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LAEO-Net++: revisiting people Looking At Each
Other in videos

Manuel J. Marı́n-Jiménez∗, Vicky Kalogeiton∗, Pablo Medina-Suárez, and Andrew Zisserman

Abstract—Capturing the ‘mutual gaze’ of people is essential for understanding and interpreting the social interactions between them.
To this end, this paper addresses the problem of detecting people Looking At Each Other (LAEO) in video sequences. For this
purpose, we propose LAEO-Net++, a new deep CNN for determining LAEO in videos. In contrast to previous works, LAEO-Net++
takes spatio-temporal tracks as input and reasons about the whole track. It consists of three branches, one for each character’s tracked
head and one for their relative position. Moreover, we introduce two new LAEO datasets: UCO-LAEO and AVA-LAEO. A thorough
experimental evaluation demonstrates the ability of LAEO-Net++ to successfully determine if two people are LAEO and the temporal
window where it happens. Our model achieves state-of-the-art results on the existing TVHID-LAEO video dataset, significantly
outperforming previous approaches. Finally, we apply LAEO-Net++ to a social network, where we automatically infer the social
relationship between pairs of people based on the frequency and duration that they LAEO, and show that LAEO can be a useful tool for
guided search of human interactions in videos. The code is available at https://github.com/AVAuco/laeonetplus.

Index Terms—Looking at each other, video understanding, human interactions in videos, CNNs.

F

1 INTRODUCTION

E YE contact or ‘mutual gaze’ is an important part of the
non-verbal communication between two people [27]. The

duration and frequency of eye contact depends on the nature of the
relationship and reflects the power relationships, the attraction or
the antagonism between the participants [1]. Therefore, in order to
understand and interpret the social interactions that are occurring,
it is important to capture this signal accurately. The importance
of detecting people Looking At Each Other (LAEO) has already
been recognized in a series of computer vision papers [31, 35] as
well as in other papers that study human gaze [6, 8, 37, 38].

LAEO is complementary to other forms of human non-verbal
communication such as facial expressions, gestures, proxemics
(distance), body language and pose, paralanguage (the tone of the
voice, prosody), and interactions (e.g. hugging, handshake). Many
of these have been the subject of recent papers [15, 22, 30, 45]. In
this paper, we introduce a new deep convolutional neural network
(CNN) for determining LAEO in video material, coined LAEO-
Net++. Unlike previous works, our approach answers the question
of whether two characters are LAEO over a temporal period by
using a spatio-temporal model, whereas previous models have
only considered individual frames. The problem with frame-wise
LAEO is that when characters blink or momentarily move their
head, then they are considered non-LAEO, and this can severely
affect the accuracy of the LAEO measurement over a time period.
The model we introduce considers head tracks over multiple
frames, and determines whether two characters are LAEO for a
time period based on the pose of their heads and their relative
position. Such an example is in Figure 1.

We make the following contributions: first, we introduce a
spatio-temporal LAEO model that consists of three branches, one
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sity of Córdoba, Spain. Emails: mjmarin@uco.es and i42mesup@uco.es
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for each character’s tracked head and one for their relative posi-
tion, together with a fusion block. This is described in Section 3.
To the best of our knowledge, this is the first work that uses tracks
as input and reasons about people LAEO in the whole track,
instead of using only individual frames. Second, we introduce
two new datasets (Section 4): (i) UCO-LAEO, a new dataset for
training and testing LAEO. It consists of 129 (3-12 sec) clips from
four popular TV shows; and (ii) AVA-LAEO, a new dataset, which
extends the existing large scale AVA dataset [15] with LAEO
annotations for the training and validation sets. We evaluate the
performance of the spatio-temporal LAEO model on both these
new datasets (Section 8). Third, we show that our model achieves
the state of the art on the existing TVHID-LAEO dataset [31]
by a significant margin (3%). Finally, in Section 9, we show that
the LAEO score can be used as tool not only for demonstrating
social relationships between people but also for guiding the search
for human interactions in videos; we demonstrate these for one
episode of the TV comedy ‘Friends’.

A preliminary version of this work has been published in
CVPR 2019 [29]. We significantly extend it in the following ways:

• Design. We propose LAEO-Net++: a new three branch head-
track model for determining if two people are LAEO. LAEO-
Net++ is based on LAEO-Net [29] but it better decodes the
head-tracks by using a different architecture and it better ex-
ploits the temporal continuity of videos by usingM-frames
long head-tracks. The differences between the two models
are described in details in Section 3 and experimentally
compared in Section 8.7. The results show that the proposed
changes improve the performance and, overall, LAEO-Net++
outperforms all other approaches.

• Pre-training schemes. We present three different settings
with different levels of supervision to pre-train LAEO-Net++
and discuss our findings (Section 6.1). First, we use ground
truth labels for head orientation in videos (fully supervised
setting). Second, we use the self-supervised Facial Attributes-
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Fig. 1: Intimacy or hostility? Head pose, along with body pose and facial expressions, is a rich source of information for interpreting human
interactions. Being able to automatically understand the non-verbal cues provided by the relative head orientations of people in a scene enables
a new level of human-centric video understanding. Green and red pairs of heads represent LAEO and non-LAEO cases, respectively. Video
source of second row: https://youtu.be/B3eFZMvNS1U

Net [46] by extending it to video frames (self-supervised
setting). Third, we use random initialization and demonstrate
that pose can be learnt implicitly by the LAEO task alone
(implicit supervised setting).

• Analysis and experiments. We provide more insights and
contents to explain the performance of LAEO-Net++, as
well as more experiments on all datasets (Sections 8.1-8.6).
Specifically, we experimentally demonstrate and discuss the
benefits of the head-map branch, exploiting the temporal
dimension, implicit or explicit self-supervised learning, and
of applying LAEO-Net++ to various datasets (Section 8.8).

• Interaction prediction. For one episode of the TV show
‘Friends’ we use LAEO-Net++ as a proxy for guiding the
search for human interactions in videos. In particular, we
show that by using LAEO we can identify the social rela-
tionship between characters and whether two characters are
interacting, even if they hardly co-exist (Section 9).

2 RELATED WORK

Gaze [37] and head pose [11] are powerful tools to deal with the
problem of determining the visual focus of attention (VFoA) in a
scene, i.e. what people are looking at. For instance, [19] highlights
the importance of the white part of the human eye (i.e. white
sclera) in recognising gaze direction, enabling the extraordinary
ability of humans to communicate just by using gaze signals.

Visual focus of attention. One classical approach for determining
the VFoA is [5], where the authors model the dynamics of a meet-
ing group in a probabilistic way, inferring where the participants
are looking at. An improved version of this work is presented in
[4], where context information is used to aid in solving the task.
[47] present a new gaze dataset and propose GazeNet, the first
deep appearance-based gaze estimation method. More recently,
[6] discover 3D locations of regions of interest in a video by
analysing human gaze. They propose a probabilistic model that
simultaneously infers people’s location and gaze as well as the
item they are looking at, which might even be outside the image.

Gaze direction. In the literature, some works focus on ‘gaze
following’ [37, 38]. [37] proposes a two-branch model that follows
the gaze of a single person (head branch) and identifies the object

being looked at (saliency branch). In a similar manner, LAEO-
Net++ makes use of spatial and temporal information throughout
the video and processes the relation of people over time. We dis-
cuss the relationship between LAEO and gaze prediction learning
in Section 8.4.

The work in [8] focuses on images by proposing a network
that estimates both the gaze direction and the VFoA. A coarse
spatial location of the target face is provided in the form of a
one-hot vector. In contrast, in our model, this is provided by
a RGB image with Gaussian-like circles representing the centre
and scale of heads and a colour-coding indicating the target pair
(Figure 5 (a)). Thus, our representation offers a better resolution
of the scene geometry and incorporates cues about head scales.

Typically, in edited movies, an interaction is represented by
alternating video shots. Therefore, sometimes the VFoA is not
visible in the current frame or shot, but in a different one. This is
addressed in [38] with a model that reasons about human gaze and
3D geometric relations between different views of the same scene.
[32] consider scenarios where multiple people are involved in a
social interaction. Given that the eyes of a person are not always
visible (e.g. due to camera viewpoint), they estimate people’s gaze
by modelling the motion of their heads with a Bayesian model.

[13] propose an appearance-based CNN that learns a direct
image-to-gaze mapping using a large dataset of annotated eye
images. [21] present GazeCapture, a dataset collected from smart-
phone users, and use it to train iTracker, a CNN for gaze estimation
that runs in real-time on commercial mobile devices. [16] work on
gaze estimation on tablets. They collect an unconstrained dataset
and present an method for gaze estimation using a Random Forest
regressor. [48] propose a gaze transform layer to connect separate
head pose and eyeball movement models. This does not suffer
from overfitting of head-gaze correlation and makes it possible to
use datasets existing for other tasks.

[24] propose a model for joint gaze estimation and action
recognition in first person. They model gaze distribution using
stochastic units, from which they generate an attention map. Then,
this map guides the aggregation of visual features for action
recognition. [18] collect a 3D gaze dataset simply by recording
with an omni-directional camera subjects looking at a pre-defined
point (indoors and outdoors).

People Looking At Each Other. A special case of VFoA is

https://youtu.be/B3eFZMvNS1U
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Fig. 2: Our three branch track LAEO-Net++: It consists of the head branches (green), the head-map branch (red) and a fusion block, which
concatenates the embeddings from the other branches and scores the track sequence as LAEO or not-LAEO with a fully connected layer (blue)
using softmax loss. In our experiments, we use head tracks of length T = 10 and head-maps of lengthM = 10.

when subject-A’s VFoA is subject-B, and subject-B’s VFoA is
subject-A. This is known as mutual gaze or people looking at
each other (LAEO). This situation typically entails non-physical
human interactions, but might precede or continue a physical one,
e.g. hand-shake before or after a conversation. In the context
of Behaviour Imaging, detecting LAEO events is a key for
understanding higher-level social interactions, as in autism in
children [39]. Furthermore, [2] shows that children diagnosed with
autism spectrum disorder demonstrate increased eye contact with
their parents compared to others, e.g. a clinician, despite the social
communication difficulties. In the context of social interaction,
[14, 27] point out that one principal way of demonstrating interest
in social interaction is the willingness of people to LAEO.

The problem of detecting people LAEO in videos was intro-
duced in [31]. After detecting and tracking human heads, [31]
model and predict yaw and pitch angles with a Gaussian Process
regression model. Based on the estimated angles and the relative
position of the two heads, a LAEO score is computed per frame,
and aggregated over the shot. Although we also model the head
pose and relative position, LAEO-Net++ estimates LAEO for a
track over a temporal window, instead of a single frame.

[41] address the problem of detecting conversational groups
in social scenes by combining cues from body orientation, head
pose and relative position of people. In a controlled scenario with
just two people, [35] addresses the LAEO problem by using two
calibrated cameras placed in front of the participants, making sure
that there is an overlapping visible zone between both cameras.
Recently, LAEO has been used as an additional task in the joint
learning of LAEO and 3D gaze estimation [10]. The authors show
that this leads to richer representations than solving each task
separately, and more importantly that 3D gaze is a powerful cue for
understanding relations. Thus LAEO is bridging the gap between
2D and 3D mutual gaze detection (more details in Section 8.4).

Interactions and relations. Looking at a person is a dominant
classes for human interactions in videos [15, 36]. [26] propose
a network to capture long and short-term temporal cues, [28]
classify relationships between characters, while [22] jointly learn
interactions and relations between characters. Instead, we treat
mutual gaze as a cue to identify the existence of interactions and to
determine the level of friendness between people. In this context,
we think that a LAEO model (either pre-trained or fine-tuned and
adapted to new data) can have an impact on other applications,
such as detecting cartoons, animals (e.g. cats, chimpanzees [43])
or other object classes (e.g. cars) looking at each other.

3 LAEO-NET++

Given a video clip, we aim to determine if any two humans are
Looking At Each Other (LAEO). To this end, we introduce the
LAEO-Net++, a three branch track network, which takes as input
two head tracks and the relative position between the two heads
encoded by a head-map, and determines a confidence score on
whether the two people are looking at each other or not, and the
frames where LAEO occurs. The network is applied exhaustively
over all pairs of simultaneous head tracks in the video clip.

LAEO-Net++ consists of three input branches, a fusion block,
and a fully-connected layer and is illustrated in Figure 2. Two
of the input streams determine the pose of the heads (green
branches) and the third represents their relative position and scale
(red branch). The fusion block combines the embeddings from the
three branches and passes them through a fully-connected layer
that predicts the LAEO classification (blue layer). The network
uses spatio-temporal 3D convolutions and can be applied to the
head tracks in the video. We next describe the components and
report their specifications in Table 1 in the supplementary material.
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statistics UCO-LAEO (new) AVA-LAEO (new) TVHID-LAEO [31]
train+val test train val test

#frames > 18k > 1, 4M (estim.) > 29k
#programs 4 (tv-shows) 298 (movies) 20 (tv-shows)

shots #annotations 106+8 15 40166 10631 443
#LAEO 77+8 15 18928 5678 331

pairs #annotations 27358+5142 3858 137976 34354 –
#LAEO 7554+1226 1558 19318 5882 –

sets (pairs) 32500 3858 137976 34354 443 (shots)

TABLE 1: Summary of LAEO datasets. #programs: different TV shows; #shot-annotations:
annotated shots; #shot-LAEOs: shots containing at least one LAEO pair; #pair-annotations:
annotated human bounding box pairs; #pair-LAEOs: human bounding box pairs that are LAEO;
sets: #train/val/test LAEO pairs (or shots) used.

(a)

(b)
A

B

A
BC

Fig. 3: (a) AB are not LAEO
as C is occluding. (b) AB are
LAEO.

Head-pose branch. It consists of two branches, one per person.
The input of each branch is a tensor of T RGB frame crops of size
64×64 pixels, containing a sequence of heads of the same person.
Each branch encodes the head frame crop, taking into account the
head pose. The architecture of the head-pose branch is inspired by
the encoder of the self-supervised method [46]. It consists of five
conv layers, which are followed by a dropout and a flatten ones
(green branches in Figure 2). The output of the flatten layer is
L2-normalized before using it for further processing. Note that the
head sequence of each person of the target pair will be encoded
by this branch, obtaining two embedding vectors as a result.

Head-map branch. This branch embeds the relative position
and relative distance to the camera (i.e. depth) between two head
tracks over time using a head-map. In particular, we depict as 2D
Gaussians all the heads detected at each frame of the T -frames
track (Figure 5 (a)), whose size is proportional to the head size (i.e.
detection bounding-box). The different Gaussian sizes encode the
relative 3D arrangement (depth) of people in the scene, i.e. smaller
sizes indicate that people are further from the camera compared to
those with bigger size. We define a 64 × 64 ×M map (for the
whole T -frames track) that encodes this information1. In addition
to the two head tracks, this branch encodes information for other
people in the scene. Depending on its size and scale, a third person
could cut the gaze ray between the two side people (Figure 3).
Including this information helps the LAEO-Net++ to distinguish
such cases. This branch consists of a series of four convolutional
layers: either 2D if we are modeling the relative head position
only at the central frame or 3D if we target the whole T -frame
head track. To obtain the embedding of the head-map we flatten
the output of the last conv layer and apply L2-normalization.

Fusion block. The embedding vectors obtained as the output of
the different branches of the network are concatenated and further
processed by one fully-connected layer with a dropout layer (blue
layer in Figure 2). Then, a Softmax layer consisting of two hidden
units (i.e. representing not-LAEO and LAEO classes) follows.

LAEO loss function. For training the LAEO predictor, we use
the standard binary cross entropy loss:

LLAEO = − (c · log(p̂c) + (1− c) · log(1− p̂c)) , (1)

1. Assuming a 0-indexed list, the central frame of a sequence with length T
is the bT/2c-th one. Specifically, for T = 10 and M = 1, the central frame is
the one in position 5 (i.e. the 6th), whereas for M = 5 we use 5 consecutive
frames in the central part (taking into account the previous criterion).

where c is the ground-truth class (0 for not-LAEO, 1 for LAEO)
and p̂c the predicted probability of the pair being class c.

Differences between LAEO-Net [29] and LAEO-Net++.
LAEO-Net exploits the temporal information of videos by using
as input two head tracks instead of single frames. Nevertheless,
the relative position between the two heads (and any interleaving
head) is encoded by a single frame, i.e. one head map. We
consider this a wasted opportunity, as this single frame may
suffer from several issues, such as noise, inconsistency, detection
problems, etc.. Therefore, we extend the temporal dimension of
the head maps and consider multiple consecutive frames instead
of single frames. This leads to two main architecture changes
in LAEO-Net++: (a) we consider M-length head-maps, and (b)
we decode the information from the temporal sequence of head-
maps using a series of 3D conv layers instead of 2D ones from
LAEO-Net [29] (bottom branch in Figure 2). Additionally, we
change the architecture of the branches that process the head-
tracks from a shallower arbitrary-chosen architecture of LAEO-
Net [29] to the deeper, inspired-by-[46] architecture of LAEO-
Net++. LAEO-Net++ has more parameters and therefore, ability
to better generalize and learn better features. In Section 8.7 we
present experiments demonstrating the benefit of all changes.

4 DATASETS

In this section, we describe the LAEO datasets. First, we in-
troduce two new datasets: UCO-LAEO and AVA-LAEO, and
then, two other datasets: AFLW [20], and TVHID [36]. AFLW
is used for pre-training the head-pose branch and for generat-
ing synthetic data, while TVHID is used only for testing. The
newly introduced UCO-LAEO and AVA-LAEO datasets are used
both for training and testing LAEO-Net++. Table 1 shows an
overview of the LAEO datasets. The new datasets with their
annotations and the code for evaluation are available online at:
http://www.robots.ox.ac.uk/∼vgg/research/laeonet/.

4.1 The UCO-LAEO dataset
We use four popular TV shows: ‘Game of Thrones’, ‘Mr Robot’,
‘Silicon Valley’ and ‘The Walking Dead’. From these shows, we
collect 129 (3-12 seconds long) shots, annotate all the heads in
each frame with bounding boxes, and then annotate each head
pair as LAEO or not-LAEO (Figure 4 (top)).

Annotation setup. We annotate all frames both at the frame level,
i.e., does this frame contain any pair of people LAEO?; and at the

http://www.robots.ox.ac.uk/~vgg/research/laeonet/
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Fig. 4: (top) UCO-LAEO and (bottom) AVA-LAEO datasets.
Example of frames and LAEO head pair annotations included in
our new datasets. Different scenarios, people clothing, background
clutter and diverse video resolutions, among other factors, make them
challenging.

head level, i.e. we annotate all heads in a frame with a bounding-
box and all the possible LAEO pairs. The visually ambiguous
cases are assigned as ‘ambiguous’ and we exclude them from
our experiments. We split the 100 LAEO shots into 77 train, 8
validation and 15 test, respectively. This results in ∼7.5k training,
∼1.2k val and ∼1.5k test LAEO pairs (Table 1).

4.2 AVA-LAEO dataset

AVA-LAEO consists of movies from the training and validation
sets of the ‘Atomic Visual Actions’ dataset (AVA v2.2) [15]
dataset. The AVA frames are annotated (every one second) with
bounding-boxes for 80 actions, without LAEO annotations; there-
fore, we enhance the labels of the existing (person) bounding-
boxes in a subset of the train and val sets with LAEO annotations.

Annotation setup. From the train and val sets of AVA, we
select the frames with more than one person annotated as ‘watch
(a person)’, resulting in a total of 40, 166 and 10, 631 frames,
respectively. We only consider the cases, where both the watcher
and the watched person are visible (since the watched person
may not be visible in the frame). For annotating, we follow the
same process as in UCO-LAEO, i.e. we annotate each pair of
human bounding boxes at the frame level as LAEO, not-LAEO,
or ambiguous. This results in ∼19k LAEO and ∼118k not-LAEO
pairs for the training set and ∼5.8k LAEO and ∼28k not-LAEO
pairs for the val set (Table 1). We refer to this subset as AVA-
LAEO. Figure 4 (bottom) shows some LAEO pair examples.

4.3 Additional datasets

AFLW dataset. We use the ‘Annotated Facial Landmarks in the
Wild’ dataset [20] to (a) pre-train the head-pose branch (first stage,
Section 6.1.1), and (b) generate synthetic data for training (second
stage, Section 6.2). It contains about 25k annotated faces in images
obtained from FlickR, where each face is annotated with a set of
facial landmarks. From those landmarks, the head pose (i.e. yaw,
pitch and roll angles) is estimated. To create a sequence of head-
crops, we replicate the input image T times. We keep the two
middle replicas unchanged and randomly perturbing the others,
i.e. small shift, zooming and brightness change.

TVHID-LAEO. TVHID [36] was originally designed for human
interaction recognition in videos. It contains 300 video clips with
five classes: hand-shake, high-five, hug, kiss and negative. We use
the LAEO annotations at the shot level from [31], which result in
443 shots with 331 LAEO and 112 not-LAEO pairs (Table 1).

5 HEAD DETECTION AND TRACKING

Unlike most methods that rely on faces, LAEO-Net++ requires
head tracks as input. Here, we train the Single Shot Multibox
Detector detector [25] from scratch and obtain head detections.
Then, we group them into tracks using the linking algorithm
from [17] (see Section 2 in the supplementary material).

6 TRAINING LAEO-NET++
We describe here our two-stage training procedure. The first stage
involves only the head-pose branches (Section 6.1). We consider
three initialization options for these branches: (i) fully-supervised
pre-training with annotated head-pose data (Section 6.1.1), (ii)
self-supervised pre-training using Facial Attributes-Net [46] (Sec-
tion 6.1.2), or (iii) completely random initialization, i.e. no pre-
training (Section 6.1.3). In the second stage, we train LAEO-
Net++ from scratch, i.e. head-map and upper layers (Section 6.2).

6.1 Head-pose branches

In general, humans can infer where a person is looking just based
on the head pose, without even seeing the eyes [23]. This shows
that important information is encoded in the head orientation. In
the literature, several works model the head orientation [42] or
the eye gaze [37]. Note that using the actual eye gazing is not
always an option, even with multiple-frames as input, as there
is no guarantee that the eyes are fully visible, i.e. due to image
resolution, or self occlusions. Therefore, in this work we model
gaze just based on head orientation. In particular, we either (i) pre-
train a model that learns the head orientation using the head angles
(Section 6.1.1), or (ii) use the self-supervised Facial Attributes-
Net that models the head orientation implicitly (Section 6.1.2), or
(iii) use a random initialization for the LAEO-Net++ that manages
to learn the head-pose orientation (Section 6.1.3).

6.1.1 Fully-supervised pre-training

We model head orientation with three angles (in order of decreas-
ing information): (a) yaw, i.e. looking right, left, (b) pitch, i.e.
looking up, down, and (c) roll, i.e. in-plane rotation. We use this
modelling to pre-train the head-pose branches.

Loss function of head-pose pre-training. Let (α, β, γ) be the
yaw, pitch and roll angles of a head, respectively. We define one
loss for estimating each pose angle: Lα, Lβ , Lγ and model them
with the L1-smooth loss [40].

Given that the yaw angle is the dominant one, in addition
to these losses, we include a term that penalizes an incorrect
estimation of the sign of the yaw angle, i.e., failing to decide
if the person is looking left or right (Ls). It is defined as:

Ls = max(0,−sign(α) · sign(α̂)), (2)

where sign(α) is the sign function (i.e. returns +1 for positive
inputs, −1 for negative inputs, and 0 if the input is 0) applied to
the yaw angle; and, α̂ is the ground-truth angle. In practise, as the
gradient for the sign function is always 0, it is implemented by
using tanh(·) (hyperbolic tangent).

Therefore, the loss function Lh for training the head-pose
branch for LAEO purposes is given by:

Lh = wα · Lα + wβ · Lβ + wγ · Lγ + ws · Ls, (3)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 6

where wx are positive weights chosen through cross-validation
at training. In our experiments, we use: wα = 0.6, wβ = 0.3,
wγ = 0.1, ws = 0.1, as wα is the dominant one. Note that the
weights do not necessarily add to 1. Please refer to Section 3 in
the supplementary material for ablations about the two losses.

6.1.2 Self-supervised pre-training
The goal is to use a (self-supervised) network that learns head-
pose orientation without being explicitly trained on it. To this end,
we use a modified version of the self-supervised Facial Attributes-
Net from [46]. The Facial Attributes-Net uses a single frame,
whereas we are interested in T input video frames. Therefore, we
inflate the filters from the Facial Attributes-Net for T consecutive
frames, by replicating their weights. Moreover, we change the
input size of the Facial Attributes-Net from 256×256 to the input
of LAEO-Net++, i.e. 64× 64.

6.1.3 Random initialization
For reference, we also initialize the LAEO-Net++ with random
values for the weights. Albeit randomly initialized, LAEO-Net++
manages to learn head pose and orientation implicitly by solving
the LAEO task alone (Section 8.4).

6.2 Training the LAEO-Net++

We train LAEO-Net++ with both real and synthetic data. We
use data augmentation techniques, such as image perturbations,
translations, brightness changes, zoom changes, etc.. For the first
N = 2 epochs, we use only synthetic data, and then we alternate
between real and synthetic data. To improve the performance of
the model, we use hard negative mining. We deploy the curriculum
learning strategy of [34], which modulates the difficulty of the
hard negatives incorporated into training. In our experiments, the
value of the negative difficulty parameter [34] is increased after 2
epochs, allowing more difficult samples as its value increases.

Synthetic data. For generating synthetic data we use images with
head-pose information. To generate positive samples, we select
pairs of heads whose angles are compatible with LAEO and, at
the same time, they generate consistent geometrical information.
To generate negative samples, we either (i) change the geometry
of the pair, i.e. making LAEO not possible any more, e.g. by
mirroring just one of the two heads, or (ii) select pairs whose
pose are incompatible with LAEO, e.g. both looking at the same
direction. Figure 5 (b) shows some artificially generated pairs.

7 EVALUATION AND SCORING METHODOLOGY

LAEO-classification AP is the metric we use to evaluate the
LAEO predictions. Similar to object detection, a detection is cor-
rect if its intersection-over-union overlap (IoU) with the ground-
truth box is > 0.5 [12]. A detected pair is correct if both
heads are correctly localized and its label (LAEO, not-LAEO)
is correct. The performance is Average Precision (AP) computed
as the area under the Precision-Recall (PR) curve. Depending on
the available ground-truth annotations, we measure AP at frame
level, considering each pair as an independent sample, or at shot-
level, if more detailed annotations are not available. Frame level
is used for UCO-LAEO and AVA-LAEO and, following previous
work [31, 32], shot level for TVHID.

Right headLeft headHead maps
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h20
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0_1
_11
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(a) (b)

Fig. 5: (a) Head-maps and (b) augmentation of LAEO samples.
(a) We analyse all head pairs with a color coding: blue for the left,
green for the right and red for the remaining heads, such as middle,
i.e. not considered for evaluation. (b) We generate synthetic LAEO
negative training data (red boxes) from positive pairs (green box),
based on the orientation or the relative position of the heads.

Scoring methodology. Given that the level of (ground truth)
annotation differs between the three datasets, we describe how
we use the LAEO-Net++ outputs to obtain the final scores, either
at the shot or at the frame level. We test LAEO-Net++ on pairs
of head-tracks (of length T = 10), obtain one LAEO score for
each track-pair, and assign the LAEO score to the head-pair in the
middle frame. The scoring process for each dataset is as follows:

(i) UCO-LAEO: Since the bounding boxes for the heads are
available for each frame, the LAEO-Net++ is applied directly
to these head tracks (no detections are used). To account for
the T/2 frames at the beginning (resp. end) of a track, we
propagate the score from the middle frame.

(ii) AVA-LAEO: We run the head tracker and apply LAEO-
Net++ on these tracks. AVA-LAEO contains pair annotations
for human bounding-boxes (instead of heads); hence, we
compare each head pair against the ground-truth human pairs
using intersection over head area (instead of IoU).

(iii) TVHID: We run the head tracker and apply LAEO-Net++
on the tracks. We compute a LAEO score as the max of
smoothed scores in a shot; the smoothed score is the average
of a moving temporal window (of length five) along the track.

8 EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the effectiveness of
LAEO-Net++ for determining people LAEO. Note that the model
is trained either on UCO-LAEO or on AVA-LAEO. Here, we study
the impact of all training and architecture choices.

First, we examine the importance of the head-map branch, the
length T of the head-tracks, and the length of M of the head-
map (Sections 8.1-8.3). Then, we assess the importance of the
different pre-training schemes (Section 8.4). In Section 8.5 we
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Fig. 6: Head embeddings automatically learnt during LAEO training with full random initialization after (a) one, (b) ten, (c) twenty
epochs. LAEO-Net++ is paying attention to head orientation to solve the task, and therefore the head pose is learnt implicitly by the LAEO
task alone (implicit supervision). The set of discretized angles obtained from AFLW dataset are shown in the legend. Note that the more the
network learns the LAEO task, the more the clusters become separate (e.g. yellow points that correspond to [-90,45) angles). On the right, we
illustrate head crops for the discretized set of angles after the training has finished. (Best viewed in digital format.)

examine the performance of LAEO-Net++ on the two new test
datasets, UCO-LAEO, and AVA-LEO. After, we analyse different
domains by performing a cross dataset evaluation (Section 8.6). In
Section 8.7 we provide experimental results between LAEO-Net
and LAEO-Net++, and n Section 8.8 we provide a summary of
our findings. Finally, in Section 8.9, we compare LAEO-Net++
to LAEO-Net [29] and to other state-of-the-art methods on the
UCO-LAEO, AVA-LAEO, and TVHID-LAEO datasets.

Implementation details. LAEO-Net++ is implemented with
Keras [7] using TensorFlow as backend. All implementation
details can be found in Section 1.2 in the supplementary material.

8.1 Importance of the head-map

We evaluate LAEO-Net++ with and without the head-map branch
(Table 2). Adding it improves the performance (from 80.3% to
81.5% for T =10), as it learns the spatial relation between heads.

Comparison with the geometry branch baseline. To assess the
quality of the head-maps branch, we consider a baseline: the
geometrical information branch, where the relative position of
two heads over time is encoded by their geometry. It embeds the
relative position between two head tracks over time (relative to
a (1, 1) normalized reference system), and the relative scale of
the head tracks. The input is a tuple (dx, dy, sr), where dx and
dy are the x and y components of the vector that goes from the
left head L to the right one R, and sr = sL/sR, is the ratio
between the scale of the left and right heads. The consists of two
fc layers with 64 and 16 hidden units and it outputs a vector
of 16 dimensions encoding the geometrical relation between the
two target heads. LAEO-Net++ with the geometry branch results
in 1% less classification AP than with the head-pose branch.
This is expected; even though both branches encode the same
information (i.e. relative position of the two heads), the head-maps
branch provides a richer representation of the scene, as it encodes
information for all existing heads and, therefore, results in better
AP. Note, using both the head-map and the geometry branches (in
addition to the head-pose branches) does not lead to any further
improvement, as the combination of these two branches just
increases the number of parameters without providing additional

information. Thus, we conclude that LAEO-Net++ is the most
effective architecture in terms of AP performance.

8.2 Temporal window T
To assess the importance of the temporal window using T frames
compared to using a single frame, we vary T and train and
evaluate LAEO-Net++ with T = 1, 5, 10. Table 2 shows that
there is an improvement in AP performance of 1.5% when T
increases from only 1 to 5 frames, and a significant improvement
of 2.9% when T increases from 1 to 10 frames (we found no
improvement for T > 10). In the remainder of this work, we use
T = 10 frames.

8.3 Length of Head-mapM
To assess the importance of the length of the head-map M
compared to using a single-frame, we vary M and train and
evaluate LAEO-Net++ with M = 1, 5, 10 with various pre-
training schemes. Table 3 shows the results for UCO-LAEO and
AVA-LAEO. We observe that there is a significant performance
improvement of approximately 5% when increasing the length
of the head-map from 1 to 10 for all cases. Therefore, for the
remainder of this work, we useM = 10.

8.4 Pre-training schemes
We examine the three different settings for pre-training LAEO-
Net++: fully supervised, where we pre-train using ground-truth
labels for head orientations (Section 6.1.1); self-supervised, where
we employ a video model learnt to solve another task (Sec-
tion 6.1.2); and implicit supervision, where we use random ini-
tialization (Section 6.1.3). Table 3 reports the %AP results.

For low values ofM = 1, the random initialization performs
similarly to the other models. This shows that for M = 1 there
is sufficient data to train the network for the LAEO task; however,
for higher values of M there is not enough training data. It is,
therefore, interesting to investigate the learnt properties of the
network when M = 1. To this end, we evaluate LAEO-Net++
trained with random intialization on AFLW, which has ground
truth labels for the head orientations. We project the predicted
head-embeddings on a 2D space using the Uniform Manifold
Approximation and Projection for Dimension Reduction [33] and
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M= T =
1 1 (2D) 5 10

- 77.5 78.2 80.3
X 78.6 80.1 81.5

TABLE 2: Head-map and tempo-
ral window T . %AP when training
and testing on UCO-LAEO w and
w/o the head-map for T =1,5,10.

pre-train / UCO-LAEO AVA-LAEO
M = 1 5 10 1 5 10

random 78.4 78.5 75.3 58.3 64.7 67.6
AFLW 80.2 78.7 83.7 59.3 67.0 68.6
self-superv. 81.5 81.3 86.7 59.8 68.4 68.7
† head-track T =10

TABLE 3: Head-map length M and pre-training
schemes. We report %AP when training and testing
on UCO-LAEO and AVA-LAEO for head-maps of
M=1,5,10 with different pre-training schemes.

net pre-train M= UCO- AVA-
LAEO LAEO

LAEO-Net [29] AFLW 1 79.5 50.6
LAEO-Net++ AFLW 1 80.2 59.3
LAEO-Net++ self-superv. 1 81.5 59.8
LAEO-Net++ AFLW 10 83.7 68.6
LAEO-Net++ self-superv. 10 86.7 68.7
† head-track T =10

TABLE 4: Comparison between LAEO-Net and
LAEO-Net++. We report %AP when training
and testing on UCO-LAEO and AVA-LAEO for
M=1,10 with different pre-training schemes.

train on UCO-LAEO AVA-LAEO UCO-LAEO AVA-LAEO UCO-LAEO AVA-LAEO TVHID
test on UCO-LAEO AVA-LAEO TVHID

baseline (chance level) 40.4 17.1 –
[31] (Fully auto+HB) – – – – – – 87.6
[32] (Fine head orientation) – – – – – – 89.0
[29] LAEO-Net (pre-trained) 79.5 77.8 39.1 50.6 91.8 90.7 –
LAEO-Net++ (self-supervised) 86.7 84.5 67.0 68.7 92.3(M=1) 87.4 –

TABLE 5: LAEO results on UCO-LAEO, AVA-LAEO and TVHID. We report %AP at the pair@frame level for UCO-LAEO and
AVA-LAEO and, similar to other works, at the shot level for TVHID.

illustrate it in Figure 6. LAEO-Net++ groups the heads based on
their orientation (we depict discretized angles). Specifically, we
illustrate the head embeddings after one, ten and twenty epochs
of training and observe that the more LAEO-Net++ is trained, the
more separate the head clusters become. Thus, we conclude that
to solve an explicit task, i.e. people LAEO, LAEO-Net++ learns
an additional task, i.e. estimating head pose (implicit supervision).

For longer temporal head-maps, e.g. M=10, the self-
supervised model outperforms the other ones by a small margin (1-
3%). This is interesting as one might expect the fully supervised
one to prevail. This is probably due to the size and variety of
the training data: the self-supervised model has been trained on a
larger dataset [9] and with greater pose variation than the one in
AFLW. Overall, the self-supervised pre-training outperforms the
rest; hence, in the remainder of this work we use this.

Relation to gaze direction. An alternative pre-training scheme
would be to use gaze direction models as initialization for LAEO-
Net++. For instance, the head-branch could be initialized by
the one from [37], as both encode information about the head
pose and orientation. Similarly, LAEO-Net++ could be used as
initialization for gaze direction models [37, 38]. Moreover, LAEO-
Net++ could be adapted to infer person-wise VFoA, for instance
by replacing one head-track branch by a saliency predictor [37]
or a transformation pathway [38]. A possible extension would be
to add saliency prediction in LAEO-Net++ as additional task for
joint training with the LAEO. Another line of work would be
to combine the self-supervised LAEO pre-training with 3D gaze
estimation [10] to scale-up gaze estimation or gaze following.

8.5 Results on UCO-LAEO and AVA-LAEO

Table 3 reports the results when evaluating LAEO-Net++ on UCO-
LAEO and AVA-LAEO. The performance is 86.7% and 68.7%
when training and testing on UCO-LAEO, and AVA-LAEO,
respectively. These results reveal that there exists a significant gap
in the performance between the two datasets. This is due to the
different nature of AVA-LAEO compared to other datasets: (1)
head annotations are not provided (just human bounding-boxes

every 1 second); (2) it contains challenging visual concepts, such
as (a) low resolution movies, (b) many people in a scene, (c)
blurry, small heads, and (d) particular clothing styles, e.g. several
people wearing hats (western, Egyptian’s, turbans, etc.). Despite
these difficulties, LAEO-Net++ achieves AP=68.7%.

Moreover, to assess the difficulty of these datasets and the
effectiveness of LAEO-Net++, we compare it to the chance level
classification. LAEO-Net++ outperforms chance level by a large
margin: ×2 for UCO and ×4 for AVA (Table 5).

When applying LAEO-Net++ on UCO and AVA we obtain
the results of Figure 7, where we display some of the highest
ranked pairs of people LAEO. We observe that LAEO-Net++
leverages the head orientations and their temporal consistency and
accurately determines the frames where people are LAEO.

We hope that LAEO-Net++ with these two datasets will
provide solid baselines and help future research on this area.

Impact of the detection and tracking errors on the AP. LAEO-
Net++ (T=10, M=10) achieves an AP=68.7% when evaluated
on all annotated pairs of AVA-LAEO. In contrast, if we compute
the LAEO classification accuracy only on the subset of detected
pairs, the AP increases up to 79.8%.

8.6 Cross-dataset evaluation

Here, we aim at examining the generalization of LAEO-Net++ ac-
cross different domains. To this end, we examine the performance
when initializing the weights with one dataset and fine-tuning it
(and testing) on another dataset, i.e. pre-training on UCO (and
fine-tune on AVA) leads to 67.0% AP, whereas pre-training on
AVA (and fine-tune on UCO) to 84.5%. Interestingly, we observe
that this cross-dataset scheme performs very good, resulting in
classification performances similar to the ones with no change
in domain: for UCO there is a drop of only 2.2% (84.5% vs
86.7%), and for AVA the drop is 1.7% (67.0% vs 68.7%) Table 3.
These results show that the domain shift [44] definitely affects the
performance, and that for solving the LAEO task, the pre-training
is less important than the actual data for fine-tuning.
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Fig. 7: LAEO-Net++ results on UCO-LAEO (top) and AVA-LAEO
(bottom). For different scenarios, backgrounds, head poses etc., in
most cases LAEO-Net++ successfully determines if two people are
LAEO (green boxes).

8.7 Comparison between LAEO-Net and LAEO-Net++

We examine the differences in performance between LAEO-Net
and LAEO-Net++ for the same setting (paragraph with differences
in Section 3). Table 4 reports the % AP results when training and
testing the two networks on UCO-LAEO and AVA-LAEO.

Single frame head-map: LAEO-Net results in AP = 79.5%
for UCO and 50.6% for AVA, whereas for the same setting
replacing the head-track architecture of LAEO-Net with the new
one results in AP = 80.2% for UCO and 59.3% for AVA, i.e.
absolute improvements of 0.7% for UCO and 8.7% for AVA.
These suggest that the new architecture helps determining the
mutual gaze between people; this is especially demonstrated by
the big boost on AVA, thus suggesting that the new model handles
difficult scenes and scenarios better than the old one, given the
more challenging nature of AVA. Additionally, using the self-
supervised pre-training for LAEO-Net++ leads to AP = 81.5%
for UCO and 59.8% for AVA, i.e. absolute improvements of
2% for UCO and 9.2% for AVA wrt [29], showing that the
proposed self-supervised pre-training of LAEO-Net++ leads to
greater performance improvements than the AFLW pre-training.

Multi-frame head-map: Increasing the head-map length from
one toM = 10 frames leads to AP=83.7% for UCO-LAEO and
68.6% for AVA-LAEO when using the AFLW pre-training, and
AP=86.7% for UCO-LAEO and 68.7% for AVA-LAEO when us-
ing the self-supervised pre-training. The improvements compared
to LAEO-Net are between 4-7% for UCO-LAEO and around 18%
for AVA-LAEO. This clearly indicates that using multiple frames
for the head-map boosts the LAEO performance, as the network
is better able to capture the temporal aspect of moving heads, thus
reducing the missed detections and the false positives.

8.8 Summary

The findings of LAEO-Net++ can be summarized as follows:

(i) the head-map branch is the most suitable architecture for the
task we examine (Table 2),

(ii) exploiting the temporal dimension by using T -frame long
head-tracks andM-frame long head-maps boosts the perfor-
mance (Tables 2-3).

(iii) for low values of the head-map length (M = 1) pre-training
is not necessary for solving the LAEO task; nevertheless,
for larger values of M there is a significant benefit in pre-
training, as the model benefits from more data (Table 3).

(iv) solving the LAEO task alone (without any pre-training)
results in learning head pose and orientations (implicit su-
pervised setting, Figure 6).

(v) AVA-LAEO is more challenging than UCO-LAEO due to its
different nature.

LA
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Fig. 8: LAEO-Net++ results on TVHID. (top three rows) correct
LAEO results when the ground truth is LAEO (green) and not-LAEO
(blue). LAEO-Net++ successfully detects people LAEO in several
situations (illuminations, scales, clutter). (last row) failure cases for
false positive LAEO detections (first example) and missed detections
(three last examples). Most failures are missing people LAEO in
ambiguous scenes; e.g. in the last red frame the characters are LAEO,
even though the character on the left has closed eyes.

8.9 Results on TVHID-LAEO
We compare LAEO-Net++ to the state of the art on TVHID [36],
i.e. the only video dataset with LAEO annotations (Section 4.3).
As in [31], we use average AP over the two test sets (Table 5).
LAEO-Net++ trained on UCO-LAEO and AVA-LAEO achieves
AP= 92.3% and AP=87.4%, respectively. Notably, training on
UCO-LAEO outperforms training on AVA-LAEO when tested on
TVHID. This is due to the fact that the domain of TVHID is closer
to the one of UCO-LAEO than to AVA-LAEO, given that UCO-
LAEO and TVHID consist of TV shows, whereas AVA-LAEO
contains movies. Despite the domain differences, LAEO-Net++
trained on AVA-LAEO achieves comparable results to the state of
the art. Finally, we observe that the model trained on UCO-LAEO
outperforms all other methods by a large margin (1− 3%).

When we apply LAEO-Net++ on TVHID and obtain the
results shown in Figure 8. Our model successfully detects peo-
ple LAEO in several situations and scenarios, such as different
illuminations, scales, cluttered background. By examining the
remaining 8% error, we note that in most cases, the ground truth
label is ambiguous, e.g. last two red frames in Figure 8.

9 SOCIAL NETWORK & INTERACTION PREDICTION

One principal way of signaling an interest in social interaction
is the willingness of people to LAEO [14, 27]. The duration
and frequency of eye contact reflects the power relationships, the
attraction or the antagonism between people [1].

We present two applications of LAEO-Net++ in analysing
social interactions in TV material. First, at the shot level, we
show that LAEO is an indicator of whether two characters are
interacting (see below). Second, at the episode level, we show that
LAEO is an indicator of the extent of social interactions between
two characters, we term this friend-ness.

Here, we define two characters as interacting if they are
directly involved (e.g. kiss, hug), or the actions of one influence
the actions of the other (e.g. show something on a screen), or they
communicate (e.g. talk to each other), or if they perform an activity
together (e.g. shopping). Two characters are not interacting within



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 10

TP
-

In
te
ra
ct

SCR: 0.22      AL: 0.31 SCR: 0.31      AL: 0.61 SCR: 0.22      AL: 0.78 SCR: 0.16      AL: 0.35 SCR: 0.39      AL: 0.69

SCR: 0.10      AL: 0.30 SCR: 0.29      AL: 0.37 SCR: 0.25      AL: 0.53 SCR: 0.24      AL: 0.43 SCR: 0.15      AL: 0.27

TN
-

No
t-I
nt
er
ac
t

SCR: 1.00      AL: 0.08 SCR: 1.00      AL: 0.14 SCR: 1.00     AL: 0.00 SCR: 1.00      AL: 0.02 SCR: 1.00      AL: 0.01

SCR: 1.00      AL: 0.08 SCR: 1.00      AL: 0.14 SCR: 1.00      AL: 0.06 SCR: 1.00      AL: 0.00 SCR: 0.65      AL: 0.00

FN
-M

iss
ed

In
te
ra
ct
io
ns

SCR: 1.00      AL: 0.10 SCR: 0.98      AL: 0.06 SCR: 0.38      AL: 0.14 SCR: 0.72      AL: 0.02 SCR: 0.83      AL: 0.10

(a) (b) (c)

Fig. 9: Interaction prediction with the Average-LAEO vs various Baselines on Friends. In addition to the Average-LAEO score (AL),
we display four baselines: Random Probability (PR), Uniform Probability per Episode (UPE), Shots-Coexistence-Ratio (SCR), and Uniform
Probability per Shot (UPS). (a) AP performance for AL and various baselines for each pair; (more pairs in Section 4 in supplementary material)
(b) Pair-agnostic precision-recall curves. Some patterns are clear: ‘Ross and Rachel’ or ‘Monica and her workmate’ interact with each other
almost continuously when they coexist; albeit their low frequency of co-existence, ‘Joey and Ross’, ‘Joey and Monica’ or ‘Ross and Mark’
interact significantly when they co-exist as captured mainly by AL (red). (c) Examples of AL and SCR. We compute the AL of each pair and
display some examples: true positives (TP), when we correctly predict a pair of characters as interacting (green color); true negatives (TN),
when we correctly predict a pair of characters as not-interacting (blue color); false negatives (FN), when we miss pairs that interact (orange
color). Note than in all examples the SCR results are reversed (see SCR scores): i.e. the green rows are wrongly predicted as not-interacting;
the blue rows are wrongly predicted as interacting; the orange row is correctly predicted as interacting. As expected, we observe that the AL
fails to determine interactions, where the people are not LAEO. In most cases, however, either in real life or in TV-shows a human interaction
typically involves gazing; hence, the AL is suitable for automatically capturing pairs of characters that interact. (Best viewed in digital format.)

a shot if they do not refer to each other (e.g. both characters listen
to a third person talking), or they do not influence each other, or
they perform different tasks (e.g. one character is watching TV
while the other is reading a book).

9.1 Dataset processing and annotation

Dataset. We use one episode of the TV show ‘Friends’ (s03ep12).
First, we detect and track all heads (see Section 5), resulting in
1.7k head tracks. Then, with no further training, we apply LAEO-
Net++ on each track pair to determine if two characters are LAEO.

Character annotation. All head tracks are annotated with the
identity of their character. This results in main characters (more
than one third of the tracks), irrelevant characters (∼35%), being
wrong (20%) or some secondary ones (the rest).

Interaction annotation. Within each shot, all pairs of characters
are annotated as interacting or not. Our annotation procedure
results in 220 positive and 200 negative pairs.

9.2 Experiments
The goal is to assess whether LAEO can be used to predict
character pair interactions at the shot level, and Friend-ness at the
episode level. We measure LAEO at the shot level using ‘average-
LAEO score’ (AL) over the frames where the two characters co-
exist, and measure LAEO at the episode level as the average of
AL over all shots in which the two characters appear. Interaction
is a binary label for a pair of characters in a shot. We treat AL
as the score for predicting interaction, and assess its performance
using Average Precision (AP).

Baselines. For interaction prediction we use four baselines:
(1) Random Probability (PR): every pair has a random probability

of interacting (drawn from an uniform distribution); (2) Uniform
Probability per Episode (UPE): the probability of interacting for a
pair is 1/L, where L is the number of existing pairs per episode;
(3) Shots-Coexistence-Ratio (SCR): the ratio between the number
of frames that two characters co-exist in a shot over the total
number of frames of the shot; and (4) Uniform Probability per
Shot (UPS): the probability of interacting for a pair is 1/LS ,
where LS is the number of existing pairs per shot.

Interaction prediction. The AP for individual pairs of characters
is shown in Figure 9(a) (more pairs in the suppl. material); and
a pair-agnostic ranking, where all pairs are evaluated together, no
matter the character identities is shown in Figure 9(b).

In Figure 9(a), we observe that in some cases several baselines
are good predictors as they capture the possible interactions, e.g.
ross-rachel or monica-workmate monica. However, in the cases
where there exist several pairs within an episode or where two
characters co-exist only in a few frames (compared to the shot
length), the SCR (green) and UPS (blue) baselines are incapable
of capturing the interactions, e.g. joey-ross, joey-monica or ross-
mark. In these cases, however, AL (red bars) correctly predicts the
interaction level between characters. Overall, we observe that AL
outperforms all other baselines in all pair-specific cases.

In the pair-agnostic PR curves of Figure 9(b), the AL score
outperforms all baselines by 4-34%. The RP baseline performs
worse than all other scores, which is expected as it contains no
information, while UPE and SCR perform similarly (AP= 77%
and 68%), indicating that the frequency of existence of a pair at
the frame or episode level does not necessarily reveal interactions.
The UPS score notably outperforms the other baselines by 3-29%
showing that the fewer people exist in a shot, the more likely they
are to interact. Finally, AL outperforms all baselines, reaching
AP=84%; showing that it captures the main interactions with
high confidence, and therefore can be useful for automatically
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Fig. 10: Social network using the Average-LAEO (AL) on Friends.
We depict the %AL between character pairs with the edges in the
graph: the thicker the edge, the more dominant the relationship. We
observe some clear patterns: Ross and Rachel or Monica and Julio
‘like’ each other more than Chandler and Phoebe or Ross and Phoebe.

retrieving them.
To demonstrate the powerfulness of AL and its superiority

compared to SCR, we show some examples of pairs of characters
in Figure 9(c). The examples in green are correctly predicted
as interacting by AL, but wrongly predicted as not-interacting
by SCR; the examples in blue are correctly predicted as not-
interacting by AL, but wrongly predicted as interacting by SCR;
the examples in orange are missed interactions by AL, but cor-
rectly predicted as interacting by SCR. We observe that in several
cases, the AL is suitable for predicting the presence or absence
of interactions between characters, whereas the SCR is incapable
of differentiating them; for instance, Monica and Joey in the last
green example co-exist and interact in a few frames and, therefore,
they are wrongly predicted as not-interacting by SCR. Moreover,
we note that the AL fails to determine interactions where people
are not LAEO (e.g. Ross and Chandler or Mark and Rachel in
orange). In most cases, however, either in real life or in TV-shows
a human interaction typically involves gazing; hence, the AL is
suitable for automatically capturing pairs of characters interacting.

Friend-ness. For each shot, we measure friend-ness between a
pair of characters with the AL and depict it in the social network
of Figure 10: the thicker the edge, the higher the score and the
stronger the relations. AL captures the dominant relationships
between characters, e.g. Ross and Rachel, against characters that
are more distant, e.g. Phoebe and Chandler. Our study reveals all
prominent pair relations, demonstrating that the more people are
LAEO, the stronger their interaction and social relationship.

10 CONCLUSIONS AND FUTURE WORK

In this paper, we focused on the problem of people looking
at each other (LAEO) in videos. We proposed LAEO-Net++,

which takes as input head tracks and determines if the people
in the track are LAEO. This is the first work that uses tracks
instead of bounding-boxes as input to reason about people on
the whole track. LAEO-Net++ consists of three branches, one for
each character’s tracked head and one for the relative position
of the two heads. Moreover, we introduced two LAEO video
datasets: UCO-LAEO and AVA-LAEO. Our experiments showed
the ability of LAEO-Net++ to correctly detect LAEO events and
the temporal window where they happen. Our model achieves
state-of-the-art results on the TVHID-LAEO dataset. Furthermore,
we demonstrated the generality of our model by applying it to
a social case scenario, where we automatically infer the social
relationship between two people based on the frequency they
LAEO i.e. friend-ness, and showed that our metric can be useful
for guided search of interactions between characters in videos
(i.e. interaction prediction). Finally, in Section 5 in the suppl.
material we examine two other applications of LAEO-Net++,
i.e. head pose classification and regression. As future work, we
identify the following research directions: incorporating explicit
3D information of humans (e.g. [49]) to the model and exploring
other kinds of social situations (e.g. [3]).
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[29] M. J. Marı́n-Jiménez, V. Kalogeiton, P. Medina-Suárez, and
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LAEO-Net++: revisiting people Looking At Each

Other in videos
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F

This supplementary material extends the main manuscript with
(i) additional details about the architecture and training of LAEO-
Net++ (Section 1); (ii) extended description of the head detection
and tracking (Section 2); and (iii) more insights on the training loss
function (Section 3). Then, we demonstrate (iv) some visually-
ambiguous cases in the proposed AVA-LAEO dataset (Section 4),
and (v) various applications of LAEO-Net++ in tasks different
then LAEO detection (Sections 5-6).

1 LAEO-NET++ SPECIFICATIONS

1.1 LAEO-Net++ Architecture Specifications

As described in Section 3 in the main manuscript, LAEO-Net++
uses spatio-temporal 3D convolutions and can be applied to the
head tracks in the video. It consists of three input branches, a
fusion block, and a fully-connected layer. Two of the input streams
determine the pose of the heads using five 3D conv laters, while
the third represents their relative position and scale with four 3D
conv layers. Table 1 reports the exact specifications of each conv
and fully connected layer.

head-pose heads-map
input: frame crops 64⇥64⇥T input: map 64⇥64 ⇥M
(five 3D conv layers) (four 3D conv layers)

f: 32 : 4 ⇥ 4 ⇥ 3, s:2 ⇥ 2 ⇥ 1 f: 16 ⇥ 5 ⇥ 5 ⇥3, s:2 ⇥ 2 ⇥1
f: 64 : 4 ⇥ 4 ⇥ 3, s:2 ⇥ 2 ⇥ 1 f: 24 ⇥ 3 ⇥ 3 ⇥3, s:2 ⇥ 2 ⇥1
f: 128 : 4 ⇥ 4 ⇥ 3, s:2 ⇥ 2 ⇥ 1 f: 32 ⇥ 3 ⇥ 3 ⇥3, s:2 ⇥ 2 ⇥1
f: 256 : 4 ⇥ 4 ⇥ 3, s:2 ⇥ 2 ⇥ 1 f: 12 ⇥ 6 ⇥ 6 ⇥1, s:1 ⇥ 1 ⇥1
f: 256 : 4 ⇥ 4 ⇥ 2, s:2 ⇥ 2 ⇥ 1

TABLE 1: ‘Self-supervised style’ architecture specification.
Branch details ‘f’: filter, ‘s’: stride, h ⇥ w ⇥ t.

1.2 LAEO-Net++ training details

As mentioned in the paragraph ‘Implementation details’ of Section
8 in the main manuscript, LAEO-Net++ is implemented with

• (⇤) means equal contribution.
• Manuel J. Marı́n-Jiménez and Pablo Medina-Suárez are with the Univer-

sity of Córdoba, Spain.
Emails: mjmarin@uco.es and i42mesup@uco.es

• Vicky Kalogeiton and Andrew Zisserman are with the University of Oxford.
Emails: vicky@robots.ox.ac.uk and az@robots.ox.ac.uk

Keras [1] using TensorFlow as backend. Here, we provide more
implementation details.

For implementing LAEO-Net++, we use zero-padding before
the conv layers of the head-pose branches, batch normalization
after the convolutions – with the exception of the first and last
Conv layers, µ = 0.99, " = 10�5 – and, leaky ReLu activations
(↵ = 0.2). For training it we use the Adam optimizer with mini-
batches of 9 samples: 4 positives, 4 negatives and 1 hard negative.
The learning rate starts at 10�4 and is reduced by a factor of
0.2 when the AP on the validation set does not improve for 10
consecutive iterations. The minimum possible learning rate is set
to 10�7. Dropout is set to 0.2. Before applying the trained model
to the test sets, the samples of the validation set of UCO-LAEO
are added to the training set for few additional epochs using the
latest learning rate.

2 HEAD DETECTION AND TRACKING

As mentioned in Section 5, LAEO-Net++ requires head tracks as
input. Here, we describe in details the head detection and head-
track generation.

Head detection. Our method requires head detections. In the
literature, there are several models for face detection ([7, 8]); head
detection, however, is a more challenging task, as it comprises
detecting the whole head, including the face (if visible) but also
the back of a head (e.g. [5]). We train a head detector using the
Single Shot Multibox Detector (SSD) detector [4]1 from scratch.
We train the model with a learning rate of 10�4 (first 50 epochs),
and decrease it with a factor of 0.1 for the rest of the training. For
speedup and better performance we use batch normalization and
for robustness we use the data augmentation process from [4]. We
train the head detector with the ‘Hollywood heads’ dataset [6]. It
consists of head annotations for 1120 frames, split into 720 train
and 200 val and test frames. We first train our detector with the
training set and after validating the model, we train on the whole
dataset as a refining stage.

Head tracking. Once we obtain head detections, we group them
into tracks along time. For constructing tracks, we use the online
linking algorithm of [2], as it is robust to missed detections and can
generate tracks spanning different temporal extents of the video.

1. Detector: https://github.com/AVAuco/ssd people
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(a) (b)

Fig. 1: Study of loss components. UMAP projection of head embeddings using (a) just the Ls ‘sign’ loss function (trained during 150 epochs)
and (b) Lh, i.e. combined ‘sign+L1’ (trained during just 15 epochs). We observe that Ls alone is not enough to distinguish head orientations,
whereas the combined Lh clearly separates the head angles even though it is trained for only 15 epochs!

Fig. 2: Interaction prediction with the Average-LAEO vs various Baselines on Friends. In addition to Average-LAEO score (AL), we
display four baselines: Random Probability (PR), Uniform Probability per Episode (UPE), Shots-Coexistence-Ratio (SCR), and Uniform
Probability per Shot (UPS). (left) AP performance for the AL scores and various baselines for each pair, Some patterns are clear: Ross and
Rachel or Monica and her workmate interact with each other almost continuously when they coexist; albeit their low frequency of co-existence,
Joey and Ross, Joey and Monica or Ross and Mark interact significantly when they co-exist as captured mainly by AL (red). (Best viewed in
digital format.)

Out of all head detections, we keep only the N =10 highest scored
ones for each frame. We extend a track T from frame f to frame
f + 1 with the detection hf+1 that has the maximum score if it is
not picked by another track and ov

⇣
hT

f , hf+1

⌘
>�, where ov is

the overlap. If no such detection exists for C consecutive frames,
the track stops; otherwise, we interpolate the head detections. The
score of a track is defined as the average score of its detections. At
a given frame, new tracks start from not-picked head detections.
To avoid shifting effects in tracks, we track both forwards and
backwards in time.

3 LOSS FUNCTIONS TO TRAIN LAEO-NET++
Here, we examine the importance and impact of the proposed loss
function (Eq. 3 in the main manuscript) for the fully-supervised

pre-training scheme of LAEO-Net++. As a reminder, the loss
function Lh for training the head-pose branch combines the
individual losses for the yaw, pitch, and roll angles with a penalty
term Ls for the yaw angle. In addition, all target angles are
normalized (i.e. dividing them by the standard deviation of the
orientations of the training set) before training.

Importance of Ls. Ls penalizes an incorrect estimation of the
sign of the yaw angle, i.e. failing to decide if the person is looking
left or right. We demonstrate the importance of the sign of Ls

by considering the following example. Let ↵ represent the yaw
angle. (i) For the pair ↵ = 20 and ↵̂ = 25, the L1 value is 5. (ii)
The same value (L1 = 5) is obtained for the pair ↵ = �2.5 and
↵̂ = 2.5. In the former case, both the estimated and ground-truth
angles indicate the same head orientation, but different magnitude.
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In the latter case, however, one angle would indicate looking to the
left, whereas the other would indicate looking to the right. This
shows that distinguishing these cases is important for solving the
LAEO problem and, therefore, using the additional ‘sign’ term of
Lh is necessary.

Impact of Ls. To demonstrate the impact of Ls, we train and
test LAEO-Net++ using only Ls (Eq. 2 in the main manuscript),
with the same architecture of the head branch and the AFLW
dataset. We obtain the corresponding head embeddings and display
in Figure 1 (a) their UMAP projection. We observe that using only
Ls results in mixed results: most angles are not clearly separated,
but overall there exists a slight separation between extreme values
of angles, e.g. angles more than 45 degrees (light and dark blue
dots) are grouped towards the left part of the projection space,
whereas angles between -90 and -15 degrees (orange and red
dots) are mostly shifted towards the right part of the space. For
comparison, we display in Figure 1 (b) the UMAP projection of
the head embeddings when trained and tested with our full loss
function Lh of Eq. 3 in the main manuscript. We observe that Lh

results in a clear separation of the head angles, i.e. significantly
better than the one from ‘sign’ alone even though it is trained for
only 15 epochs.

Fig. 3: Contribution of Ls to Lh. Evolution of the Mean Squared
Error (MSE) while training a head pose estimator: full Lh loss vs
Lh without the Ls loss. The lower, the better.

Finally, in addition to the previous experiments, we compare
the contribution of the penalty term Ls to the complete loss
Lh. The plot in Figure 3 shows that the Mean Squared Error
(MSE) obtained by the full loss function Lh is lower than the one
achieved by the ablated function Lh \ Ls. That means that the
penalty term Ls is helpful for the task.

4 AVA-LAEO DATASET

Matching AVA annotations with head detections. The original
AVA dataset (v2.2) provides bounding boxes at the person-level.
This means that a person bounding box may cover a full body,
just an upper-body or even part of a head. Recall that our LAEO-
Net++ uses as input head tracks. Therefore, in order to obtain
head-level LAEO annotations, we match our head detections (and
tracks) with the original bounding boxes of AVA. In particular,
we define a (positive) match between a head detection and an

a b c d ea b c d ea b c d e(a) (b) (c)

Fig. 4: Samples annotated as ‘ambiguous’ by the annotators of
AVA-LAEO. For example, in (a) the background is too dark, in (b)
the faces are not visible, and in (c) it is not visually clear which is the
LAEO pair of the man on the right, if any, in the scene – our human
intuition is that the most likely one is the most left man, but we cannot
see his eyes, nor the eyes of the other man viewed from the back.

AVA bounding box if the intersection area over the head area is
greater than a threshold. This requires that the head detection box
is approximately within the AVA bounding box (as the latter is
usually larger than the head one). This process results in a subset
of people with their corresponding LAEO annotations.

Ambiguous cases. Figure 4 shows some typical visually ambigu-
ous cases. These are due to blur or crowded scenes (c), no visible
faces (b), dark background (a), and ambiguity due to the many
possible combinations of mutual gaze (c).

5 FRIENDS EXAMPLES

In Figure 2 we include the %AP performance results for all pairs
for the Average-LAEO (AL) and all other baselines. We observe
that AL outperforms all other baselines. More details can be found
in Section 9 in the main manuscript.

6 APPLICATIONS

In this section, we examine applications of LAEO-Net++ to other
tasks. Specifically, we show that the weights learnt at the head
branch of LAEO-Net++ for the LAEO detection problem can be
transferred to two other tasks: (1) head orientation classification,
and (2) head orientation regression.

For both experiments, we use the LAEO-Net++ obtained when
training on AVA-LAEO with random inialization of the head
branch, i.e. no pre-training. As a reminder, note that the size of
each input head sample is 10 ⇥ 64 ⇥ 64 ⇥ 3 pixels (i.e. both
training and test samples have had to be inflated). For both tasks,
we use the AFLW dataset [3]. Specifically, we randomly select
1000 images for testing purposes, while making sure that the
different yaw angles are approximately evenly distributed. Below,
we describe them in details.

Back Right Left Frontal

Fig. 5: Classes defined for the 4-ways head pose classifier. From
left to right: near-back view, right, left and almost-frontal.

Head orientation classification. The goal of this task is to
classify each head pose into four possible categories based on
a discretization of the yaw angle. As shown in Figure 5, we define
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Random (red) vs LAEO-Net++ (blue) initialization
M

AE
-y

aw

% training set

Fig. 6: Training an estimator of the head yaw angle: different
amount of training samples. We compare the MAE (the lower the
better) obtained on the test set for networks trained from scratch (i.e.
random initialization of weights) against networks initialized from the
head branch of a pretrained LAEO-Net.

four classes: back (absolute value greater than 120o), right, left
and frontal (absolute value lower than 30o). The back view class is
mainly represented by 210 samples extracted from the ‘Hollywood
heads’ dataset [6]. Overall, the dataset for this task contains 23,495
samples (AFLW+back).

The proposed architecture for this task corresponds to the head
branch of LAEO-Net++ plus an additional batch-normalization
layer and a softmax layer with four units. The categorical cross-
entropy loss function is used for training.

We investigate here a few-shot learning setup. We train during
5 epochs the proposed classifier with a subset of the training
samples, i.e. 10% (2,290) and 50% (11,458), and we compare
them with the results obtained by the same architecture initialized
with random weights. The test accuracy is 60.9% (random) vs
68.2% (ours) for the 10% case, and 77.9% (random) vs 81.9%
(ours) for the 50% case. These results suggest that the learnt
weights are useful for this task.

Head orientation regression. This problem is more challenging
than the previous one, as a real number has to be regressed. As in
the previous task, we focus here on the yaw angle, i.e. turning head
left-right. In contrast to the previous task, here we only include the
annotations from AFLW with no additional back-view samples.

The architecture used for this task is composed of the LAEO-
Net++ head branch plus a batch-normalization layer and a dense
layer with a single unit (without any bias and activation function).
We train the network with the L2 loss function.

Figure 6 summarizes the mean absolute error (MAE) in
degrees obtained for different proportions of the training data,
comparing the network obtained with random initialization against
the network obtained from a pre-trained LAEO-Net++. As a refer-
ence, the 10% of the training data corresponds to 2,226 samples.
In line with the findings of the previous experiment, initializing
the regressor with LAEO-Net++ weights helps to speed-up the
training process when only few samples are available.
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