manuscript.
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Figure 5. Comparison of convergence speed with and without Laplacian Regularization in the FMap block. Left: Training loss evolution,
Right: Evolution of geodesic error on test set with the number of epochs. Notice how the regularized fmap layer helps drastically with the
convergence speed. It gives optimal results within only 500 epochs.

Table 2 shows the ablation study of our method. It
demonstrates the importance of all individual blocks and
ascertains that all these components are needed to achieve
optimal performance with our solution.

However, just looking at the results of the ablation study
one does not see the importance of the FMap Reg addition.
To prove its efficiency, we compare the learning and evalu-
ation curves of our method, with and without this addition.
As can be seen in Figure 5, the models converge much faster
with our regularized functional map layer. The models are
trained on 100 shapes of the surreal dataset of 3D-CODED
as in Experiment 2, and tested on FAUST re-meshed.

In addition, our regularized functional map layer is more
robust, and does not result in a Cholesky Decomposition fa-
tal error when computing the spectral map. In comparison,
the previous functional map layer gave that fatal error in
some experiments, and the model had to be relaunched.

Graphically, as reported in the original functional map
paper [32], a natural functional map should be funnel
shaped. Our regularized functional map layer naturally
computes maps that almost commute with the Laplacians
on the shapes. These maps will naturally be close to diago-
nal matrices (as are funnel shaped maps) in the eigenbasis of
the Laplacians, thus reducing the space of matrices attain-
able by this layer. We believe it helps the feature extractor
block focus on setting the diagonal coefficients of the func-
tional map as in the ground truth, rather than on trying to
get its funnel shape in the first thousand iterations, which is
what a model with the original functional map layer does.

C . More quantitative results

Figures 6 and 7 summarize the accuracy obtained by our
method and some baselines on the different settings of the
two experiments we conducted, using the evaluation pro-
tocol introduced in [22]. Note that in all cases but one
(trained on 2000 shapes of SURREAL, tested on SCAPE
re-meshed), our network achieves the best results even com-

pared to the state-of-the-art methods. As explained more
thoroughly in the main manuscript, this proves our method
is able to learn point cloud characterizations with only a
small amount of data, and by projecting these descriptors in
a spectral basis can retrieve accurate correspondences from
them. Our method does not need any template and is thus
more general than 3D-CODED, in addition to the fact that
it trains faster and does not need a big training set.

We even believe the superiority of our method with a low
number of training shapes shapes is partially due to this fact
that 3D-CODED uses a template and operates in the spatial
domain, unlike our approach which is template-free, and
partly operates in the spectral domain, making it easier to
adapt to any new category of 3D shapes.

The relatively low performance of our method on
SCAPE in Experiment 2 (see Figure 7) is due to the pres-
ence of back-bent shapes in this dataset. These shapes are
seen by the network through their truncated spectral approx-
imation, as discussed in section D , making it unable to ex-
ploit refined features such as the face or hands, that could
help getting descriptors able to differentiate left from right.
Consequently, as there are no back-bent shapes in the train-
ing sets of this experiment, these shape are often mapped
with a left-to-right symmetry, resulting in a huge error for
these particular shapes, increasing the mean error for the
whole SCAPE test set.

D . Visualization of some descriptors learned by our
method

Our method aims at building descriptors on both input
shapes (that are often labeled source and target shapes) from
their raw point cloud data. These descriptors are then pro-
jected on the eigen basis of the respective Laplace-Beltrami
operators of the source and the target shapes. We output
these projections, that we call spectral descriptors, and we
visualize some of them in Figure 8.

It is remarkable that the descriptors learned on a para-
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Geodesic error on SCAPE re-meshed (trained on SCAPE re-meshed)

Ours : 0.0439
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FMNet : 0.1581
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Geodesic error on FAUST re-meshed (trained on SCAPE re-meshed)

Ours : 0.0599
Ours + ZO : 0.0429
FMNet : 0.3346
FMNet + PMF : 0.1398
Unsup FMNet : 0.2211
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SURFMNet + ICP : 0.2251
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Geodesic error on SCAPE re-meshed (trained on FAUST re-meshed)

Ours : 0.1102
Ours + ZO : 0.0924
FMNet : 0.3003
FMNet + PMF : 0.1078
Unsup FMNet : 0.2865
Unsup FMNet + PMF : 0.1218
SURFMNet : 0.3162
SURFMNet + ICP : 0.1869
3d Coded : 0.3067

Figure 6. Quantitative results of the different methods using the protocol introduced in [22], on all the settings of Experiment 1
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Geodesic error on FAUST re-meshed (trained on 100 SURREAL shapes)

Ours : 0.0346
Ours + ZO : 0.0191
FMNet : 0.3564
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Unsup FMNet : 0.3517
Unsup FMNet + PMF : 0.1474
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Geodesic error on SCAPE re-meshed (trained on 100 SURREAL shapes)

Ours : 0.1657
Ours + ZO : 0.1554
FMNet : 0.3787
FMNet + PMF : 0.1709
Unsup FMNet : 0.3983
Unsup FMNet + PMF : 0.2659
3d Coded : 0.3064
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Geodesic error on SHREC re-meshed (trained on 100 SURREAL shapes)

Ours : 0.0809
Ours + ZO : 0.0677
FMNet : 0.547
FMNet + PMF : 0.4755
Unsup FMNet : 0.5341
Unsup FMNet + PMF : 0.4488
3d Coded : 0.2984
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Geodesic error on FAUST re-meshed (trained on 2000 SURREAL shapes)

Ours : 0.0331
Ours + ZO : 0.0188
FMNet : 0.3624
FMNet + PMF : 0.1409
Unsup FMNet : 0.3951
Unsup FMNet + PMF : 0.1836
3d Coded : 0.0417
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Geodesic error on SCAPE re-meshed (trained on 2000 SURREAL shapes)

Ours : 0.1132
Ours + ZO : 0.1015
FMNet : 0.3701
FMNet + PMF : 0.2057
Unsup FMNet : 0.3947
Unsup FMNet + PMF : 0.2746
3d Coded : 0.0569
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Geodesic error on SHREC re-meshed (trained on 2000 SURREAL shapes)

Ours : 0.0703
Ours + ZO : 0.0579
FMNet : 0.5174
FMNet + PMF : 0.4862
Unsup FMNet : 0.5414
Unsup FMNet + PMF : 0.4577
3d Coded : 0.0896

Figure 7. Quantitative results of the different methods using the protocol introduced in [22], on two of the settings of Experiment 2. Top
row: 100 shapes (low number). Bottom row: 2000 shapes (high number).

metric dataset such as the one used in 3D-CODED still
generalize well to shapes with entirely different mesh con-
nectivity and number of points. This is made possible by
two components of our method. Firstly, it down-samples
the input shapes through grid sampling before building
these descriptor functions with convolutional neural net-

works. This allows for regularity in the input point clouds
at all different hierarchies (see Figure 10 for an example
of such grid sampling). Secondly, the spectral projections
take these point cloud descriptions to the shapes intrinsic
space, adding some comprehensive surface-related infor-
mation without depending too much on the connectivity,
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Figure 8. Visualization of spectral descriptors learned by our method (with 2000 surreal shapes) on a test pair of SCAPE re-meshed. The
source shape is shown in the first row, and the target shape in the bottom row. Notice how the descriptors are localized and seem to highlight
one specific part of the body (first column for shoulder, second for scalp, third for right thigh, fourth for right side of the torso, fifth for
elbow).

like with SHOT descriptors. Without this intrinsic trans-
lation, the network could have trouble differentiating two
geometric components close in euclidean space, such as for
instance the arms in mesh 25 of Figure 8.

Additionally, these descriptors seem to capture some
segmentation information, such as for instance head, arms,
body and legs for humans, as can be observed in Figure 8.
More precise or complex descriptors such as hand or facial
descriptors can not appear with only 30 eigen vectors. It
is due to the fact that a spectral reconstruction of a human
shape with only 30 eigenvectors does not show small de-
tails such as hands, feet or facial features. One would need
to push the number of eigenvectors above 100 to see such
descriptors appear, and used correctly by the algorithm to
produce even better correspondences. However, this could
also more easily lead to overfitting.

E . Additional Texture transfer on SHREC’19 re-
meshed

In Figure 9 are shown additional qualitative results of
our method (with and without Zoomout refinement [29]),
3D coded [16], FMNet [25] and Unsupervised FMNet [19]
(with and without PMF refinement [51]), trained on respec-
tively 2000 and 100 shapes, as presented in the Results sec-
tion, Experiment 2, of the main manuscript.

These results show again the failure of FMNet, due to
the change in connectivity. It can be seen more thoroughly
in the quantitative graphs provided in Figure 7.

This pair of shapes in Figure 9 represents a challeng-
ing case for both 3D-CODED and our method. Indeed,
these networks are not rotation invariant, as discussed in
the implementation section of the main manuscript. Here,
the source shape is bent over and its head is really low com-
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Figure 9. Qualitative results on Experiment 2 through texture transfer, showing cases where our method is the only one that can give good
correspondence with only 100 training shapes.

pared with the rest of the body. 3D-CODED and our method
are made robust to rotation around the vertical axis through
data augmentation, but here the source shape is slightly ro-
tated along another axis. As we can see, this resulted in poor
reconstructions in the case of 3D-CODED algorithm, even
with 2000 training shapes, whereas our method was able to
yield good results with both a high and a low number of
shapes.

F . General Pipeline

We also provide a visual illustration of our general
pipeline in Figure 10 to complement the textual description
of our method provided in the main manuscript.
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Figure 10. Pipeline of our method: 1) Down-sample source and target shapes with grid sampling (providing the pooling at different scales).
2) Learning point cloud characterizations and project them in the Laplace-Beltrami eigen basis. 3) Compute the functional map from
source and target spectral descriptors, with our regularized fmap layer. 4) Compute the loss by comparing the computed functional map
with the ground truth map.


