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Janus phoretic colloids (JPs) self-propel as a result of self-generated chemical gradients
and exhibit spontaneous nontrivial dynamics within phoretic suspensions, on length scales
much larger than the microscopic swimmer size. Such collective dynamics arise from the
competition of (i) the self-propulsion velocity of the particles, (ii) the attractive/repulsive
chemically mediated interactions between particles, and (iii) the flow disturbance they
introduce in the surrounding medium. These three ingredients are directly determined by
the shape and physicochemical properties of the colloids’ surface. Owing to such link,
we adapt a recent and popular kinetic model for dilute suspensions of chemically active
JPs where the particle’s far-field hydrodynamic and chemical signatures are intrinsically
linked and explicitly determined by the design properties. Using linear stability analysis,
we show that self-propulsion can induce a wave-selective mechanism for certain parti-
cles’ configurations consistent with experimental observations. Numerical simulations of
the complete kinetic model are further performed to analyze the relative importance of
chemical and hydrodynamic interactions in the nonlinear dynamics. Our results show that
regular patterns in the particle density are promoted by chemical signaling but prevented
by the strong fluid flows generated collectively by the polarized particles, regardless of
their chemotactic or antichemotactic nature, i.e., for both puller and pusher swimmers.

DOI: 10.1103/PhysRevFluids.5.104203

I. INTRODUCTION

The complex self-organization and collective dynamics of microswimmers within so-called
active suspensions have fascinated many researchers across disciplines, in part because of their
ubiquity in the biological world but also as a simple model system to study the emergence of
collective behavior. As an archetypal example of matter out of equilibrium displaying rich phe-
nomenology, such complex systems have been studied and described with methods akin to those
widely employed in statistical mechanics and thermodynamics [1–3]. The collective motion of
simple living microorganisms, e.g., bacteria, as well as their capacity to self-organize [4] and to
respond to external stimuli [5] have also inspired the design of artificial microscale swimmers,
including for potential engineering applications such as cargo transport for targeted drug delivery
[6,7] or as micromachines [8,9].

The ability of such artificial microscale swimmers to self-propel through the surrounding vis-
cous medium is essential to the emergence of nontrivial collective dynamics or for technological
applications, and can be forced externally using acoustic vibrations [10] or electromagnetic fields
[11–13]. Alternatively, direct interactions of individual particles with their immediate environment
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can convert physicochemical energy to set the fluid into motion and self-propel [14,15]. To this
end, the particle’s surface must possess two fundamental physicochemical properties: (i) a phoretic
mobility to convert physicochemical gradients into mechanical forcing locally [16] and (ii) an
activity to create such local gradients without any external directional forcing [17]. This activity,
which can take diverse forms such as chemical catalysis or heat release, can be either spontaneous,
e.g., hydrogen peroxide decomposition on gold-platinum colloids [18,19], or externally activated,
e.g., via an optical field [20,21], providing a route to remote control of the activity of the colloids
and of their self-propulsion without direct imposition of a mechanical forcing.

Directed self-propulsion at the microscopic scale also requires breaking the spatial symmetry
of the mechanical forcing, and thus of the physicochemical environment of the particles, which
is most commonly achieved by an asymmetric design of the particles, e.g., surface coating, as
for Janus phoretic colloids (JPs) with two distinctly coated ends [14,15]. On the other hand,
motile microorganisms use motile appendices (cilia or flagella) the coordinated movement of which
produces nonreciprocal waves that break the time-reversal symmetry and guarantee propulsion at
the microscopic scale [22,23]. Despite such difference in how microorganisms and JPs achieve
sustained directional motion, the slowest decaying mode of the flow disturbance generated by both
kinds of swimmers is the one of a force-free self-propelling particle in a viscous medium, namely,
a force-dipole (or stresslet) [22,24–26]. Such far-field hydrodynamic signature dominates the
hydrodynamic interactions between swimmers within dilute suspensions and it is the only retained
contribution in far-field models. The hydrodynamic coupling of JPs as well as of microorganisms is
therefore modeled in similar ways.

The ability to generate gradients of the physicochemical properties of the surrounding medium
and to respond to them is another shared feature between JPs and certain microorganisms, e.g.,
Escherichia Coli, and allows swimmers to interact chemically within the suspension. While the
analogy holds from a phenomenological point of view, it cannot be extended to the details of
the physical mechanisms governing the attractive (or repulsive) nature of the chemically mediated
interactions. Specifically, by virtue of the phoretic mechanism the mere presence of a chemical
gradient, which can result from the presence of nearby particles, sets a Janus particle into motion
along its direction, a distinguished feature of phoretic colloids [20,27]. Alternatively, autophoretic
particles with nonuniform surface mobility reorient along an external gradient under the effect of
the induced aligning torque and self-propel in such direction [28–30]. On the other hand, microor-
ganisms achieve an average net motion along the gradient of the chemoattractant by performing a
biased random walk, sometimes in the form of a run-and-tumble motion, for which it is sufficient to
detect the local chemoattractant concentration rather than the actual direction of its gradient. Both
tactics to perform chemotaxis (or antichemotactixis in the case of a chemorepellent) can lead to
the destabilization of the suspension and produce nontrivial collective dynamics among synthetic
as well as biological swimmers [18,19,31–33]. As for their living analogs [4,34] the dynamics of
phoretic suspensions can transition from seemingly random motions to more complex collective
behavior beyond a critical value of the particle’s volume fraction [18–20].

Recent research efforts have focused increasingly on the control of the activity of phoretic
systems at the level of their individual constituents, in order to create suspensions of active particles
with individual tunable swimming speeds [35] or to control the formation of self-powered micro-
gears from active particles [36]. The individual behavior of phoretic particles and their collective
organization are related to their self-propulsion characteristics, e.g., velocity, and their robustness to
external forcing. They are also critically influenced by the chemical and hydrodynamic footprints
they introduce and forcings they exert on their environment, which allow them to develop collective
dynamics. These forcings, in turn, are directly and fundamentally determined by the particle’s
detailed shape [37,38], size [39,40], and surface activity and mobility distributions [26,27,41].
Understanding the intimate coupling of such individual design and collective behavior is the main
focus of the present paper and we aim thus to characterize how specific microscopic properties of
individual Janus particles determine the large-scale dynamics of phoretic suspensions.

To this end, we model suspensions of chemically active Janus particles using a kinetic model,
extending to that purpose a recent and popular framework initially proposed to study the emergence
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of hydrodynamic instabilities within bacterial suspension [42] and later extended to analyze the
detailed rheology of active suspensions [43] or chemotaxis [32,44]. The fundamental idea of such
modeling is to describe the evolution in time of a probability density to find a particle at a given
location and with a particular orientation in terms of ambient mean chemical and hydrodynamic
fields, which are in turn forced by the distribution and action of the particles. This approach is
fundamentally limited to dilute suspensions as the coupling of two particles’ dynamics is only
accounted for through their action on the mediating flow and chemical fields, although corrections
to include steric interactions can also be introduced [45]. This generic approach is adapted here to
account for the detailed individual properties of Janus particles, and how they influence individually
the different fundamental parameters of the system characterizing their behavior, e.g., swimming
speed and chemotactic or antichemotactic character.

The rest of the paper is organized as follows. Section II introduces the modeling approach chosen
here, obtaining the different characteristics of individual particles and how they react to external
chemical and hydrodynamic fields directly in terms of their surface properties. In a second step,
these individual properties are introduced into the generic kinetic model at the suspension level,
obtaining a closed set of equations driving the joint dynamics of the particle density distribution
and the mean chemical and hydrodynamic fields. This model is then applied to analyze the linear
stability of isotropic suspensions which are characterized initially by uniform solute and particle
distributions and no hydrodynamic flow (Sec. III); for spherical particles, chemical coupling and
the resulting instabilities are dominant in that linear regime. The role of hydrodynamic interactions
in setting the characteristics of the nonlinear regime arising from these instabilities, as well as their
interplay with chemical interactions, are investigated using numerical simulations of the full kinetic
model (Sec. IV). Section V finally summarizes the main conclusions of this analysis and presents
further perspectives.

II. INDIVIDUAL AND SUSPENSION MODELING OF JANUS PHORETIC PARTICLES

The goal of the present section is to obtain a minimal kinetic model for a dilute suspension from
the detailed understanding and modeling of the chemical and hydrodynamic fields around a single
phoretic Janus particle, as well as the particle self-propulsion dynamics and its response to outer
chemical and hydrodynamic forcings. In Sec. II A, the individual particle properties are obtained in
terms of physicochemical characteristics before being included in the suspension model in Sec. II B.

A. Single-particle dynamics

We first analyze the motion and chemohydrodynamic signatures, i.e., the generated chemical
and hydrodynamic fields, of a single Janus particle, which drifts and rotates due to the presence
of a nonuniform physicochemical field, denoted by C. This field can either result from the polar
chemical activity of the colloid (self-propulsion) or be externally imposed, for example, by an
external chemical field or by the presence of other active particles nearby (passive phoretic drift).

A spherical half-coated Janus particle of radius R is considered; at the particle scale, i.e., focusing
on the concentration field in the particle’s vicinity, r � R, the solute dynamics is purely diffusive,
i.e., its excess concentration with respect to the chemical equilibrium far from the particles satisfies
Laplace’s equation:

Dc∇2
x C = 0, (1)

where Dc is the solute diffusion coefficient and ∇x denotes the spatial gradient. Convective or
intrinsic restoring dynamics to the background chemical equilibrium C∞, which are neglected here
at the particle scale, may, however, be significant at the scale of the suspension, i.e., for r � R, as
discussed further in Sec. II B 2. Local solute gradients along the particle’s surface generate a local
flow forcing within a thin boundary layer surrounding the particle, because of the difference in
physicochemical affinity of the solute and solvent molecules with the particle’s surface [16]. This
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phoretic effect is responsible for an apparent slip velocity on the surface of the particle [26,27]:

u∗ = M(n)(I − nn) · ∇C|r=R, (2)

which couples the chemical and hydrodynamic fields through the mobility coefficient M(n), a
physicochemical property of the surface of the colloid which determines the particle’s repulsive
or attractive interaction to the solute molecules [16]. Here, n = r/r is the normal unit vector at the
particle’s surface r = R. We note that Eq. (2) is rigourously valid only for self-diffusiophoresis
in uncharged neutral electrolytes, while self-diffusiophoresis in charged electrolytes (or self-
thermophoresis) would result instead in a slip velocity proportional to ∇ ln C|r=R [16]. This
logarithmic dependence may have a significant influence on the quantitative predictions of the
particle’s velocity when the magnitudes of activity-induced concentration fluctuations are of the
same order as or larger than the absolute concentration level [46]. However, Eq. (2) may still
provide a useful approximation in the case of charged solute molecules when fluctuations in the
concentration are small compared to the absolute solute concentration level and is rigorously valid
for linear stability analysis around a uniform steady state, i.e., when C = C0 + δC with |δC| � C0

(Sec. III).
Considering an isolated particle in unbounded flow, the reciprocal theorem for Stokes flow can

be used to obtain from u∗ the translational and rotational velocities U and � of the colloid [23] as
well as its dominant far-field hydrodynamic signature, i.e., a stresslet S or symmetric force dipole
(the particle is force and torque free) [41], as

U = −〈u∗〉, � = − 3

2R
〈n × u∗〉, (3)

S = −5η

2

∫
∂S

(nu∗ + u∗n)dA. (4)

This approach is used successively to determine the self-propulsion of a chemically active swimmer
in response to its own chemical activity in Sec. II A 1 and its drift dynamics in an externally imposed
chemical field in Sec. II A 2. Exploiting the linearity of the diffusion and hydrodynamic problems,
the complete dynamics, i.e., self-propulsion in an externally imposed chemical field, is obtained by
superposition of the two sets of results.

1. Self-propulsion velocity and the self-induced stresslet

The response of the Janus particle to its own chemical activity is obtained by solving Eq. (1)
together with the boundary conditions

Dcn · ∇C(r)|r=R = −A(n) and C|r→∞ → 0, (5)

where A(n) is the rate of production of the chemical solute at the colloid’s boundary and quantifies
its chemical activity. For simplicity, we assume here that it takes the form of a fixed-flux solute
release (A > 0) or consumption (A < 0), but a more general (and concentration-dependent) form of
A could be considered to account for more complex surface kinetics [28,29,39]. In the following,
we focus on hemispheric Janus particles with piecewise uniform activity A(n) = Ab on their back
side (n · p < 0) and A(n) = A f on their front side (n · p > 0) with p the unit vector pointing toward
the front of the particle and along its axis of symmetry. We further define A+ = Ab + A f and A− =
Ab − A f , respectively, the total activity and activity contrast, and adopt the same definitions for the
mobility equivalents, M+ and M−. In the following, we also assume that the particles act as net
sources, so that A+ > 0. The solution to the Laplace problem in Eqs. (1) and (5) is obtained as a
series of spherical harmonics [27,30,47,48]:

C =
(

2πR2A+

Dc

)
1

4πr
−

(
3πR3A−

2Dc

)(
p · r
4πr3

)
+

∞∑
m=2

AmR

(m + 1)Dc

(
R

r

)m+1

Pm(μ), (6)

104203-4



HYDROCHEMICAL INTERACTIONS IN DILUTE PHORETIC …

with μ = p · r/r and Pm the mth Legendre polynomial. The coefficients Am are the Legendre
projections of the activity distribution, i.e., Am = 2m+1

2

∫ 1
−1 A(μ)Pm(μ)dμ. The slowest decaying

terms in this expansion provide the chemical signature of the particle and include (i) a source of
solute proportional to the net production rate A+ and (ii) a source dipole proportional to A−. We
note that, for hemispheric swimmers, Am = 0 for even m.

From Eq. (2), the resulting nonuniform distribution of solute at the surface of the colloid
generates a slip velocity:

u∗
s = M(n)

[
−3A−

8Dc
+

∞∑
m=2

Am

(m + 1)Dc
P′

m(μ)

]
(I − nn) · p. (7)

Substitution into Eq. (3) provides the self-propulsion velocity Us = U0p, with

U0 = A−M+

8Dc
, (8)

and the self-rotation velocity vanishes due to the problem’s symmetry, �s = 0.
The stresslet associated with the particle self-propulsion is then obtained from Eqs. (4) and (2)

using the problem’s axisymmetry, as

σs = σs

(
pp − I

3

)
, with σs = −10πηa2κM−A−

Dc
(9)

where κ is a numerical constant obtained as

κ = 3

4

∞∑
m=1

2m + 1

m + 1

[∫ 1

0
Pmdμ

][∫ 1

0
μ(1 − μ2)P′

mdμ

]
≈ 0.0872. (10)

2. Externally induced drift, rotation, and stresslet

Because their mobility property gives them the ability to generate slip in response to any
surface concentration gradient, regardless of its origin, phoretic particles may also drift in externally
imposed nonhomogeneous concentration fields, in particular those resulting from the presence
of other active particles. To obtain the resulting translational and rotational drifts as well as the
particle’s hydrodynamic signature, it is equivalent to consider the problem of a chemically passive
particle, i.e., A(n) = 0, immersed in a nonuniform concentration field. In the following, we will
focus on dilute suspensions where the concentration signature induced by other particles will vary
slowly around each particle. As a result, we focus here on a slowly varying externally imposed
field in the absence of the particle, i.e., Cext(x) ∼ C∞ + G · x, where the concentration gradient
G = ∇Cext is considered uniform and equal to its value at the particle’s centroid. Note that by
doing so we neglect any second-order gradient and quadratic variations of the external field, which
is reasonable for dilute suspensions as such correction would be O(R/lc) or smaller, with lc the
characteristic length scale describing the suspension dynamics (see Sec. II B).

The presence of the particle modifies this concentration distribution, which now reads for |r| � R
as

C = C∞ + G · r
(

1 + R3

2r3

)
, (11)

and the resulting induced slip velocity is

u∗
i = 3

2
M(n)(I − nn) · G. (12)
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In response to this slip velocity u∗
i , the hemispheric Janus particle’s induced translational and

rotational drifts are Ui = χt G and �i = χrp × G, where χt and χr read

χt = −M+

2
, χr = 9

16

M−

R
· (13)

Note that no translational motion parallel to p is induced for a half-coated, i.e., hemispheric, colloid
in contrast with more generic particles [28,30].

To obtain the induced stresslet σ i, Eq. (12) is substituted into Eq. (4), yielding

σ i = −15η

4

∫
∂S

M(n){[(I − nn) · G]n + n[(I − nn) · G]}dS. (14)

For the case of hemispherical swimmers the mobility is M(n) = M f for n · p > 0 and M(n) = Mb

for n · p < 0; in that case, the integral in Eq. (14) can be conveniently rewritten as the sum of two
contributions on each hemisphere using the following results:∫

n·p>0
n dS = πR2p,

∫
n·p>0

nnn dS = πR2p
4

[
pI + Ip + (Ip)T23

]
(15)

where AT23 is the transpose of the third-order tensor A with respect to its last two indices. The
integrals on n · p < 0 are obtained by changing p into −p, and the induced stresslet is finally
computed as

σ i = σi[Gp + pG + (G · p)(pp − I)], with σi = 15

8
ηR2πM−. (16)

3. Individual particle properties: A note on the role of the physicochemical property

The self-propulsion and induced drift velocities and stresslets were obtained in Secs. II A 1 and
II A 2 from the detailed chemical dynamics at the particle level explicitly in terms of the particle’s
activity and mobility properties (i.e., M+, M−, A+, and A−) in the case of hemispheric particles.

Specifically, it should be noted that the self-propulsion velocity and self-generated stresslet are
both proportional to the front-back activity contrast, A−, as it is responsible for the self-generated
chemical gradient at the surface of an isolated particle. In contrast, externally induced drifts and
stresslets are proportional to the magnitude of the externally imposed gradient. In a suspension,
where the external concentration field results from the dominant chemical signature of other
particles, i.e., a net source of intensity A+ [see Eq. (6)], these quantities are therefore proportional
to the mean activity, A+.

Each velocity or stresslet intensity is also a linear function of the mobility distribution. Namely,
the translational velocities, either self-induced (u0) or externally induced (≈χt ), are proportional
to the mean mobility, M+, as the latter determines the average slip velocity on the surface of the
colloid. In contrast, the (self- and externally induced) stresslets of the particle, σi and σs, as well as
its rotational drift velocity, χr , are proportional to the front-back mobility contrast, M−.

B. Kinetic model for suspension dynamics

1. Governing equations

Having understood and fully characterized the behavior and chemohydrodynamic footprints of
individual particles, we now turn to the description of a dilute suspension of autophoretic Janus
swimmers. The approach followed here considers that the suspension dynamics are studied on a
length scale much larger than the particle radius, and instead of characterizing each particle’s state
individually the probability to find a particle in a given small volume of fluid with a set orientation
is fully described by the probability distribution function 	(x, p, t ) of the particle position, x, and
director, p [32,42,44]. The evolution of the suspension then classically follows a Smoluchowski

104203-6



HYDROCHEMICAL INTERACTIONS IN DILUTE PHORETIC …

equation:

∂	

∂t
= −∇x · (	ẋ) − ∇p · (	ṗ), (17)

where ∇p denotes the gradient operator on the unit sphere. The distribution function is normalized
so that [42]

1

V

∫
V

dx
∫

S
dp	(x, p, t ) = n, (18)

where n = N/V is the mean number density of the particle in the suspension and N is the total
number of particles within the volume of interest, V = L3.

The translational and rotational fluxes, ẋ and ṗ, are obtained from the corresponding determinis-
tic velocities of an individual particle located at x and oriented along p in response to its own activity
and to the hydrodynamic and phoretic mean fields u(x, t ) and C(x, t ) in its vicinity, respectively.
In this dilute limit, these fluxes are directly expressed by superimposing the self-propulsion and
induced drifts of an individual JP determined in Sec. II A as well as the leading-order classical
Faxen law for a spherical particle, yielding

ẋ = U0p + u + χt∇xC − Dx∇x[ln(	)], (19)

ṗ = 1

2
ω × p + χr (p × ∇xC) × p − Dp∇p[ln(	)], (20)

where ω = ∇x × u is the vorticity vector. The last terms in Eqs. (19) and (20) account for the
translational and rotational diffusion of the particles with constant diffusion coefficients Dx and Dp,
respectively, and model the integral effect of the thermal noise of the bath in the overdamped regime.
Due to the fully deterministic modeling of the chemically induced rotation, which is well suited for
phoretic particles, this approach is sometimes referred to as the turning-particle model. For other
systems such as swimming bacteria, other models have been proposed, e.g., run-and-tumble [44].

The mean pressure and velocity fields in the suspension, q and u, satisfy the incompressible
Stokes equations, forced by the hydrodynamic stresses generated by each JP individually:

∇x · u = 0, (21)

−η∇2
x u + ∇xq = ∇x · �. (22)

In the mean field description of a dilute suspension, the bulk effect of the swimmers is described by
superimposing the active stresses produced by different swimmers at a given location, (9) and (16),
i.e.,

�(x, t ) =
∫

S
σs	(x, p, t )dp +

∫
S
σ i	(x, p, t )dp. (23)

At the suspension scale, the solute produced by each swimmer (at a rate 2πR2A+) diffuses and
may also be advected by the fluid flow. We further account physically for the finite-time intrinsic
relaxation rate (β1) of the chemical system toward its background equilibrium far from all active
particles. As a result, the equation governing the dynamics of the solute concentration, C, reads

∂C

∂t
+ u · ∇xC = Dc∇2

x C − β1C + 2πR2A+�, (24)

where �(x, t ) = ∫
S 	(x, p, t )dp is the particle density. The last term on the right-hand side of

Eq. (24) is a coarse-grained representation of the production of C due to the presence of swimmers,
which are here considered to be net sources (A+ > 0).
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2. Nondimensional equations

The governing equations are made dimensionless using the reference length scale lc = (nR2)−1

introduced by [42] for such suspensions. Note that with this choice of lc the nondimensional particle
radius ϕ = R/lc = 3ν/(4π ) is proportional to the volume fraction occupied by the swimmers, ν =
NVp/V with Vp = 4

3πR3. The associated time scale, tc = l2
c /Dc, is based on the diffusion time of the

solute. Finally, the characteristic concentration scale is obtained as Cc = lcA+/Dc by the balance of
chemical production by the phoretic particles (nR2A+) and the diffusive flux at the suspension level
(DcCc/l2

c ).
The nondimensional fluxes become

ẋ = u0p + u + ξt∇xC − dx∇x[ln(	)], (25)

ṗ = 1

2
ω × p + ξr

ϕ
(p × ∇xC) × p − dp∇p[ln(	)], (26)

where the nondimensional self-propulsion and chemically induced drifts are obtained from the
dimensional properties of the particles as

u0 = A−M+

8D2
cnR2

, ξt = −M+A+

nR2D2
c

, ξr = 9

16

M−A+

D2
cnR2

· (27)

The reduced diffusion coefficients are, respectively, defined as dx = Dx/Dc and dp = Dpl2
c /Dc.

We will treat here ξt and ξr as independent nondimensional measures of the mean mobility
M+ and mobility contrast M−, respectively. The self-propulsion velocity, in turn, can be seen
as the nondimensional measure of the activity contrast A−, although it is also proportional to ξt .
Consequently, it is not physically relevant to consider ξt = 0 and u0 = 0, while the reverse situation
(u0 = 0 and ξt = 0) corresponds to a particle of uniform activity.

It should therefore be noted that the nondimensional stresslet intensities are not independent
parameters but instead can be expressed in terms of the others as

αs = 10πκ
256

9

u0ξr

ξt
and αi = 30

9
πξr, (28)

showing the link between the velocities induced by chemical interactions and the strength of
the hydrodynamic forcing exerted by the swimmers. Noticeably, the coefficient for the rotational
velocity induced by the phoretic field, ξr/ϕ, is the only parameter that depends on the volume
fraction and is a consequence of the different scaling of the two hydrodynamic and chemical
rotational drifts with the interparticle distance.

The conservation equation (17) remains unchanged with the distribution function normalized by
the mean particle density:

1

V

∫
V

dx
∫

S
dp	(x, p, t ) = 1, (29)

where V = (L/lc)3 and 	 has conserved mean 1/4π .
The continuity and momentum equations become

∇x · u = 0, (30)

−∇2
x u + ∇xq = ∇x · �. (31)

Finally, the concentration equation becomes in nondimensional form

∂C

∂t
+ u · ∇xC = ∇2

x C − βC + 2π�, (32)
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where β−1/2 = l∗/lc is the reduced screening length l∗ = √
Dc/β1 introduced at the scale of the

suspension by the finite-time intrinsic relaxation of the chemical system toward its background
equilibrium.

In the following, we assume that β = O(1), which guarantees the existence of a steady-state
solution for an isotropic suspension and implies that the relaxation toward chemical equilibrium
away from active particles occurs at a finite distance that is much larger than the particle size (thus
allowing for chemical interactions between particles). This effective relaxation, −βC, introduces an
exponential decay of the concentration field away from chemical sources (rather than the algebraic
one associated to diffusion) with a l∗ = O(lc) characteristic screening length. As a result such
exponential screening is negligible at the particle scale, i.e., at a O(R) distance from the source
particle, and the degradation term could indeed be neglected in the derivations of Sec. II A. Similarly,
the convection of solute by the fluid flow, i.e., the left-hand side of Eq. (32), plays an O(1) role at
the suspension scale lc but is negligible at the scale of the particle radius, where the solute dynamics
thus simply satisfies Laplace’s equation.

III. LINEAR STABILITY ANALYSIS OF A NEARLY ISOTROPIC SUSPENSION

The previous system admits a trivial uniform equilibrium solution where the distribution of par-
ticles is homogeneous and isotropic, i.e., 	(x, p, t ) = 	0 = 1/4π , �(x, t )=�0=1, and C(x, t )=C0

with C0 = 2π�0/β. In this section, we analyze the stability of linear perturbations of this isotropic
solution, i.e., by expanding 	(x, p, t ) = 1

4π
[1 + δ	(x, p, t )] and C(x, t ) = C0 + δC(x, t ), where δ f

indicates a small perturbation of a quantity f .

A. Dispersion relation

Using this expansion, the linearized governing equations read

∂δ	

∂t
= −u0p · ∇xδ	 − ξt∇2

x δC + dx∇2
x δ	 + 2

ξr

ϕ
p · ∇δC, (33)

∂δC

∂t
= −βδC + 2πδ� + ∇2

x δC, (34)

where use is made of the identity ∇p · [(p × ∇xC) × p] = −2p · ∇xC. Upon linearization,
we seek solutions written as planar waves with wave vector k and growth rate σ , i.e.,
δ	(x, p, t ) = 	̃(k, p) exp(ik · x + σ t ) (similar definitions are used for C̃ and �̃), yielding

(σ + iu0p · k + dxk2)	̃ =
(

ξt k
2 + 2i

ξr

ϕ
p · k

)
C̃ and C̃ = 2π

σ + β + k2
�̃. (35)

Integration of Eq. (35) over all orientations p yields

iu0ñ · k + 4π (σ + dxk2)�̃ = 8π2ξt k2

σ + β + k2
�̃, (36)

where 4π�̃ and ñ are, respectively, the particle concentration and local polarization and are
mathematically obtained as the zeroth and first moments of 	̃ in the orientation space. We remark
that, in the limit u0 = 0, Eq. (36) relates the growth rate and wave number of fluctuations of the
particle density �, which evolve independently of the full distribution function 	 in the absence of
self-propulsion.

Equation (35) is then rewritten as

	̃ =
[

ξt k2 + 2i ξr

ϕ
p · k

σ + iu0p · k + dxk2

]
C̃ (37)
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and its first moment with respect to orientation p can then be projected along the wave vector k of
the considered eigenmode:

∫
S
	̃(p · k) dp = ñ · k = C̃ξt k

2
∫

S

p · k
σ + iu0p · k + dxk2

dp + 2i
ξr

ϕ
C̃

∫
S

(p · k)2

σ + iu0p · k + dxk2
dp.

(38)

The integrals on the right-hand side of Eq. (38) can be solved in terms of the scalar variable
μ = p · k/k, yielding

iu0ñ · k = 4π

[
− ξt k

2 + 2aξrk

ϕ

]
(aI0 − 1)C̃ with I0(a) ≡ 1

2

∫ 1

−1

dμ

a + iμ
= tan−1

(
1

a

)
, (39)

where a ≡ (σ + dxk2)/(ku0). Finally, the left-hand side of Eq. (39) is evaluated using Eq. (36), the
angular integrals are computed, and C̃ is expressed as a function of �̃ using Eq. (35), yielding the
dispersion relation for the modes of 	:

u0 − 2ξrc

ϕ

(
1 − a tan−1 1

a

)
− ξt kc tan−1 1

a
= 0, (40)

where c ≡ 2π/(σ + β + k2). Equation (40) generalizes to phoretic particles the dispersion relation
obtained for chemical instabilities of the turning particle model applied to chemotaxis in [44], with
the addition of the phoretic drift experienced by Janus particles in external chemical fields. The
hydrodynamic instability, which stems from the shear-induced reorientation of elongated swimmers
in the flows they generate by their forcing on the fluid [42], is not observed here for spherical Janus
swimmers.

At the linear stability level, it should be noted that the coupling mechanisms present in Eq. (40)
are solely the phoretic drift and chemical reorientation, i.e., are only linked to the chemical
interactions of the particles. Hydrodynamic interactions are not present due to the spherical shape
of the particles and they are thus only expected to play a role in a later phase of saturation of any
potential instability. This influence will be discussed in Sec. IV.

In the following, we analyze three possible routes to instability of an isotropic suspension
corresponding to three types of combinations of the particle’s chemical properties. These are (i)
a positive phoretic attraction (ξt > 0) with no chemical reorientation (ξr ≈ 0) or phoretic limit
(Sec. III B), (ii) a positive chemical reorientation (ξr > 0) or chemotactic limit (Sec. III C), and (iii) a
negative chemical reorientation (ξr < 0) or antichemotactic limit (Sec. III D). The last two regimes
are investigated for negative phoretic drift (ξt < 0) to isolate the effect of chemical reorientation
from that of phoretic clustering investigated in case (i).

For completeness, we finally remark that another class of instability of phoretic particles, the
so-called Janus instability, was recently reported [33,49] using a coarse-grained model that does
not include any hydrodynamic coupling of the particles but accounts for the first two leading-order
terms in their chemical signatures, namely, a source and a dipole, the latter describing their chemical
polarity. Such chemical polarity is in fact a key ingredient to the Janus instability, which is therefore
not observed in the present framework where chemical and hydrodynamic interactions are both
represented to a consistent level of asymptotic approximation: hydrodynamic interactions and
chemical interactions through the source signature indeed induce 1/d2 particle velocities while the
chemical polarity’s dipolar signature leads to 1/d3 velocities with d the interparticle distance. As a
result, such dipolar interactions are not dominant in the far-field framework of the dilute regime but
may become of significant importance at higher volume fractions which are beyond the scope of the
present paper.
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FIG. 1. Phoretic limit. Left: Evolution of the growth rate of the least stable mode as obtained numerically
from Eq. (40) in the phoretic limit (ξr = 0 and ξt = 0.375) for different values of u0 with β = 2π and
dx = 0.05. The inset shows the same quantity with different axes’ ranges to include the case where self-
propulsion is absent [u0 = 0, Eq. (41)]. Right: Schematic representation of the competition between externally
induced drift and self-propulsion in the phoretic limit.

B. Phoretic limit

In order to analyze the phoretic limit specifically, we focus in this section on particles with
(i) negligible chemical reorientation ability, i.e., particles with zero or small mobility contrast
(M− → 0 so that ξr → 0), and (ii) negative mean mobility (M+ < 0), resulting in phoretic attraction
of the chemical-emitting particles (ξt > 0): A local accumulation of particles produces an attractive
chemical gradient that promotes the migration of other colloids towards it. As more particles
reach that region the concentration of chemoattractant increases even further, leading to a positive
feedback and the instability of the system. The induced chemical drift at the base of the destabilizing
mechanism competes with self-propulsion. As depicted in Fig. 1 (right), the ability of the attractive
chemical gradient to trap other particles can be reduced, if not compromised, for fast swimmers that
may swim past the chemical-rich region.

The stabilizing effect of self-propulsion in the phoretic limit can be quantified by solving the
chemical dispersion relation for different values of u0. We first focus on the simpler case where the
particle does not self-propel, by setting u0 = 0 in Eq. (36). For conciseness of presentation here,
and having checked that this does not alter the conclusions, we consider the limit of a quasisteady
phoretic field, namely, neglecting the unsteady term ∂C/∂t = 0 in Eq. (34). The dispersion relation
can then be solved analytically, as (see inset Fig. 1)

σ = 8π2ξt k2

β + k2
− dxk2. (41)

Long waves (small k) are unstable for all 0 � k � kc with kc =
√

(−βdx + 8π2ξt )/dx and the most

unstable mode is kM = (−β + 2
√

2π2βξt/dx )
1/2

. We observe that, in principle, the effect of particle
diffusion can suppress the instability. An estimate of the value of dx = Dx/Dc being O(10−2) or less
can be obtained from the experimentally measured translational diffusion of Janus particles [18,21],
suggesting that in practice the effect of particle diffusion is far too limited to stabilize the suspension.
Particle diffusion, however, plays an important role in the stabilization of short waves (large k).

When u0 = 0, the dispersion relation for modes of inhomogeneous particle density cannot be
obtained directly from Eq. (36). Instead, Eq. (40) expanded for small k, keeping ξt = 0, leads to

σ = −dxk2 + O(k4), (42)

which shows that long-wavelength modes are now stable.
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In the general case, Eq. (40) is solved numerically to obtain the solution for finite wave numbers
(see Fig. 1), confirming that self-propulsion has a stabilizing effect on the suspension. At the heart of
the destabilizing mechanism lays the strength of the attractive phoretic drift, which is proportional
to the magnitude of the chemical gradient and therefore vanishes for arbitrary long wavelength,
i.e., k → 0. For this reason, any nonzero value of u0 stabilizes long-wavelength modes. By further
increasing the value of u0 the instability can be suppressed for any k (see Fig. 1).

The gold-platinum colloids used in [18,19] are experimental examples of phoretically attractive
particles with a mobility that is close to uniform (uniform ζ potential), so that their dynamics should
correspond to the phoretic limit considered here. Particle aggregates that are small compared to the
size of the suspension are observed to form and never coalesce [18], suggesting the presence of a
wave-selective mechanism (preferred wave number) as the one just described. Moreover, the gas
phase in between clusters could be seen itself as a local more dilute suspension, which we argue
could be completely stabilized by the effect of self-propulsion. It is noteworthy that the present
model can describe the behavior of the suspension only where it is locally dilute because of the far-
field approximation. Consequently, it cannot capture the mechanism responsible for the increasing
size of the clusters with u0, as this relies on steric interactions [21].

A similar mechanism to the one discussed in this section was also analysed in the seminal work of
[50] to model chemotaxis of microorganisms. The model used in [50] describes the evolution of the
density of swimmers, an equivalent to �(x, t ), while the polarity of the suspension is not described.
The kinetic model used here traces also the probability distribution in the orientational space,
therefore revealing the above-mentioned stabilizing and wave-selective effects of self-propulsion.

C. Chemotactic limit

The chemotactic limit of the instability corresponds to suspensions of particles with positive
mobility contrast (M− > 0), that provides them with the ability to perform autochemotaxis (ξr > 0).
In order to rule out the destabilizing effect of phoretic attraction discussed in Sec. III B and to isolate
the role of chemical reorientation, we consider particles with positive average mobility (M+ > 0),
corresponding to phoretic repulsion (ξt < 0).

In contrast with the phoretic limit, the physical mechanism that promotes the instability relies
on self-propulsion: an excess of chemoattractant produced in regions of higher concentration of
colloids induces other particles to reorient and to swim towards it. As new swimmers approach
this region, they release more chemical and raise its concentration level even more: an instability
develops through this positive feedback loop (see Fig. 2, right). This mechanism, which results in
an effective attraction between particles, was also studied in [29,33,44].

Chemical interactions therefore polarize the swimmers, which in turn exploit their self-
propulsion capacity to amplify perturbations of the particle concentration, �. This can be observed
in Eq. (36), where a forcing of self-propulsion u0 on the particle concentration �̃ is observed
when the polarization ñ has a nonzero component along the solute gradient (i.e., perpendicular
to the wavefront, ñ · k = 0). In contrast with the phoretic limit where they are driven solely by
the local concentration gradient, fluxes leading to accumulation of particles are here enforced
by self-propulsion; as a result, long-wavelength modes may still be unstable even though they
correspond to weak chemical gradients.

To determine the instability criterion, Eq. (40) is expanded in the small-k limit, where the effect of
the phoretic drift can be neglected, i.e., σ = σ1k + σ2k2 + · · · . Retaining only leading-order O(k0)
terms yields

u0βϕ

4πξr
= 1 − σ1

u0
tan−1 u0

σ1
· (43)

Instability is obtained for σ1 > 0, which imposes

0 <
u0

(ξr/ϕ)
<

4π

β
· (44)
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FIG. 2. Chemotactic limit. Left: Evolution of the growth rate of the least stable mode as obtained numeri-
cally from Eq. (40) in the chemotactic limit (ξr/ϕ = 0.6, ξt = −0.375) for different values of u0 with β = 2π

and dx = 0.05. Right: Schematic representation of the chemotactic mechanism and the stabilizing effect of
self-propulsion.

For a given relaxation rate of the chemoattractant (β) the existence of the chemotactic instability
imposes a maximum ratio between the velocity at which a particle self-propels (u0) and the rate at
which it rotates into an external chemical gradient (ξr/ϕ).

In agreement with the numerical solution of the full dispersion relation, Eq. (40) reported in
Fig. 2, Eq. (44) reveals the dual role and impact of self-propulsion on the instability. Swimming
is indeed a necessary ingredient as reoriented (polarized) particles need to actively move toward
solute-rich regions. However, large swimming speeds can suppress the instability if particles swim
past localized regions of higher concentration before reorienting fully toward it. In that case, the
trajectory of each swimmer is weakly curved under the effect of the attractive phoretic field, but it
eventually escapes, as depicted in Fig. 2 (right). The instability criterion can also be reformulated
as τr < τt , with τr the time scale associated with the particle rotation in response to the chemical
gradient [τr ∼ ϕ/(ξrk)] and τt that associated with swimming over the characteristic length of the
mode considered [τt ∼ 1/(u0k)]. We thus note that in the dilute limit, ϕ � 1, the stabilizing effect
of u0 is relevant for particles with small mobility imbalance M−, namely, when ξr � 1.

D. Antichemotactic limit

The antichemotactic limit corresponds to suspensions of particles with negative mobility contrast
(M− < 0), meaning that they perform negative chemotaxis (ξr < 0) and with positive average
mobility (M+ > 0), corresponding to phoretic repulsion (ξt < 0). The interplay of negative chemical
reorientation and self-propulsion leads to the migration of swimmers toward regions of low solute
concentration. The colloids considered here are net chemical sources and thus eventually raise the
local chemical concentration around them (A+ > 0), thereby canceling and reversing the solute
gradient that attracted them in the first place, and generating a joint oscillation dynamics of the
particle and solute concentration. However, if the solute production is slow enough, a delay will
be observed between the particles’ accumulation at a given location and the resulting growth of
chemical concentration, which will cause particles to escape away. If this delay is large enough, a
concentration overshoot will be observed from one period to the next, triggering unstable oscillatory
modes [49]. An illustration of the mechanism of this delay instability is provided in Fig. 3 (right).

In contrast with the two mechanisms discussed previously in the phoretic and chemotactic
limits, the unsteady nature of chemical diffusion is essential here, i.e., ∂C/∂t = 0: a quasisteady
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FIG. 3. Antichemotactic limit. Left: Evolution of the growth rate and frequency (inset) of unstable modes
of wave number k as obtained from the chemical dispersion relation (40) in the antichemotactic (delay) limit
with ξr/ϕ = −3, ξt = −0.375, β = 0.628, dx = 0.05. Right: Illustration of the antichemotactic instability
mechanism: (a) particles orient and swim towards regions of low chemical concentration; (b) particles have
reached the region of low solute content and start releasing solute there, but the solute concentration takes time
to equilibrate, leading to more particles’ aggregation; and (c) in response to the increased particle accumulation,
the chemical concentration overshoots [in comparison with (a)], and particles rotate and swim away from the
solute-rich region.

assumption would indeed enslave the solute content to particle concentration � preventing its
overshoot, and the oscillatory modes discussed above would simply be damped out by particle
diffusion.

The dispersion relation, Eq. (40), is solved numerically in the antichemotactic limit and the
results for the unstable modes are reported in Fig. 3 (left). We observe once again that self-
propulsion has a dual role: it is necessary for the instability to develop as particles need to be able
to swim away from solute-rich regions, and for low u0 the instability is promoted by an increase
in swimming velocity (a larger range of wave numbers become unstable and the growth rates are
increased). However, the trend is reversed when u0 is too large and self-propulsion tends to suppress
the instability, for the same reason as was detailed in the chemotactic limit: particles swimming
faster than they reorient are not able to polarize and converge to solute-depleted regions.

In the long-wave limit, the dispersion relation takes the same form as the chemotactic limit,
Eq. (43), and

σ1

u0
tan−1 u0

σ1
= 1 − u0βϕ

4πξr
(45)

is a real and positive number. This in turns imposes σ1 to be purely imaginary, i.e., the growth
rate is at least O(k2) for small k, and its frequency to be greater than u0, which is consistent with
Im(σ1) increasing with u0 (see Fig. 3). Furthermore, the mode frequency varies linearly with k, as
expected from physical argument: the period of oscillation is proportional to the time necessary for
the particles to swim from regions of high and low concentrations that are typically distant by half a
wavelength so that Im(σ ) ∼ u0k. Consequently, in the long-wavelength limit, the dynamics become
very slow and the evolution of the phoretic field approaches the quasisteady regime, instantaneously
determined by the density �, yielding Re(σ1) = 0.

E. Summary of the destabilizing mechanisms

We have discussed three different destabilizing mechanisms of isotropic and uniform suspen-
sions promoted solely by chemical interactions and leading to particle aggregation. These were
characterized by increasing complexity as (i) the phoretic limit, based solely on the translational
drift of particles along attractive chemical gradients; (ii) the chemotactic limit, which is based on
the cooperation between self-propulsion and chemical reorientation; and (iii) the antichemotactic
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mechanism, which requires additionally the phoretic field to be unsteady. Hydrodynamic interac-
tions are absent in this linear limit due to the spherical shape of the colloids which do not respond
to shear alignment as for slender rods or bacteria. They may, however, play a role in the nonlinear
evolution of the perturbation, and in the following we therefore turn our attention to the effect of
hydrodynamic interactions on the long-term dynamics.

IV. HYDRODYNAMICALLY INDUCED DISORDER

In the dilute limit, hydrodynamic interactions between swimming particles are dictated by their
dominant hydrodynamic signatures, i.e., their stresslet. As noted in Eqs. (9), (16), and (28), the
particle stresslet intensity is proportional to the mobility contrast M− regardless of its origin,
i.e., the particle’s own activity or a background chemical gradient, and is therefore proportional
to the chemically induced reorientation, ξr . Consequently the stresslet intensities αs and αi and
hydrodynamic signature of the Janus particles are negligible in the phoretic limit (ξr → 0): in that
case, there is therefore no hydrodynamic effect since there is no flow generated in the dilute limit.

We therefore focus our attention in the following on the chemotactic and antichemotactic limits of
the chemical instability and analyze in those cases how the emergence of hydrodynamic flow in the
nonlinear regime influences the saturated dynamics of the system. We finally remark that, unlike for
microorganisms, the sign of the self-induced stresslet αs of Janus particles is tied to the attractive or
repulsive nature of their chemical interactions. Specifically, in the chemotactic and antichemotactic
limits particles are pusher (αs < 0) and puller (αs > 0) swimmers, respectively [see Eq. (28)].

A. Numerical method

We investigate the interplay of hydrodynamic interactions and chemical signaling in the non-
linear regime in a two-dimensional (2D) limit by solving numerically Eqs. (17), (30), (31), and
(32) in a square periodic domain; the particle and solute distributions are therefore assumed
invariant in the third (z) direction, and particles are oriented within the (x, y) plane. Note that
the latter is physically relevant when significant concentration gradients are confined within that
plane as chemical reorientation tends to align the particle’s axis with or against such gradients.
The z-invariance assumption significantly reduces the computational cost and is often used to
solve numerically similar kinetic models [32,42,44]. Full three-dimensional (3D) simulations are
performed for suspensions of elongated bacteria undergoing a purely hydrodynamic instability with
[51] and without [52] confinement. It emerges that the observed 3D patterns closely resemble the
ones observed in 2D simulations, suggesting that the present approach provides correct qualitative
predictions of the suspension’s dynamics.

Simulations are performed using a 128×128 grid in the physical space x = [x, y] with a
nondimensional box size of L = 30 and using 32 points to discretize the orientational dynamics
of the particle on the plane p = [cos θ, sin θ ]. The system is solved using a spectral method: Stokes
equations are solved in Fourier space and the nonlinear terms in Eqs. (17) and (32) are computed
in physical space performing a grid augmentation to avoid aliasing. A fourth-order Runge-Kutta
scheme is used for time marching. In all simulations, the translational and rotational diffusion are
set to dx = dr = 0.025.

Initially, a small perturbation in particle distribution (in space and orientation) is added to the
uniform and isotropic state of the form δ	0 = ∑

j ε j (θ ) cos(k j · x + θ∗
j ) with 1 � j � 15, where

ε j (θ ) is a third-order polynomial in cos θ and sin θ with random O(10−3) coefficients and θ∗
j is a

random phase. The phoretic field is initiated with a uniform distribution C0 = 2π/β.

B. Chemotactic limit

Chemical reorientation and alignment of the Janus particles with local chemical gradient drives
the system away from the isotropic state to a configuration with a net polarization (Fig. 4), also
referred to as asters in [29]. The spatial correlation of the chemical gradient and the mean director
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FIG. 4. Emergence of nonlinear dynamics in the chemotactic limit (ξr/ϕ = 1, ξt = −0.375, u0 = 0.5,
β = 2π ). Particle density � (color) and mean direction field n (arrows) forming asters. Left: With hydro-
dynamic interactions (αs = −3.1169, αi = 0.3142). Right: Without hydrodynamic interactions (αs = αi = 0).

field, 〈∇C · n〉, is computed to quantify the effect of chemical signaling on the particle’s orientation.
The evolution of the flow intensity is also evaluated through the variance of the flow velocity, 〈|u|2〉,
as a direct measure of the strength of the hydrodynamic interactions between particles (see Fig. 5).
During the initial exponential growth of the perturbation, which lasts up to t ∼ 90, 〈|u|2〉 and thus
hydrodynamic interactions remain negligible while 〈∇C · n〉 grows exponentially, confirming that
the dominant interactions are chemically mediated during the astering process.

In a second phase, the emergence of a local polar order allows for the cumulative hydrodynamic
effect of many particles, resulting in the emergence of a large-scale fluid flow. The inward flux of
particles due to convection is −∇x · (�u), which reduces to −u · ∇x� for an incompressible fluid,
meaning that advection can raise the particle concentration at a given location only if there exists a
neighboring location where � is already higher. The astering process consists in the accumulation of
particles towards locations which are local maxima of � (Fig. 4, right), hence such process cannot
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FIG. 5. Time series of relevant quantities in the chemotactic limit (ξr/ϕ = 1, ξt = −0.375, u0 = 0.5,
β = 2π ); 〈•〉 indicates spatial averages: (a) spatial correlation of the chemical gradient and the mean director,
(b) variance of the flow velocity, (c) spatial correlation of the flow velocity and the mean director, and
(d) variance of the particle density.
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FIG. 6. Nonlinear evolution of the particle density � (color) and fluid velocity u (arrows) in the chemotac-
tic limit (ξr/ϕ = 1, ξt = −0.375, u0 = 0.5, β = 2π ). The entire domain is depicted as in Fig. 4.

be enforced by the presence of the fluid flow. Consequently, advection of both particles and solute
by the particle-generated flows inevitably stretches and breaks the patterns generated by chemical
interactions. We remark that if the fluid was compressible or if the inertia of the colloids was not
negligible, i.e., the possibility of cross-streamline migration, the effect of hydrodynamic transport
could in principle enforce the astering process.

The spatial distribution of particles and chemoattractant is therefore rearranged by such flow and
particles respond by turning to the new direction of the local chemical gradient. The underlying
chemotactic mechanism still promotes aggregation of particles but now the resulting aggregates are
dynamic because of hydrodynamic transport. The system approaches a chaotic attractor where the
underlying dynamics are cyclical, under the conflicting influence of chemotactic aggregation and
hydrodynamic stirring by the flow driven by the locally polarized suspension.

(i) Denser regions form due to chemotaxis and more particles align in the resulting chemical
gradient.

(ii) This growing local polar order enhances the generated flow field (see peaks of 〈|u|2〉, Fig. 5).
(iii) Regions of larger particle (and solute) density are stretched and mixed under the effect of

hydrodynamics and diffusion (Fig. 6).
(iv) The polar order decreases, resulting in a weaker flow.
(v) Particles aggregate again in the quiescent flow and the cycle starts over again.
Such cyclical dynamics translates into an actual stirring effect and prevents the asters from

collapsing; therefore the variance of the particle density, 〈�2〉, saturates not far from its base-state
value 〈�2

0〉 = 1 (Fig. 5).
Our results show that the role of hydrodynamics is crucial even for spherical particles that

do not lead to any purely hydrodynamic instability. Under these circumstances, the correlation
between the flow field and the local mean orientation of the particles, 〈u · n〉, averages to zero over
time (Fig. 5) because geometrically isotropic swimmers do not experience shear alignment (unlike
rodlike pushers or disklike pullers [42,53]) and polarize only in the far-field chemical signature of
other particles.

To improve our understanding on the relative importance of hydrodynamic and chemical cou-
pling, the same simulation is performed with and without hydrodynamic interactions. The latter
is obtained by artificially setting αs = αi = 0; in the present dilute model, such particles do not
generate any flow forcing so u = 0. Note that this artificial situation cannot be reached through
a specific choice of activity and mobility distribution for the Janus phoretic particles; indeed,
we demonstrated in Sec. II B 2 that the stresslet intensities are not independent parameters of the
problem. Asters form, the typical size and circular shape of which is determined by the wavelength
of the most unstable mode. Due to the absence of advective flow, these structures are neither
stretched nor broken, maintaining a regular shape in time (Fig. 4, right).
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FIG. 7. Time series of the second central moment of the normalized energy density μ2,2(E ) in the chemo-
tactic limit (ξr/ϕ = 1, ξt = −0.375, u0 = 0.5, β = 2π ) with and without hydrodynamic interactions.

The properties of the energy spectrum of the particle density reflect the fundamental difference
between the system’s attractors, with and without hydrodynamics. Precisely, we are interested in
the normalized energy spectrum E (k, t ) := | ˆδ�|2/ ∫ | ˆδ�|2d2k, where ˆδ� is the two-dimensional
Fourier transform of the perturbation of the particle density δ� = � − �0 and k = (kx, ky) is the
two-dimensional wave vector. E (k, t ) can be interpreted as the probability density of finding a
particle density wave with wave vector k at time t . Equivalently, the ratio E (k1, t )/E (k2, t ) can
be seen as the most likely relative amplitude of two particle density waves with wave vectors k1 and
k2, at time t . We then compute the second central moment of E on the Fourier plane, defined as

μ2,2(E ) =
∫

(kx − E[kx])2(ky − E[ky])2E (k)d2k, (46)

where E[kx,y] = ∫
kx,yE (k)d2k. The vector ke = (E[kx],E[ky]) is the expected dominant wave

vector while the magnitude of μ2,2(E ) represents an intrinsic measure of how scattered the energy
density is on the (kx, ky) plane. Without hydrodynamics, the energy of the spatial signal δ�

concentrates around those wave numbers corresponding to the chemically unstable modes, resulting
in a smaller value of μ2,2(E ). In contrast, the presence of an induced flow field continuously depletes
energy from those modes, which is injected at higher wave numbers that were chemically stable and
where particle diffusion dominates. A broader power spectrum for δ�, i.e., a larger variety of length
scales in the particle distribution, corresponds to a larger value of μ2,2(E ), as can be seen in Fig. 7.

C. Antichemotactic limit

Hydrodynamic interactions and flow-induced stirring also play a major role in the dynamics of
the system in the antichemotactic limit, where particles are pullers, namely, αs > 0 [see Eq. (28)]. To
analyze this, the nonlinear dynamic equations are solved numerically in the antichemotactic limit,
with and without hydrodynamics.

Without hydrodynamic interactions, i.e., setting artificially αs = αi = 0, a similar dynamics to
that obtained by means of particle-based simulations in [49] is observed: After an initial transient,
traveling density waves appear, corresponding to bands of particles escaping their own chemical
footprint (Fig. 8, left). The evolution in time of the particle density variance is also reported in Fig. 9
(right), showing that the solution without hydrodynamics is characterized by regular oscillations
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FIG. 8. Contour plots of the particle density � in the antichemotactic limit (ξr/ϕ = −3, ξt = −0.5,
u0 = 2, β = 2π/3). Left: Without hydrodynamic interactions (αs, αi = 0). Center and right: With hydrody-
namic interactions (αs = 28.05, αi = −0.94).

which result from the interference between density waves traveling in different directions. The
amplitude of such oscillations initially grows exponentially before saturation is reached due to
particle diffusion.

When hydrodynamic interactions are properly accounted for, i.e., by setting αs and αi to their
values determined by the particle’s chemical properties, we observe an initial transient during which
the generated flow disturbance is very weak (Fig. 9, top left) and the solution is indistinguishable
from the one obtained without hydrodynamic effects. As the amplitude of the oscillating density
waves grows, the polarization of the swimmers is enhanced by the resulting chemical gradient
and so is the amplitude of oscillation of the spatial correlation 〈∇C · n〉 (Fig. 9, bottom left).
Strong particle polarization results in cumulative flow forcing that distorts the otherwise regular
wavefronts (see Fig. 8, center), eventually inducing a net unsteady flow that stirs and mixes the
unstable spatiotemporal patterns driven by the chemically induced particle reorientation (Fig. 8,
right). Due to such hydrodynamically induced disorder the oscillating nature of the underlying
destabilizing mechanism is no longer evident: 〈∇C · n〉 eventually saturates at a negative value,
meaning that particles on average point away from regions of high solute concentration, as expected
for antichemotactic swimmers.

FIG. 9. Time series of relevant quantities in the antichemotactic limit (ξr/ϕ = −3, ξt = −0.5, u0 = 2,
β = 2π/3). Left: Variance of the flow velocity (top) and spatial correlation of the chemical gradient and
the mean director (bottom). Right: Variance of the particle density 〈�2〉 with and without hydrodynamic
interactions.
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As can be observed by the time series of 〈�2〉 in Fig. 9, the stirring effect of the self-generated
flow within the suspension significantly limits particle accumulation as in the chemotactic limit.
Remarkably, we find that hydrodynamic interactions induce a similar stirring effect in suspensions
of pusher and puller spherical Janus particles unlike for suspensions of elongated microorganisms
[32,44].

V. CONCLUSIONS

In summary, the present paper provides insight on the direct link between the microscopic
properties of spherical Janus colloids and the resulting macroscopic stability and dynamics of
dilute suspensions of such colloids. To achieve this, a kinetic model was used to account for
the particle self-propulsion as well as their chemical and hydrodynamic interactions mediated by
their environment through mean ambient fields. As all these characteristics are set directly by the
fundamental distribution properties of the particle’s mobility and activity, namely, their mean value
and contrast between the two sides of the Janus colloids, chemically mediated interactions within
the suspension and the individual self-propulsion velocity of the particles are intricately related to
the hydrodynamic disturbance introduced by the swimmers, and reciprocally. By accounting for
such a link the present approach therefore allows us to investigate the reciprocal interplay of these
three components (self-propulsion and chemical and hydrodynamic coupling).

Within the dilute limit, isotropic suspensions of spherical particles are shown to be unstable to
small perturbations and different regimes of instability are identified depending on the distribution of
phoretic mobility at the particle’s surface (which in turn influences their ability to drift and reorient
within external chemical gradients and thus their chemotactic or antichemotactic behavior). Because
hydrodynamic coupling (and in particular shear alignment) is negligible for spherical colloids in
this linear limit, the emergence of instabilities is purely due to the chemical signaling and coupling
of the different particles. Yet, local coupling of chemical and hydrodynamic processes, i.e., at the
particle level, plays a critical role in the development of such instabilities as it directly impacts the
self-propulsion velocity of the colloids.

The magnitude of self-propulsion velocity is indeed shown to critically affect the linear stability
of the system and the wave selection mechanism of the most unstable perturbations, but it does
so in different ways depending on the properties of the surface of the colloids and the ensuing
dominant instability regime. For suspensions of particles with uniform mobility which are phoreti-
cally attracted to each other, i.e., in the phoretic limit, the presence of self-propulsion has a purely
stabilizing effect and introduces a wave selective mechanism in the linear regime. On the other
hand, if the mobility contrast of the swimmers is non-negligible, particles are able to reorient along
or against gradients of ambient solute concentration, i.e., they are chemotactic or antichemotactic.
In these cases, self-propulsion is a necessary ingredient for the instability to exist as it allows
reorienting particles to migrate along or against such chemical gradient. Yet, interestingly, for small
mobility contrast, i.e., slow reorientation of the colloids, self-propulsion also has a dual effect as
increasing values of u0 stabilize the suspension.

The magnitude of the self-propulsion velocity plays therefore a key role in setting the main
features of the macroscopic collective dynamics in the linear regime, e.g., the dominant length scale
and growth rate. This velocity is directly controlled by the activity contrast of the colloid, i.e., its
ability to generate gradients between its two faces, which identifies a route for direct design control
of the emergence of such instabilities through the activity distribution. For example, suspensions
of particles with either uniform or weakly nonuniform mobility could essentially be completely
stabilized by increasing the self-propulsion velocity or the activity contrast of the particles.

The strength of the far-field hydrodynamic footprint generated by each particle (stresslet), and
its sign (which sets its pusher or puller characteristic), is also directly proportional to the mobility
contrast. Yet, the classical hydrodynamic instability observed for pushers, e.g., bacterial suspensions
[42], is not observed here for spherical swimmers. However, this does not mean that hydrodynamic
interactions do not play any role in the suspension dynamics. In fact, our numerical results on
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the nonlinear suspension dynamics resulting from the saturation of the initial instabilities show
that the long-ranged chemically induced polarization of particles induces coherent hydrodynamic
forcing on the fluid. Consequently, we observe the emergence of a strong hydrodynamic field for
positive as well as negative autochemotactic swimmers, which in turn corresponds here to pusher
and puller swimmers. For both kinds of swimmers, such generated fluid flow is responsible for a
stirring effect which limits accumulation of particles by mixing and suppressing regularly patterned
particle distribution (and solute concentration) promoted by chemical signaling. This process is
dynamic: once such hydrodynamically induced disorder reduces the long-range chemically induced
polarization, the coherence of flow forcing by the particles breaks down, which in turn reduces the
hydrodynamic flow field and its mixing action. The resulting chaotic dynamics are fundamentally
cyclical and characterized by sharp peaks in the intensity of the flow field, followed by temporary
accumulation of solute and particles under the effect of chemical coupling.

While previous works had already identified different limits of the chemical instabilities, the
present paper offers insight into the reciprocal importance of hydrodynamic and chemical interac-
tions within suspensions of autophoretic swimmers. The relative weight of these interaction routes
has recently received much attention in the physics and hydrodynamics communities. Such problem
was directly addressed in the recent work of [54] using a particle-based representation of the sus-
pension, as opposed to the mean-field description employed here. Such approach naturally accounts
for steric particle-particle interactions and it is ideal to study relatively crowded suspensions where
far-field hydrodynamic effects arguably play a secondary role and can therefore be neglected. By
doing so they successfully reproduce a dynamic-cluster phase similar to the one experimentally
observed [18,19] within suspensions of particles with estimated uniform mobility, i.e., negligible
far-field hydrodynamic signature. By focusing on particles with nonuniform mobility, i.e., with
nonzero stresslet intensity, and on the dilute limit, we safely neglect steric effects and we capture the
combined effects of the generated hydrodynamic and chemical fields. Under these conditions, our
numerical results suggest that it is precisely the cooperation between chemical and hydrodynamic
couplings which characterizes the long-term dynamics of the suspension, which would be otherwise
profoundly different if any one of the two interaction routes was neglected.

Finally we remark that the present numerical approach was applied here to a quasi-two-
dimensional system where concentration and hydrodynamic fields as well as particle distribution are
independent of a third dimension, and as a result particle motion occurs within a two-dimensional
plane. Yet, the formalism is completely generic and can be directly used to consider the general 3D
case. The effect of rigid boundaries as well as particle confinement on their interactions could also
easily be included in the present framework, which will be of particular interest to understand the
influence of their complex environment on the collective behavior of phoretic suspensions.
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