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Most amplified initial perturbations are found for an unsteady compressible ablation
flow with nonlinear heat conduction that is relevant to inertial confinement fusion
(ICF). The analysis is carried out for a self-similar base flow in slab symmetry which is
descriptive of the subsonic heat wave bounded by a leading shock front, that is observed
within the outer shell, or ablator, of an ICF target during the early stage, shock transit
phase, of its implosion. Three dimensional linear perturbations as well as distortions
of the flow external surface and shock front are accounted for. The optimisation is
performed by means of direct-adjoint iterations. The derivation of a continuous adjoint
problem follows from the Lagrange multipliers method. The physical analysis of these
optimal perturbations reveals that nonmodal effects do exist in such an ablation flow
and that transient growth may dominate the flow stability until the end of the shock
transit phase, even at short wavelengths which are held as innocuous from the classical
standpoint of the ablative RichtmyerMeshkov instability. Perturbations are not only
amplified in the ablation front, but in the whole flow which is found to be especially
sensitive to perturbations in the compression region. This fact points out ablator bulk
inhomogeneities as the most detrimental defects regarding the shock transit phase of an
ICF implosion.

Key words: Authors should not enter keywords on the manuscript, as these must
be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)

1. Introduction

Inertial confinement fusion (ICF) has been thought in the 1950s as a way to produce
the smallest possible nuclear fusion explosion, i.e. thermonuclear fusion at the scale of
the laboratory (Lindl 1995). Reaching the ignition of thermonuclear reactions in the
laboratory is a turning point in applied sciences for energy production and national
security, as well as in basic science. Thermonuclear fusion sets off when the energy released
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by fusion reactions induces self-sustained combustion in the rest of the fuel. This ignition
criterion requires to bring the fuel at high temperature and areal mass — 107K and 0.5
g/cm2 — and to maintain it in a rather spherical shape for a sufficiently long time —
a few picoseconds (Atzeni & Meyer-ter-Vehn 2004). This challenge is accomplished by
imploding at high velocities a spherical shell of millimetric size filled with thermonuclear
fuel (a mixture of deuterium and tritium in the simplest case). During the implosion,
the inertia of the shell confines the fuel while its temperature and density increase. If the
implosion is sufficiently strong and symmetrical, the nuclear reactions ignit in a small
volume at the center of the fuel — the hot spot — and then propagate to the rest of the
fuel.

Inertial confinement fusion became possible with the advent of lasers, and then high
energy lasers, which are capable of reaching energy densities compatible with ignition.
Such lasers are used to produce an intense incident x-rays flux on the target — the
containement shell filled with the fuel — that produces an ablation wave: a subsonic heat
front preceeded by a forerunning shock front (Pakula & Sigel 1985) propagating inward
through the external layer of the target — the ablator. The ablated material expands
outward as a hot plasma, resulting in an ablation pressure that sets the target into an
inward converging motion (spherical rocket effect). This shock transit phase, i.e. when the
leading shock front is travelling between the surface of energy deposition and the inner
ablator surface, is depicted on figure 1. However, this compression process is subject to
hydrodynamic instabilities. Indeed, the ablation pressure applies in a strongly stratified
region called the ablation layer or ablation front. In the reference frame moving with the
ablation front, the hot and light expanding plasma pushes the cold and heavier unablated
part of the ablator. Such a configuration is unstable regarding the Rayleigh–Taylor
instability. Therefore, any small perturbation of the ablation front strongly develops into
spikes and bubbles as seen in the case of the classical Rayleigh–Taylor instability. Theses
deformations degrade the symmetry of the implosion, eventually leading to mixing of
the ablator material with the fuel, breaching of the confinement by breaking through
the ablator, thus preventing ignition. Although numerous works have been devoted to
the subject, hydrodynamic instabilities still represent a major obstacle to overcome in
the view of reaching ignition (Lindl et al. 2014; Haines et al. 2019; Clark et al. 2019;
Tommasini et al. 2020) .

The vast majority of hydrodynamic stability analyses of ICF ablation flows have
adopted a simplified modelling consisting of the equations of motion for a compressible
inviscid fluid (or Euler equations) with nonlinear heat conduction. However, progress
towards analytical or semi-analytical models could only be made upon using additional
simplifying assumptions: e.g. flow steadiness, isobaric approximation, discontinuous abla-
tion front, unbounded flow regions, isothermal expansion of the ablated fluid, etc. From
the early description of the ablation front as a rippled surface discontinuity (Bodner
1974; Kull & Anisimov 1986), Kull & Anisimov (1986), Kull (1989) and Sanz (1996)
improved the modelling by using a continuous description of the ablation front. These
models have led to analytical expressions of growth rate for ablation front ripples under
the form of the classical Rayleigh–Taylor growth rate (Chandrasekhar 1961) with more
or less sophisticated corrective terms. Stabilizing physical mechanisms at stake have been
identified as the mass flowing through the ablation layer, the dynamical overpressure and
heat conduction (Goncharov et al. 1996).

However, the ablation layer cannot be considered in actual ICF configurations as a
discontinuity — or even a strongly stratified region — between two semi-infinite slabs.
The influence of the surface of energy deposition (downstream), of the forerunning
shock front (upstream), at finite distances, and of travelling waves between these flow
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Figure 1. Schematic side profile of an ablation wave typical of the shock-transit phase of an
ICF implosion.

‘interfaces’ must be taken into account (see figure 1). Such confinement effects are
especially important during the shock-transit phase of a target implosion where the
distances between these interfaces may be much smaller than perturbation transverse
wavelengths. Three typical configurations of perturbations have been considered:

(i) The ‘ablative Richtmyer–Meshkov’ (ARM) instability (Goncharov 1999; Aglitskiy
et al. 2010) corresponding to a uniform incident heat flux on an ablator with surface
roughness: the ablative pressure at a corrugated ablation front produces a distorded
shock front. A key parameter is the characteristic size of the conduction region lcond
(figure 2), between the ablation layer and the surface of energy deposition. Within the
isobaric approximation of stationary laser-driven ablation flows, Goncharov et al. (2006)
find that ablation front modes localized in the conduction region (i.e. of wavelength
smaller than lcond) oscillate and are stabilized by a the dynamical overpressure resulting
from thermal conduction while the longer wavelengths are not stabilized and grow as
a result of Richtmyer–Meshkov and Darrieus–Landau mechanisms, hence the following
stability criterion

lcond > λ⊥ : damped oscillations, (1.1a)

lcond 6 λ⊥ : amplification. (1.1b)

(ii) The ‘laser imprint’ or more generally ‘illumination asymmetry’ (IA) configuration
(Velikovich et al. 1998; Goncharov et al. 2000) where an ablator without roughness is
illuminated by an inhomogeneous incident heat flux. This configuration leads to the same
stability criterion as the ARM instability (1.1).
The ARM instability and IA configuration were long thought as being the most detri-
mental perturbation sources. Therefore intensive efforts were spent on surface finish
requirements for fusion targets.

(iii) Bulk ablator inhomogeneities: the material of the ablator contains some inhomo-
geneities. This last configuration has gained recent attention after experiments (Smalyuk
et al. 2015; Haan et al. 2015; Ali et al. 2018) exhibited that material inhomogeneitites
could be a major source of perturbations.
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length of the conduction region is denoted lcond, and X̂a, a=es, af or sf, denote the Fourier
coefficients of the deformation of, respectively, the external surface, ablation front and shock
front, of transverse wavenumer k⊥.

The ARM and IA configurations led to analytical and semi-analytical models that
have undoubtedly helped in getting a better understanding of ablation flows and of their
instabilities. However, their results suffer from diverse limitations, among which:

(i) Overly restrictive modelling assumptions. Compressibility effects are rarely and
never fully taken into account. Actual base flow stratification and unsteadiness are
ignored.

(ii) Exclusive use of modal stability analysis. Stability results are deduced from the
least stable eigensolutions, omitting possible transient growth phenomena proper to non-
normal operators.

(iii) Finally, most of the above mentionned models describe laser driven ablation and
none have been dedicated to the stability of x-ray driven ablation flows.

The first limitation comes from the fact that the low-Mach number criteria are
only satisfied in the close vicinity of the ablation layer, but not at other locations,
especially for external heat-flux in the range of ICF-like implosions (Boudesocque-
Dubois et al. 2008; Clarisse et al. 2018). This and other restrictive flow assumptions
such as steadiness, isothermal expansion, etc., on which all of the above-mentioned
models rely are unnecessary when considering self-similar ablation flows. Self-similar
ablation flows follow from the work of Marshak (1958) (cf. also Reinicke & Meyer-ter-
Vehn 1991). Self-similarity follows from Euler equations with nonlinear heat conduction
upon the assumption that the incident heat-flux and pressure are growing as particular
powers of time. Self-similar solutions, actually computed in (Boudesocque-Dubois 2000;
Boudesocque-Dubois et al. 2008; Abéguilé et al. 2006; Clarisse et al. 2018), describe
accurately the whole flow structure of the ablation wave, from the forerunning shock front
to the external surface (see figure 1), and stand out from standard models by an exact
description of the hydrodynamics. Moreover, realistic ICF flow variables profiles have
been found to be close to self-similar solutions (cf. Velikovich et al. 1998; Boudesocque-
Dubois et al. 2008, figure 1). When applied to the computation of linear perturbations,
this approach furnishes the perturbation field in the whole extent of the ablation wave
(Abéguilé et al. 2006; Lombard et al. 2008; Clarisse et al. 2008, 2016), and not only
the shock front and ablation front deformations, as most of standard models do. These
computations have also stressed the importance of short time — and potentially transient
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— behaviour to the stability of ICF-like ablation flows, which leads us to the second
limitation.

Because they rely on normal mode analyses, the standard models of ablation front
instabilities previously mentioned omit potential transient growth phenomena and early-
time perturbation dynamics. Corresponding stability results are valid only for asymptot-
ically long times. Moreover, these standard models have neglected the influence of the
base flow dynamics on perturbation evolution. However, using the approach of self-similar
ablation waves indicates that the dynamics of the base flow influences the growth rate
of perturbations: the inherent flow stretching results in an algebraic, rather than linear,
growth in time for long wavelengths (1.1b) and a modification of criterion (1.1) (Abéguilé
et al. 2006; Clarisse et al. 2008). Secondly, the duration of the shock transit phase is
limited in time, so that results valid at asymptotically long times do not necessarily
apply. There are no a priori time scale separation between the base flow, perturbation
dynamics and the shock transit phase duration. Finally, the normal mode analysis does
not consider interaction between eigensolutions of the flow. In particular, two individually
decaying eigensolutions may interact and transiently amplify perturbations, also called
non-modal effects (Schmid & Henningson 2001). Although such transient behaviour can
amplify perturbations by several orders of magnitude, they are unpredictable by a normal
mode analysis. One consequence of non-modal effects is a possible earlier transition to
nonlinear behaviour than predicted by a normal mode analysis, and more generally an
underestimation of perturbation amplitude.

Concurrently to stability analyses using simplified physical modellings, some ICF
simulation codes trying to be as realistic as possible are routinely used to compute the
amplifications of some initial perturbations. Although more accurate models are embeded
in ICF simulation codes, this approach consists in computing solutions to an initial and
boundary value problem (IBVP) for selected initial and/or boundary perturbations. Such
computations performed for specific initial conditions are not sufficient for obtaining
general stability results. Yet, these ICF simulation codes have been developped in
the purpose of designing ICF targets for fusion or dedicated experiments. Due to the
multiplicity of perturbation sources, experiments and ICF simulations have often focused
on studying a specific source of perturbation (e.g. surface defects or internal density
inhomogeneities) for given wavelengths. In dedicated experiments, an initial perturbation
is artificially introduced in the shell to control its shape and size. In such cases ICF code
simulations have been found in good agreement with experiments (Raman et al. 2014;
Peterson et al. 2015). However, implosion simulations of ‘native roughness’ shells designed
to achieve ignition still fail to produce satisfactory agreements with experiments (Raman
et al. 2014; Smalyuk et al. 2017). For such shells, initial perturbations, individually
considered as acceptable regarding the implosion process, may interact and lead to an
amplification level not predicted by experiments and simulations. Additionally, some
sources of perturbations not considered in experiments and simulations have turned out
to be significant (Haan et al. 2015; Smalyuk et al. 2017; Ali et al. 2018). It appears
that current limitations of studies on ICF implosion instabilities come predominantly
from the under-appreciation of sources of perturbations (Clark et al. 2019, Sec. V).
Non-modal effects fall in this category of ‘unappreciated effects’. Hoping to remedy
to such limitations by sampling the entire range of admissible initial conditions and
terminal times by a sufficiently large number of amplification computations is simply
unrealistic. Sensitivity analysis regarding initial conditions has never been performed for
ICF implosion flows. Non-modal analysis is able to face the challenge of the multiplicity
of perturbation sources: not missing out the most detrimental initial perturbations.

Clarisse et al. (2016) called for an analysis of short-time perturbation dynamics during
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the shock transit phase. Recently, Varillon et al. (2021) have revealed local non-modal
instantaneous growths of perturbations at small scales in a self-similar ablation wave
representative of ICF implosions. It has also been noticed that the non-modal behaviour
of thermoacoustic instabilities — involving the same basic mechanisms as ablation flow
instabilities — is favoured in accelerated flows (Nicoud et al. 2007) or in flows with
complex boundary conditions (Wieczorek et al. 2011). Ablation flows present these
particularities owing to pressure gradients and deformed external surface and shock front.

Up to now, short-term perturbation dynamics in ICF ablation flows have never been
investigated and the present work aims at changing this fact by performing the first
non-modal linear analysis of an ablation flow. This analysis is carried out in the context
of the shock transit phase of an ICF target implosion since the possible occurrence of
rapid transient growth of perturbations during this phase could significantly change the
current understanding of hydrodynamic instabilities in ICF implosions and the methods
that are required for their prediction.

The rest of the article is structured as follows. Modeling choices for ablation flows
are exposed (Sec. 2), with the IBVP for linear perturbations (Sec. 2.3). Optimal initial
perturbations are found thanks to an optimisation method exposed in Sec. 3. We have
recourse to the use of an adjoint problem (Sec. 3.2) derived with the method of the
Lagrange multipliers (Sec. 3.1). Optimal initial perturbation are presented and analysed
in Sec. 4 for various parameters. These results are then discussed (Sec. 5) before a
summary and some perspectives given in the conclusion (Sec. 6).

2. Modelling

Hydrodynamics of ICF ablation flows is classically described thanks to the equations
of radiation hydrodynamics (Mihalas & Mihalas 1984). This owes to the following facts:

• the temperature within the portion of the ablator that is set into motion — above
many thousand degrees Kelvin (Lindl et al. 2004) — indicates that the medium forms a
plasma and that radiative transport cannot be neglected,
• the radiative temperature remains below a few million degrees Kelvin, so that

radiative pressure and energy are negligible compared to their material counterparts,
• effects of radiative energy diffusion dominate those of viscosity and thermal conduc-

tion,
• the ablator is chosen to be opaque toward the incoming irradiation in order to be

set into motion. It means that during the shock transit phase, the mean free path of
photons in the cold and heavy part of the ablator is small compared to the characteristic
size of the ablation wave and local gradient lengths. Therefore radiative transport is
approximated by radiation heat conduction (Zel’dovich & Raizer 1967, §II.10), i.e. the
radiative flux is proportional to the radiation energy gradient

ϕ = −κ(ρ, T )∇T 4, (2.1)

where κ is the radiative heat conductivity. Radiation heat conduction is not strictly valid
in the low density expansion region that is transparent to the incident radiation.

The flow dependent variables thus comprise the fluid density ρ, velocity v, pressure p
and temperature T . In a Cartesian coordinate system (O, x, y, z), equations of motion in
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an Eulerian description write (Hirsch 1988)

∂tρ+∇(ρv) = 0, (2.2a)

∂t(ρv) +∇ · (ρv ⊗ v + pI) = 0, (2.2b)

∂t(ρe) +∇ · (ρve+ϕ+ pv) = 0, (2.2c)

with the specific total energy

e = ε+ v2/2. (2.2d)

The configurations of self-similar solutions correspond to the one dimensional flow —
along the x-axis — of a semi-infinite slab initially at rest and of uniform finite density,
for a nonlinear heat conduction of the kind ϕ = −κ0ρ−µT ν∇T , with ν > 0 and µ > 0,
and for a polytropic gas obeying the equation of state

ε =
RT

γ − 1
, p = ρRT,

with γ the adiabatic gas exponent and ε the specific internal energy. Such a flow is con-
veniently described in the Lagrangian coordinate m, such that dm = ρdx. Dimensionless
evolution equations come as (Boudesocque-Dubois et al. 2008)

∂t(
1

ρ̄
)− ∂mv̄x = 0, (2.3a)

∂tv̄x + ∂mp̄ = 0, (2.3b)

∂t
(
CvT̄ + v̄2x/2

)
+ ∂m(p̄v̄x + ϕ̄x) = 0, (2.3c)

with Cv = 1/(γ − 1) and vx and ϕx the longitudinal components of v and ϕ, respec-
tively. Dimensionless dependent variables f̄ are functions of (m, t) corresponding to the
dependent variables f = ρ, vx, p, T and ϕx. Dimensionless longitudinal heat flux and
equation of state read

p̄ = ρ̄T̄ and ϕ̄x = −ρ̄−µT̄ ν ρ̄∂mT̄ . (2.4)

2.1. Self-similar ablation waves

Self-similar solutions to (2.3) arise for external heat flux and pressure of the form
(Boudesocque-Dubois et al. 2008)

p̄(0, t) = Bpt2α−2, ϕ̄(0, t) = Bϕt3α−3, α = (2ν − 1)/(2ν − 2) (2.5)

with Bp and Bϕ some constants, and initial conditions(
ρ̄, v̄x, T̄

)
(m, 0) = (1, 0, 0) for m > 0. (2.6)

These solutions depend on a single reduced variable ξ = m/tα. Dimensionless dependent
variables ρ̄, v̄x, T̄ , p̄ and ϕ̄x, corresponding to this set of solutions, are related to the
reduced variables Ū = (Ḡ V̄x Θ̄ Φ̄)> and P̄ through the relations

ρ̄(m, t) = Ḡ(ξ), v̄x(m, t) = tα−1V̄x(ξ), T̄ (m, t) = t2(α−1)Θ̄(ξ), (2.7a)

p̄(m, t) = t2(α−1)P̄ (ξ), ϕ̄x(m, t) = t3(α−1)Φ̄(ξ). (2.7b)

The reduced variables Ū are solutions to a nonlinear ordinary differential equation

dξŪ = F(ξ, Ū), (2.8)
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Figure 3. Variables in the coordinate x at increasing times for the base flow defined in
table 1: (a) density, (b) longitudinal velocity, (c) temperature and (d) longitudinal heat-flux.

(cf. Boudesocque-Dubois et al., 2008, Eq. 2.18 for the definition of the function F). The
reduced variables satisfy the dimensionless equation of state

P̄ = ḠΘ̄, (2.9)

and the nonlinear heat flux is expressed as a function of density, temperature and its
first gradient

Φ̄ = Ψ(Ḡ, Θ̄, ḠdξΘ̄), with Ψ(G,Θ,Θ′) = −G−µΘνΘ′. (2.10)

Initial and boundary conditions (2.5),(2.6) become

Φ̄(0) = Bϕ, P̄ (0) = Bp, (2.11a)(
Ḡ, V̄x, Θ̄

)
= (1, 0, 0) for ξ →∞. (2.11b)

For sufficiently low values of the incident heat flux, the heated fluid region may be
considered to be bounded by a non-isothermal shock-wave discontinuity (Marshak 1958)
propagating in the fluid at rest. This discontinuity is located at ξsf , which depends on
Bp and Bϕ (Boudesocque-Dubois et al. 2008). Under this approximation, boundary con-
ditions at ξ →∞ (2.11b) may be replaced by a condition at ξ−sf following from Rankine–
Hugoniot jump relations between Ū(ξ+sf ) and Ū(ξ−sf ), with Φ̄(ξ+sf ) = 0 (Boudesocque-
Dubois et al. 2008, App. A).

2.2. Base flow

In the present work we consider a self-similar ablation wave pictured in figure 3 and
whose characteristic parameters are described in table 1. The expansion velocity of the
plasma with respect to the ablation front is quasi-sonic. Due to the self-similarity, the
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γ (µ, ν) (Bϕ,Bp) (ξaf , ξsf) Lcond min
L∇T
Ltot

Ms|ξaf max MT Fr |ξaf
5/3 (2, 13/2) (3.33, 1.15) (1.06, 1.5) 1.15 4.0 10−3 0.32 1.05 12.2

Table 1. Characteristic parameters of the base flow considered in the present work: adiabatic
gas exponent (γ), heat conduction exponents (µ, ν) for the fully ionized gas model of Kramers
(Zel’dovich & Raizer 1967), values of the boundary parameters (Bϕ,Bp), reduced abscissa of the
ablation front ξaf and shock front ξsf , size of the conduction region at t = 1 (Lcond), stiffness
of the ablation front (minL∇T /Ltot), isentropic Mach number at the ablation front (Ms|ξaf )
and maximum value of the isothermal Mach number (MT ) and ablation Froude number (Fr)
(Clarisse et al. 2016).

Ndom Ncheb ∆tc

189 50 1.3 10−7

Table 2. Numerical characteristic parameters for the base-flow defined in table 1: number of
subdomains Ndom, number of points Ncheb per subdomain, and critical time-step ∆tc at t = 1.

length of the conduction region evolves as lcond = tαLcond (see Boudesocque-Dubois
et al., 2008, § 4.1).

The range of characteristic lengths of the ablation wave is illustrated by the ra-
tio between the characteristic length of the ablation layer (the local gradient length
L∇T = ḠΘ̄/dξΘ̄) and the length of the conduction region in table 1. Such a steep flow
requires a suitable numerical method to furnish accurate solutions suitable for a stability
analysis. Solutions to (2.8), (2.11) are discretized spatially by a Chebychev pseudospectral
scheme on a multidomain grid made of Ndom subdomains of Ncheb collocation points
each. The solution is computed thanks to a self-adaptive iterative procedure (Gauthier
et al. 2005; Boudesocque-Dubois et al. 2013). For given Ndom and Ncheb (table 2), this
method computes simultaneously the optimal multidomain grid — i.e. minimizing the
approximation error — and the solution to (2.8), (2.11).

2.3. Linear perturbations

Any Eulerian dependent variable is perturbed to the first order as

f = f (0)(x, t) + εf̃(x, y, z, t) +O(ε2), with ε� 1.

for f = ρ,v, T , where f (0) is a solution to (2.3)-(2.6). Evolution equations for linear

perturbations f̃ are obtained in the coordinate systems (x, y, z, t), (m, y, z, t) and finally
(ξ, y, z, t) (Clarisse et al. 2008).

Although the base flow is self-similar and in slab symetry, linear perturbations are
considered without self-similar assumption. The velocity perturbation field contains a
transverse component ṽ⊥ in the (Oyz) plan. With the help of a Helmholtz decomposition
of ṽ⊥, the momentum conservation in the transverse direction is replaced by an evolution
equation for d̃⊥ = (∂y ∂z) · ṽ⊥. As the base flow does not depend on the variables (y, z),
perturbation variables are Fourier-transformed in the (Oyz) plane, with the transverse

wavenumber k⊥ =
√
k2y + k2z . The Fourier coefficients of the linear perturbations depend

on the variables (ξ, t) and are denoted Ĝ, V̂x, D̂⊥ and Θ̂, for the density, longitudinal
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velocity, transverse divergence of the transverse velocity and temperature, respectively.
The resulting evolution equations for Fourier coefficients read (Varillon 2019)

∂tÛ + A∂2ξ Û + B∂ξÛ + CÛ = 0 ⇔ ∂tÛ = L(ξ, t)Û , (2.12a)

for

Û =
(
Ĝ V̂x D̂⊥ Θ̂

)>
(2.12b)

with

A =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 t−1C−1v Ḡ Ψ̄Θ′

 , (2.12c)

B =


−αξ/t t−α Ḡ2 0 0
tα−2 Θ̄ −αξ/t 0 t−α Ḡ

0 0 −αξ/t 0
t2α−3 C−1v Ψ̄G tα−2 C−1v P̄ 0 B44

 , (2.12d)

B44 = t−1
(
−αξ + C−1v

[
dξ(ḠΨ̄Θ′) + Ψ̄Θ

])

C =


t−1 ḠdξV̄x t−α ḠdξḠ Ḡ 0

−tα−2 Θ̄dξḠ/Ḡ ḠdξV̄x/t 0 t−α dξḠ
−t2(α−1) k2⊥Θ̄/Ḡ 0 0 −k2⊥

C41 tα−2ḠdξΘ̄ t2(α−1) C−1v Θ̄ C44

 , (2.12e)

C41 = t2α−3 C−1v
(
dξΨ̄G − Ḡ−1 dξΨ̄

)
,

C44 = t−1 C−1v
[
ḠdξV̄x + dξΨ̄Θ

]
− k2⊥t2α−1 Ḡ−1 Ψ̄Θ′ .

where Ψ̄G, Ψ̄Θ and Ψ̄Θ′ stand for the partial derivatives of Ψ (2.10) with respect to G, Θ
and Θ′, respectively. The external surface and shock front are also perturbed and their
linear deformation Fourier components are denoted X̂es(t) and X̂sf(t). At the external
surface, perturbation in pressure p̂es(t) and heat flux ϕ̂es(t) are imposed. Perturbed
boundary conditions arise from a first order expansion of Eq. (2.5) between the mean
position of the boundary surface and its perturbed position (Clarisse et al. 2008)

p̂es(t) = p̂(0, t) + X̂es(t)ρ̄(0, t)∂mp̄|m=0 , (2.13a)

ϕ̂es(t) = ϕ̂(0, t) + X̂es(t)ρ̄(0, t)∂mϕ̄|m=0 . (2.13b)

As the external surface is a material interface, the following kinematic relation applies

v̂es(t) =
˙̂
Xes(t) = v̄(0, t) + X̂es(t)ρ̄(0, t)∂mv̄|m=0. (2.13c)

At the shock front, Rankine–Hugoniot relations are perturbed and relate the perturbation
state upstream of the shock front to shock front deformation and flow perturbations
downstream of the shock front (App. A). In both cases, boundary relations take the
generic form of the system

Na∂ξÛ |a + MaÛ |a + X̂aS
a,0 +

˙̂
XaS

a,1 = F̂
a
, for a = es or sf (2.14)
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where the matrices Na,Ma and vectors Sa,0, Sa,1 and F̂
a

are given in App. A.
Solutions to (2.12), (2.14) are computed on the same grid as for the base flow and

integrated in time with a three-step implicit-explicit Runge-Kutta scheme. The stiffness
of the ablation front automatically constrains the critical time step ∆tc (table 2). The
code computing the base flow and perturbations has been extensively verified against
analytical solutions in (Boudesocque-Dubois et al. 2003, 2006, 2008; Clarisse et al. 2008).

3. Optimization problem

We are interested in the solutions to the following optimal initial perturbation (OIP)
problem:

Find the initial state (Û , X̂es, X̂sf)|t0 that maximizes an objective functional J(tf ),

with (Û , X̂es, X̂sf) solution to (2.12), (2.14) for zero external forcing.
As an objective functional, we choose to use the energy of Chu (1965), leading in the
present case to the definition

J =
1

2

∫ xsf

xes

(
T̄

ρ̄
ρ̂2 + ρ̄(v̂2x + v̂2⊥) + Cv

ρ̄

T̄
T̂ 2

)
dx. (3.1)

Chu’s energy accounts for acoustic, entropy and kinetic energies. This quantity is con-
served for a uniform base flow without internal or boundary source of perturbations.
The choice of Chu’s energy is motivated by its wide use in thermoacoustic problems
and comprise the whole extent of the flow, although it does not account for the energy
variation related to boundary deformations. Other energies, such as the energy of Myers
(1991), may not be (semi) positive-definite, and thus may not fulfill the condition of
being a (semi) norm for perturbations, as it is required for optimization. Chu’s energy

is a norm for Û but a semi-norm for (Û , X̂es, X̂sf). Following (Foures et al. 2012), we
need to supplement J by a complementary semi-norm J∗ for normalization purpose, such
that the direct sum of the kernels of J and J∗ spans the space of solutions. We choose
J∗ = (X̂2

es + X̂2
sf)/2.

Since ablation flows are nonuniform it is therefore necessary to use a global method.
In our case the base flow is time dependent, which leads to a time dependent evolution
operator L for perturbations. In such a situation, direct-adjoint methods are commonly
used: the set of equations (2.12), (2.14), along with initial conditions, constitutes the
direct problem and its adjoint problem is derived. Solving both the direct and adjoint
problems simultaneously yields the optimal perturbation. Adjoint problems have been
widely used in the field of hydrodynamic stability analysis (see Luchini & Bottaro,
2014 and references therein). Here we chose to derive the adjoint problem from the
Lagrange multiplier technique taken from optimal control theory (Gunzburger 1997),
but other methods exist to do so, e.g. via the derivation of a dual problem (Giles &
Pierce 1997, 2000; Luchini & Bottaro 1998) or the projection on a set of test functions
(Schmid & Henningson 2001). The Lagrange multiplier technique presents the advantage
of furnishing optimality conditions and a gradient direction suitable for the gradient
descent algorithm (Guégan et al. 2006).

However the majority of stability analyses using adjoint equations deal with incom-
pressible fluids and applications of this method to compressible flows are still rather
scarce. The issue of adjoint boundary conditions for hyperbolic systems of equations
was treated by Giles & Pierce (1997) within the dual problem approach. Moreover, the
dominant practice is by far to exclude boundary conditions — unless they are part of
the control variables — from the Lagrange multiplier formulation. The optimization
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is then performed in a solution space that is constrained by the desired boundary
conditions and the proper adjoint boundary conditions are deduced from considering
boundary contributions. The fact that, in our case, boundary conditions are applied
on moving boundaries that are subject to their own dynamics and must be found as
part of the solution to the problem, brings in an additional complication. An adjoint-
based optimization of a steady and incompressible flow with free boundaries is treated in
(Volkov et al. 2009) with a Lagrange multiplier formulation. But having to deal presently
with both a compressible flow and unsteady free boundaries has required us to identify
a suitable formulation of the Lagrange functional with limited insights from previous
works.

In the present work we derive a continuous adjoint problem (differentiate then dis-
cretize, cf. Gunzburger, 1997) and not a discrete adjoint obtained from the discretized
direct problem (discretize then differentiate). This way of proceeding yields a better
understanding of the inclusion of the constaints in the Lagrange functional. In addition,
the intrication of the different numerical methods we have recourse to in order to integrate
in time the direct problem, very classical when considered individually, leads to a level of
complexity not well suited for the discrete adjoint approach. In particular, the discrete
version of the time evolution operator of perturbations L (2.12) is never built, and as a
consequence the discrete adjoint does not simply amount to the transconjugate of the
discrete version of L. Boundary conditions also bring an increased complexity.

3.1. Lagrange functional

The Lagrange functional is built by adding the constraints that the state variable
must verify to the objective functional with the help of Lagrange multipliers, or ad-
joint variables (Gunzburger 1997). This formulation obeys the following principle: the
constraints enforced for boundary conditions have to be such that the direct problem
inferred from the Lagrange functional is well-posed. What is clear for a scalar advection
equation requires, in the case of a hyperbolic system, to include constraints only on the
incoming characteristics and leave the outgoing characteristics free from constraints. As
a consequence, there are as many Lagrange multipliers as there are incoming waves at
each boundary. In the present case, system (2.12) rewrites as

∂t

(
Û i

Û ii

)
+

(
0 0
0 A22

)
∂2ξ

(
Û i

Û ii

)
+

(
B11 B12

B21 B22

)
∂ξ

(
Û i

Û ii

)

+

(
C11 C12

C21 C22

)(
Û i

Û ii

)
= 0, (3.2a)

where Û i =
(
Ĝ V̂x D̂⊥

)>
and Û ii = Θ̂. The submatrices Axy, Bxy and Cxy with

x,y=1,2 are conformal to the subvectors Û i, Û ii. This system is composed of a parabolic
scalar subequation since A22 = A44, with A44 < 0 as a consequence of (2.10), namely

∂tÛ ii + A22∂
2
ξ2Û ii = 0, (3.2b)

and a hyperbolic subsystem for which a Kreiss symmetrizer exists (Kreiss 1970), of size
3× 3

∂tÛ i + B11∂ξÛ i = 0, (3.2c)

corresponding to isothermal gas dynamics. Therefore system (2.12) constitutes an incom-
pletely parabolic system (Strikwerda 1977). The IBVP (2.12), (2.14) is well-posed if, at
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Lagrange multipliers Corresponding constraints Type

Û
†
(ξ, t) Evolution equation for perturbations 4-vector

ν̂†es(t) and ν̂†sf(t) Hyperbolic subsystem BCs 3-vectors

η̂†es(t) and η̂†sf(t) Parabolic subequation BCs scalars

µ̂†es(t) and µ̂†sf(t) Evolution equation for boundary deformations scalars

Table 3. Lagrange multipliers used in the Lagrange functional (3.3).

each boundary, one condition is applied on the parabolic equation, and one condition is
applied on each incoming wave of the hyperbolic subsystem.

Additionally, the deformations X̂a implicitly obey temporal ordinary differential equa-
tions (ODEs)

dtX̂a =
˙̂
Xa,

where the
˙̂
Xa are determined after the boundary relations (2.14). Therefore, these

evolution equations need to be added as constraints in the Lagrange functional. If the
above mentioned rules are not verified — e.g. if boundary relations are added in the
Lagrange functional as they are expressed in the physical model (2.14) — then the adjoint
variables are overdetermined. As a consequence, we form the Lagrange functional

L = J(tf )− O−
∑

a=es,sf

(
Bha + Bpa + Fa

)
, (3.3)

where the different constraints come as follows:
• The term

O =

∫ tf ,ξsf

t0,0

Û
†>(∂tÛ − LÛ) dξ dt, (3.4)

expresses the constraint of satisfying the evolution equation (2.12) for Û , with the

Lagrange multiplier Û
†
(ξ, t) (table 3).

• The term

Bha =

∫ tf

t0

ν̂†a
>Ba,in

11

(
Û i|a − Û

a

i

)
dt, (3.5)

expresses the constraint of satisfying the boundary conditions for the hyperbolic sub-
system, with the Lagrange multipliers ν̂†a(t) (table 3). The matrix Ba,in

11 is the matrix
of incoming waves at the boundary ‘a‘ (see App. A.3), and therefore the number of

components to be determined in ν̂†a is given by the rank of Ba,in
11 . The set point Û

a

i is
defined in (A 7).
• The term

Bpa =

∫ tf

t0

η̂†aB̂
p
a

(
Û |a, X̂a

)
dt, (3.6)

expresses the constraint of satisfying the boundary condition on the parabolic sube-
quation, with the scalar Lagrange multipliers η̂†a (table 3). The function B̂pa expresses
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heat-flux continuity at the external surface and and total energy conservation at the
shock front and is defined in (A 8).
• The term

Fa =

∫ tf

t0

µ̂†a

(
dtX̂a −

˙̂
Xa

)
dt, (3.7)

expresses the constraint of satisfying the evolution equation of the boundary deformation,
with the Lagrange multipliers µ̂†a (table 3). The deformation velocity is defined in (A 9).
Additionally, we require that the initial condition be normalized, J(t0) + J∗(t0) = cst.
Since the system (2.12), (2.14) is linear, it is sufficient to normalize the initial condition
to unity, J(t0) + J∗(t0) = 1, and to consider different values of the initial distribution

rc =
J(t0)

J(t0) + J∗(t0)
, (3.8)

between 0 and 1.

3.2. Adjoint problem

The solution to the OIP problem lies in the stationary points of the Lagrange functional
(Gunzburger 1997), i.e. the points for which the variation of L with respect to each
independent variable w in any direction w′

∇wL · w′ = lim
ε→0

L(w + εw′)− L(w)

ε
(3.9)

vanishes. Cancelling the variations of L with respect to the direct variable Û yields the
adjoint problem: evolution equations for the adjoint variables, the Lagrange multipliers
in table 3, namely

∂tÛ
†

+ A†∂2ξ Û
†

+ B†∂ξÛ
†

+ C†Û
†

= 0 ⇔ ∂tÛ
†

= L†Û
†
, (3.10)

A† = −A>, B† = (B − 2 ∂ξA)
>
, C† = −

(
C − ∂ξB + ∂2ξA

)>
,

supplemented by boundary conditions(
BjiÛ

†
j − ∂ξ(AjiÛ

†
j )
)∣∣∣

es
= Πes

ij ν̂
†
esj +M es

4i η̂
†
es + µ̂†esM

es
2i , (3.11a)

− A44Û
†
4

∣∣∣
es

+N es
44P

es
i4

(
Bin

11ν̂
†
es

)
i
+ η̂†esN

es
44 = 0, (3.11b)

−
(
BjiÛ

†
j − ∂ξ(AjiÛ

†
j )
)∣∣∣

sf
= Πsf

ij ν̂
†
sf j +M sf

4i η̂
†
sf + µ̂†sfM

sf
2i , (3.12a)

A44Û
†
4

∣∣∣
sf

+N es
44P

sf
i4

(
Bin

11ν̂
†
sf

)
i
+ η̂†sfN

sf
44 = 0, (3.12b)

with Pa = M−1a , Πij =
(
Bin

11

)
ij

for i, j = 1, 2, 3 and Π4j = 0 for j = 1, 2, 3. Cancelling

the variations of L with respect to the direct variables X̂es and X̂sf yields scalar ODEs

dtX̂
†
a =

˙̂
X
†

a for a = es, sf, (3.13)

where
˙̂
X
†

a and X̂†a are scalar linear combinations of µ̂†a, ν̂†a and η̂†a defined in (B 3).
Terminal and initial conditions come as

Û
†
|tf = ∇ÛJ(tf ) , X̂†a |tf = ∇X̂a

J(tf ), (3.14a)

Û
†
|t0 = 0 , X̂†a |t0 = 0. (3.14b)
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The adjoint evolution system (3.10) has the same structure as the direct evolution
system (2.12), an incompletely parabolic system, although the boundary value adjoint
problem (3.10)-(3.12) is well-posed if it is integrated backward in time, i.e. from the

terminal condition (3.14a). Moreover, B†11 = (B11)
>

, therefore the hyperbolic subsystem
of the adjoint evolution equation (3.10) has the same wave speeds as in the direct
evolution equation (2.12). The adjoint solution is computed with the same pseudo-
spectral method as the direct problem.

Finding the solution to the OIP problem amounts to solving simultaneously (2.12),
(2.14), (3.10), (3.11), (3.12), (3.13) and (3.14). However, (2.12) needs to be integrated
forward and (3.10) backward in time, which makes a straight resolution impossible in
practice. Therefore, we have recourse to direct-adjoint looping (Gunzburger 1997). The
direct and adjoint problems are solved successively and (3.14b) provides us with the gra-

dient of the Lagrange functional L with respect to the control parameters (Û , X̂es, X̂sf)|t0

∇Û |t0
L = Û

†
|t0 and ∇X̂a|t0

L = X̂†a |t0 . (3.15)

At the end of the q-th direct-adjoint loop, this gradient is used to determine a new

initial condition Û
q+1
|t0 thanks to a gradient descent method. Here we have used power

iterations, i.e. Û
q+1
|t0 = Û

†
q|t0 , with a renormalization of Û

q+1
|t0 . However, the true

gradient method (Douglas et al. 2000; Foures et al. 2013) led to the same results (see
App. D).

4. Optimal initial perturbations

4.1. Choice of parameters

The initial time is arbitrarily set to t0 = 1. Because of the self-similarity, a shift of the
initial time would not change results if the terminal time and transverse wavenumber are
modified appropriately. The terminal time tf is varied in an interval whose upper bound
represents the end of the shock transit phase for an actual ICF target design (App. C).
Hydrodynamic instability studies of ICF implosions usually consider perturbations in
spherical harmonics of Legendre mode numbers ` in the range 10 6 ` 6 103 (Haan
et al. 2015), here equivalently 0.33 6 k⊥ 6 33, knowing that curvature effects cannot
be omitted for ` 6 60 (k⊥ 6 2). The case k⊥ = 0 is also treated, corresponding to
longitudinal shifts of the flow.

The optimization process must start from a non-zero first guess. This first guess is
taken as the perturbation state obtained at t0 that results from the evolution of the
flow perturbations initiated at some earlier time 0 < t∗ 6 t0 with the initial condition
(Clarisse et al. 2016)

Û(ξ, t∗) = X̂0


−t−α∗ ḠdξḠ
−t−1∗ ḠdξV̄x

tα−1∗ k2⊥V̄x|sf(ξ/ξsf)1−1/α
−tα−2∗ ḠdξΘ̄

 , X̂es(t∗) = X̂sf(t∗) = X̂0. (4.1)

where X̂0 is the initial deformation of the external surface and shock front. Such an
initial condition is an approximation of the perturbation field that would follow from
the self-similar ablation of an ablator with an initial defect of its external surface of
wavenumer k⊥ and amplitude X̂0, for times t∗ sufficiently small for the total thickness of
the disturbed flow, ltot(t∗), to be much smaller than the perturbation wavelength λ⊥, i.e.
k⊥ltot(t∗)� 1. The configuration thus depicted, under this condition of a thin-sheet flow,
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t0 tf Dt = tf − t0 k⊥ k⊥Lcond rc (ϕ̂es, p̂es, Ûu)

1 [1.01, 3.5] [0.01, 2.5] [0, 32] [0.53, 52] [0.01, 1] (0, 0,0)

Table 4. Ranges of parameters explored: initial time t0, terminal time tf , time duration Dt,
transverse wavenumber k⊥, the product k⊥Lcond relative to the stability criterion (1.1), initial

distribution rc, external forcing (ϕ̂es, p̂es, Ûu).

is that of the ablative Richtmyer–Meshkov instability (Goncharov 1999). Consequently,
the chosen first guess and the ensuing flow correspond to that of the ARM instability.

The potential existence of several maxima of the objective functional is tested by
using three different first guesses: (i) the ARM instability flow introduced above, (ii) a
perturbation field resulting from an external heat flux perturbation at t < t0, and (iii)
an arbitrary uniform perturbation field. These three different first guesses converge to
the same OIP. This test does not rule out the possibility that several local maxima exist,
but means that using of one or the other intial guess leads to the same maximum.

In the present study we are focusing on the energy gain,

G(tf ) =
J(tf )

J(t0)
. (4.2)

In that purpose J(t0) cannot vanish, implying that rc has to remain strictly positive. The

upper bound (rc = 1) corresponds to zero initial deformations (X̂es = X̂sf = 0).
Measurements of Chu’s energy are not accessible by experimental means. Although this

quantity provides us with a comprehensive measure of flow perturbations, it is necessary
to consider some outputs that reproduce experimentally measurable quantities. A com-
mon experimental diagnostic used to detect hydrodynamic perturbations in imploding
shells is the optical depth, measured by x-ray radiography and defined as the integral
of the opacity along photon optical path (Raman et al. 2014). In the case of radiation
heat conduction (2.1), the opacity writes κ = 4 ρ̄µT̄ 3−ν (Mihalas & Mihalas 1984). Since
the medium upstream to the leading shock front is undisturbed, the optical-depth linear
perturbation in the longitudinal direction writes

ÔD =

∫ xsf

xes

(ρ̂κρ + T̂κT ) dx =

∫ msf

0

(ρ̂κρ + T̂κT )
dm

ρ̄
+ X̂esκ|es + X̂sfκ|sf , (4.3)

where κρ and κT stand for the partial derivatives of κ with respect to the density and
the temperature.

4.2. Energy gains

The ablation flow is prone to amplifying small disturbances for a wide range of
transverse wavelengths and terminal times, whatever the initial distribution (figures 4a,
c). The amplification shows a trend of being larger for large terminal times and for
small transverse wavelegnths (figure 4a). Although they are considered as innocuous by
the ARM theory, perturbations of large k⊥lcond are subject to a strong amplification
(figure 4b). This high amplification of a global norm of perturbations — Chu’s energy
— contrasts with amplification results of the sole ablation front deformation known from
the ARM instability.

Curves of the gain (figure 4) are not monotonic but display a series of humps and
troughs which reflect the multiplicity of phenomena at stake. These phenomena are ana-
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Figure 4. Curves of the gain (4.2) for (a) different values of k⊥ at rc = 1 with respect to tf , (b)
same parameters but with respect to k⊥lcond(tf ), and (c) for different values of rc at k⊥ = 1.
The initial time is t0 = 1.

lyzed by projecting optimal responses on pseudo-characteristic linear waves proposed in
(Varillon et al. 2020) as a valuable tool to analyse perturbation evolution in ablation flows.
These pseudo-characteristic linear waves are recalled in table 5 and are supplemented by
the potential (transverse) vorticity ω̂⊥/ρ̄ (Kovásznay 1953), where

ω̂⊥ =
ρ̄

i k⊥
∂md̂⊥ − i k⊥v̂x, for k⊥ > 0. (4.4)

The ranges of parameter explored are summarized in table 4.

4.2.1. Short-time growth

For small terminal times (tf = 1.1), OIPs develop in time as a spatially structured
signal localized close to the external surface (figure 7), corresponding to acoustic–vorticity
interaction (figure 5). Since the time duration Dt = tf − t0 is shorter than the travel time
of acoustic waves between interfaces, the ablation layer and the shock front play no role
in the optimal growth mechanism and their deformations remain negligible (figure 6a).
Since the optimal response develops in the vicinity of the external surface, this sole
interface is coupled to the perturbation field (figure 6a). The optimal growth mechanism
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Conduction region Post-shock region

C1 Heat conductivity Forward quasi-isentropic acoustic
C2 Forward quasi-isothermal acoustic Quasi-entropy
C3 Transverse velocity Transverse velocity
C4 Backward quasi-isothermal acoustic Backward quasi-isentropic acoustic

Table 5. Identification of the pseudo-characteristic waves as proposed in (Varillon et al. 2020).

Medium
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medium
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y Shock frontAblation front
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Flow
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(m, y)-plane

Figure 5. Schematic view of the optimal growth mechanism: acoustic–vorticity interaction, in
the (m, y) plane at a given time t > t0. Sinusoidal arrows: acoustics; circular arrows: vorticity.
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Figure 6. Deformation absolute values |X̂| of the external surface (es), ablation front (af), and
shock front (sf), gain of Chu’s energy (G(t)) and normalized absolute values of optical depth

perturbation (|ÔD(t)/ÔD(t0)|) of the optimal responses. For rc = 1: (a) (k⊥, tf ) = (32, 1.1),
(b) (k⊥, tf ) = (8, 1.4), (c) (k⊥, tf ) = (0.33, 3.5). For rc = 0.01: (d) (k⊥, tf ) = (1, 1.1) and (e)
(k⊥, tf ) = (1, 2.5).
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Figure 7. Intensity map in the coordinates (m, t) of the optimal response for (k⊥, rc) = (32, 1)
and tf = 1.1. The external surface is located at m = 0 and trajectories of the ablation front
(af) and shock wave (sf) are reported with crosses. The region m > msf(t) correspond to the
unshocked ablator described by (2.6) without perturbations. (a) Chu’s energy density. Projection
on the pseudo-characteristic variables of table 5 (b) C1, (c) C2, (d) C4 plus (e) potential vorticity
ω̂⊥/ρ̄ (4.4).

results from local interactions between spatially structured acoustic and vorticity waves
located in the vicinity of the external surface, hereafter referred to as acoustic–vorticity
interactions (figures 5 and 7b-d). This spatial structure also makes Chu’s energy response
strongly fluctuating in space and time (figures 6a and 7a).

4.2.2. Long-time growth

As tf grows and k⊥ decreases, a transformation of the optimal initial perturbation sets
up, from acoustic–vorticity interactions to a signal localized in the ablation layer and
compression region with no well-defined structure (figure 8). The dominant mechanisms
are long range interactions coupling the ablation layer and shock front (figure 10). Because
the time duration Dt becomes larger than the travel time of acoustic waves between the
shock front and the ablation layer (tf = 1.4), an additional growth mechanism arises
in the compression region. Forward acoustic waves travel from the ablation layer up
to the shock front which re-emits vorticity and entropy waves (figures 8a-d). This is the
early stage of the coupling between the ablation layer and the shock front (af–sf coupling).
Acoustic–vorticity interaction coexists with af–sf coupling at intermediary terminal times,
without interacting together (figure 8a), but disappears in front af–sf coupling for large tf .
For large terminal times corresponding to the end of the shock-transit phase (tf = 3.5), as
the time duration equals a few times the travel time of acoustic waves in the compression
region, the shock front and ablation layer are strongly coupled and perturbations in the
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Figure 8. Intensity map in the coordinates (m, t) of the optimal response for (k⊥, rc) = (8, 1)
and tf = 1.4. Labels similar to figure 7. (a) Chu’s energy density. Projection on the
pseudo-characteristic variables of table 5 (b) C1, (c) C2, (d) C4 plus (e) potential vorticity
ω̂⊥/ρ̄ (4.4).

ablation front dominate those contained in the conduction and compression regions. This
makes ablation and shock front deformations much larger (figure 6c).

The resulting optimal growth mechanism evolves from local interactions between
acoustic and vorticity waves, without interactions between interfaces, to a regime of
coupled shock front and ablation layer (figure 10) where Chu’s energy is mostly located
in the ablation layer. The ratio of vorticity to acoustic-like content is assessed thanks to
the following ratio

R =

√ ∫
ω̂|2t0dx∫

div v̂|2t0dx
. (4.5)

The acoustic-like content of the OIPs is much greater than the vorticity content (table 6).
These ratios support the fact that acoustic waves are the dominant mechanism in the
most detrimental perturbations, bearing interactions between ablation and shock front.
The expansion velocity of the ablation wave in the conduction region reaches a sufficiently
high value so that forward acoustic waves arising from the external surface cannot reach
the ablation front within the time interval. Therefore, perturbations arising from the
external surface reach the ablation front only by means of heat diffusion, which is less
efficient than propagation in transmitting perturbations.

4.3. Optimal initial boundary deformations

For an initial perturbation concentrated in the deformations rather than in the flow
(case rc = 0.01, i.e. J∗(t0) � J(t0)), the distribution of the initial deformation is a

dominant shock front deformation (X̂sf |t0) and a negligible external surface deformation
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Figure 9. Intensity map in the coordinates (m, t) of the optimal response for (k⊥, rc) = (0.33, 1)
and tf = 3.5. Labels similar to figure 7. (a) Chu’s energy density. Projection on the
pseudo-characteristic variables of table 5 (b) C1, (c) C2, (d) C4 plus (e) potential vorticity
ω̂⊥/ρ̄ (4.4).
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Figure 10. Schematic view of the optimal growth mechanism: af–sf coupling, in the (m, y)
plane (left) and in the (m, t) plane (right). Sinusoidal arrows: acoustics, circular and dashed coil
arrows: vorticity, dashes: entropy.

(k⊥, tf ) (0.33, 3.5) (2, 3.5) (4, 1.8) (8, 1.4) (8, 3.5) (32, 1.1) (32, 3.5)
OIP 0.17 5.95 10−2 1.47 10−2 2.39 10−2 3.78 0.33 0.69

ARM 0.21 0.29 — 2.00 2.00 31.1 31.1

Table 6. Ratios of vorticity to acoustic-like content R (4.5) of some OIPs for rc = 1 and the
corresponding the ARM instability initial perturbation.
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Figure 11. Intensity map in the coordinates (m, t) of the optimal response for
(k⊥, rc) = (1, 0.01), with tf = 1.1 (a)-(c) and tf = 2.5 (d)-(f). Labels similar to figure 7.
Chu’s energy density (a) and (d). Projection on the pseudo-characteristic variables of table 5
C1: (b) and (e), C2: (c) and (f).

(X̂es|t0), for both long and short terminal times tf (figures 6d,e). The OIP in the flow
consists in a small forward acoustic signal in the vicinity of the shock front (figure 11). As
the shock front deformation is relatively steady (figures 6d,e), it produces an entropy and
vorticity signal uniform in space and time. We do not observe any acoustic retroaction
of the ablation layer on the shock front, which is therefore subject to its own dynamics
(figure 11). The ablation front is stimulated by the entropy and vorticity emitted by the
shock front and oscillates. Strictly speaking, there is no af–sf coupling, even for tf = 2.5
in the case of an initial deformation (rc � 1). If the af–sf coupling eventually sets up,
it takes a longer time than in the initial distribution case — rc = 1 — which displays
a dominant af–sf coupling for tf > 1.8. We additionally note that at the shock front,
backward acoustics is barely stimulated by incident (acoustic) perturbations which are
reflected mostly as entropy and vorticity waves.

4.4. Comparison with the ablative Richtmyer–Meshkov instability

The interest of a systematic search of the OIP via a non-modal analysis, beyond the
restricted frame of ARM-like initial perturbation, is exemplified on figure 12. The ARM
instability initial condition (4.1) reproduces the configuration under which the ARM
stability results (1.1) have been obtained. The amplification G(t) of (4.1) is compared to
optimal gain curves G(tf ) in the same configuration: rc = 1 and 1.01 6 tf 6 3.5 (the
ARM instability initial condition 4.1 yields rc > 0.99).

For all terminal times and wavelengths tested, the OIP yields a higher amplification
than that of the ARM instability initial condition (given that the ARM instability initial
condition was used as first guesses). In other words, there is always an initial perturbation
that yields an amplification of Chu’s energy that is higher than the one induced by the
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Figure 12. Amplification G(t) for the ablative Richtmyer–Meshkov instability (ARM) at
different k⊥ and optimal gain curve G(tf ) in the same configurations. For each case, the
optical depth amplification and normalized ablation front deformation are reported, i.e.

|ÔD(t)|/|ÔD(t0)| and |X̂af(t)|/J(t0) for the ARM and |ÔD(tf )|/|ÔD(t0)| and |X̂af(tf )|/J(t0)
for the OIP.

ARM instability initial condition (4.1). Moreover, the flow responses to OIPs shows much
more complexity than responses to the ARM instability initial conditions, with numbers
of acoustic, entropy and vorticity interactions in the compression region (e.g. compare
the response in figure 9 for the OIP at (k⊥, tf ) = (0.33, 3.5) with that of figure 13 for the
ARM instability initial condition).

The responses of the flow in terms of Chu’s energy and in terms of the ablation front
deformations are clearly different, which leads to a different appreciation of the flow
stability. For OIPs, highest ablation front deformations occur for the largest wavelengths
investigated (figures 12a,b). Although this trend complies with the ARM instability
results, ablation front deformations resulting from OIPs are higher than the one resulting
from the ARM instability initial condition with identical initial value of Chu’s energy.
The vorticity content with respect to the acoustic content of the ARM instability initial
condition is higher than in the case of the OIPs (table 6). In particular, the vorticity
content greatly increases with k⊥ for the ARM instability, which is not observed for the
OIPs.

This point emphasises the necessity of a complete non-modal stability analysis, in that
such an analysis is not based on the sole least stable mode and does not presume any
particular shape of the initial condition.
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Figure 13. Intensity map in the coordinates (m, t) in logscale of the response to the ARM
instability (4.1) with t∗ = t0 for k⊥ = 0.33 and t0 6 t 6 3.5, and that yields responses of
figure 12a. (a) Chu’s energy density. Projection on the pseudo-characteristic variables of table 5
(b) C1, (c) C2, (d) C4 and (e) potential vorticity ω̂⊥/ρ̄ (4.4).

For small wavelengths (figures 12c,d), ablation front deformations resulting from OIPs
agree with the level of that of the ARM instability. However, Chu’s energy amplifications
are two orders of magnitude higher in the case of OIPs.

5. Discussion

The present analysis reveals that the whole ablation flow, and not the sole ablation
front, is prone to amplifying perturbations over a wide range of wavelengths at the
end of the shock transit phase. This result differs from the one resulting from the ARM
instability which was for a long time considered as the dominant destabilizing mechanism.
However, such a result is consistent with the recent experimental evidences (Smalyuk
et al. 2015) of important amplifications of internal ablator perturbations over a wide
range of wavelengths during this same phase of an ICF target implosion. We notice a
higher sensitivity of the ablation flow to initial perturbations located between the ablation
front and the shock front than to the initial perturbations corresponding to the ARM
instability. This high sensitivity of the compression region is pictured on figure 14 since,
at t0, the adjoint variables at the optimum represent the sensitivity of the objective
functional to initial perturbations. The sensitivity to longitudinal velocity perturbations
is much higher than to density perturbations, in the ablation front and the compression
region. The consequences of this sensitivity to longitudinal velocity perturbations are not
measurable with current experimental diagnostics, i.e. optical depth or areal mass. The
sensitivity is also much higher regarding initial deformations of the shock front (rc � 1).
These results are intrinsic to the fluid evolution equations, together with the equation
of state and non-linear heat-conduction, in this region, and not to a specific ablator or
self-similar behaviour. The results differ from previous analyses by the chosen method
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Figure 14. Values at t0 of the adjoint variables at the optimum, or sentivity of the objective
functional to initial perturbations, for rc = 1, (k⊥, tf ) = (2, 3).

of stability analysis — i.e. non-modal analysis — and not because of modelling choices,
which are similar to most of the models found in the litterature for studying ablation
front stability.

In the present study, we have determined some optimal perturbations at an ‘initial’
time t0 > 0 containing significant vorticity and acoustic perturbations. We may rightly
wonder whether such initial conditions are realistic. The fact that the ablation flow has
already evolved from its initial state at rest (t = 0) up to the time t0 at which the OIP is
defined and that this previous evolution consists of the forerunning shock front travelling
through a potentially inhomogeneous medium — the upstream unshocked portion of the
ablator — indicates that vorticity and acustic fields are indeed present in the wake of
the shock front since it travelled through a medium with density inhomogeneities (e.g.
Huete et al. 2012). Therefore ending up with OIPs consisting of acoustic and vorticity
fields is fully compatible with a previous evolution of the ablation flow under realistic
conditions, the next question that logically comes to mind being then which particular
initial states of the unshocked ablator can possibly induce such OIPs?

The present study is based on Chu’s energy, which is a global norm consisting of a
kinetic and a potential part, the latter splitting into compression and heat-exchange (Chu
1965). This choice reveals that perturbations in ablation flows are not limited to the sole
ablation front deformation. However, semi-norms could be considered, either global in
space but only accounting for a specific part of the perturbation energy, or partial in
space. As examples, the norm could be defined over the sole post-shock region, or as
the square of the ablation front deformation, which is not a perturbation energy but
a valuable quantity in the ICF context. This would require defining a window for the
integration in space of an energy density, such as in (Lemke et al. 2014) for flame fronts.
In particular, the use of a measure of the ablation front deformation as an objective
functional for an OIP problem implies some mathematical complexity for the definition
of the complementary norm that has yet to be overcome. Accounting for external surface
and shock front deformations in a global norm via a conservation framework similar to
(Chu 1965) also remains an open question. In the results presented here, the optical
depth perturbation does not allow us to differentiate between low and high Chu’s energy
amplifications, owing to the fact, among others, that the velocity field does not affect
optical depth.

For these reasons, the questions of, on the one hand, experimental measurements
capable to detecting perturbations in a more complete way, and on the other hand,
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the choice of an appropriate norm for perturbations, in order to study the stability of
ablation flows, appears to be crucial.

6. Conclusion

In the present work we have conducted a global non-modal stability analysis to compute
the most detrimental initial perturbations in a self-similar ablation wave representative
of the shock transit phase of ICF target implosions driven by x rays. The ablation wave
is modelled thanks to the compressible Euler equations with nonlinear heat conduction
and perturbations are linear and three dimensional. The whole extent of the ablation
wave is described, with deformations of the external surface, ablation layer and shock
front. Optimal initial perturbations (OIPs) are obtained by direct-adjoint iterations.
The adjoint problem is derived using the Lagrange multiplier technique. A proper
method is proposed, to build a Lagrange functional correctly accounting for the free
boundary deformations and the structure of the evolution equation, which are two
inherent characteristics of the problem.

Optimal initial perturbations exhibit the general inclination of ablation flows to amplify
perturbations, for a wide range of transverse wavenumbers — i.e. for Legendre modes
ranging from 0 to 103 — and terminal times up to the end of the shock transit phase.
Although perturbations of small transverse wavelength compared to the size of the
conduction region are considered as innocuous by the theory of the ablative Richtmyer–
Meshkov (ARM) instability, they are subject to a strong transient amplification, in partic-
ular at the end of the shock transit phase. This result is consistent with the experimental
evidences of important amplification of perturbations originating from internal defects
of the ablator, for a wide range of wavelengths (Ali et al. 2018). The comparison of
OIP evolutions with the perturbation developing from the ablative Richtmyer–Meshkov
configuration shows an over amplification of OIPs compared to the ARM perturbations.
Therefore, most detrimental perturbations must be searched for outside the scope of the
ARM configuration.

The analysis shows that perturbations are not only amplified in the ablation layer
but in the whole flow. The ablation flow is particularly sensitive to perturbations in
the compression region, between the forerunning shock front and the ablation layer.
These OIPs in the compression region are consistent with perturbations left by a shock
front propagating in an inhomogeneous medium, which points out bulk inhomogeneities
of the ablator material as a major source of flow perturbations. The question of the
nature and size of the bulk ablator defects capable of inducing the largest perturbation
in the ablation wave could be answered via a receptivity analysis of the ablation wave
to upstream perturbations. Although numerous works have been dedicated to studying
the interaction of one — or several — shock waves with a field of perturbations, the
above mentioned receptivity problem has never been considered. Finally, to complement
the use of Chu’s energy norm, alternative objective functionals based on ablation front
deformations would be useful, but induce some mathematical issues with their definition
that have yet to be solved. The general idea is to tend to optimal design methods applied
to ICF target design, such as those that have now been in use for several decades in
aerodynamics and thermoacoustics.

The authors are greatful to A. Lefebvre-Lepot and F. Alouges for their discussion and
advice concerning the Lagrange functional.
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Appendix A. Boundary conditions for linear perturbations

Here we give the entries of matrices Na,Ma and vectors Sa,0,Sa,1 and F̂
a

as defined
in (2.14).

A.1. Boundary conditions at the external surface (es)

Relations of (2.13) in the coordinate (m, t) are transformed in the coordinates (ξ, t).

System (2.13) is supplemented by a trivial equation on D̂⊥ so that the matrix Mes is
invertible. Therefore,

Mes =


t2α−2Θ̄ 0 0 Ḡ

0 1 0 0
0 0 1 0

t3α−3ΨG 0 0 tα−1ΨΘ


∣∣∣∣∣∣∣∣
es

, Ses,0 =


t−αḠdξP̄
t−1ḠdξV̄

0
t2α−3ḠdξΦ̄


∣∣∣∣∣∣∣∣
es

,

Ses,1 =


0
−1
0
0

 , and Nes =

 0 0 0 0
0 0 0 0
0 0 0 tα−1ḠΨΘ′

∣∣∣∣∣∣
es

, (A 1)

F̂
es

=


P̂es(t)

0

D̂⊥|es
Φ̂es(t)

 .

A.2. Boundary conditions at the shock front (sf)

Boundary conditions for perturbations at the shock front are obtained by the linear
perturbation of Rankine–Hugoniot relations in the coordinates (x, y, z, t) (Clarisse et al.
2008, App. B.1). These relations are then transformed in the coordinates (m, y, z, t) and
(ξ, y, z, t), and then Fourier transformed in the transverse direction (Oyz). Relations
between the Fourier coefficients read as in (2.14), where the entries of the matrices and
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vectors read,

Msf =


tα−1Ūx −Ḡ 0 0

t2α−2(ŪxV̄x − Θ̄) tα−1Ḡ(Ūx − V̄x) 0 −Ḡ
0 0 1 0

t3α−3M sf
41 t2α−2(ḠV̄x(Ūx − V̄x/2)− CP P̄ ) 0 tα−1M sf

44


∣∣∣∣∣∣∣∣
sf

M sf
41 = Cv(W̄ − γV̄x)Θ̄ + ŪxV̄

2
x /2− ΨG, M sf

44 = CvḠ(W̄ − γV̄x)− ΨT

Ssf,0 =


t−1Ḡdξ(ḠŪx)|d

tα−2Ḡdξ(ḠV̄xŪx − P̄ )|d
tα−1k2⊥

[
V̄x
]u
d

t2α−3Ḡdξ
[
(CvP̄ + ḠV̄ 2

x /2)Ūx − P̄ V̄x − Φ̄
]
|d

 , (A 2)

Ssf,1 =


[
Ḡ
]u
d

tα−1
[
ḠV̄x

]u
d

0

t2α−2
[
CvP̄ + ḠV̄ 2

x /2
]u
d

 , Nsf =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −tα−1ḠΨΘ′


∣∣∣∣∣∣∣∣
sf

,

where Ūx = W̄ − V̄x is the shock front velocity with respect to the the fluid and W̄ is
the shock front velocity in the reference frame. The upperscripts and subscripts u and d
refer to upstream and downstream from the shock front, respectively.

A.3. Matrices of the incoming waves at each boundary

As stated in §3.1, system (2.12) is incompletely parabolic: i.e. it is made up of a

hyperbolic subsystem composed of the components (Ĝ, V̂x, D̂⊥)> which is supplemented

by a parabolic equation involving temperature Θ̂. Therefore B11 (see 3.2) has real valued
eigenvalues and defines a system of characteristic waves whose propagation velocities are
the eigenvalues. Let R11 be the matrix of the right eigenvectors and D11 = diag{λi, i =
1, 2, 3} with λi the eigenvalues, such that

B11 = R11D11R−111 .

At each side (a = es or sf) we define the matrix of incoming waves

Ba,in
11 = R11Da,in

11 R−111 , (A 3)

and outgoing waves

Ba,out
11 = R11Da,out

11 R−111 , (A 4)

with

Des,in
11 = diag {max{λi|es, 0}} , Dsf,in

11 = diag {min{λi|sf , 0}} ,

Des,out
11 = diag {min{λi|es, 0}} and Dsf,out

11 = diag {max{λi|sf , 0}} ,

with i = 1, 2, 3. The matrices Ba,in
11 project the information on the incoming characteris-

tics of the hyperbolic subsystem in the space of primitive variables.
The matrix B also proves to be hyperbolic. Therefore we can similarly define Ba,in and

Ba,out as

Ba,in/out = RDa,in/outR−1, (A 5)
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with R the matrix of the right eigenvectors of B, D = diag{βi, i = 1, . . . , 4}, βi the
eigenvalues of B, such that B = RDR−1, and Da,in/out is defined in the same way as

Da,in/out
11 .

A.4. Boundary conditions used for the well-posed BVP

Since the evolution system (2.12) is incompletely parabolic (Strikwerda 1977), the
corresponding BVP is well-posed if at both sides one condition is applied on the parabolic
subequation and one condition is applied on each of the incoming characteristics of
the hyperbolic subsystem, leaving the outgoing characteristics free from any constraint.
Boundary conditions (2.14) rewrite

Û
a

= Pa
(
F̂

a
− Na∂ξÛ |a − X̂aS

a,0 − ˙̂
XaS

a,1
)
, (A 6)

with Pa = M−1a . In order to get a well-posed BVP:

• The restriction of Û
a

to the hyperbolic subsystem

Û
a

i = Pa
i

(
F̂

a
− Na∂ξÛ |a − X̂aS

a,0 − ˙̂
XaS

a,1
)

(A 7)

is projected onto the incoming waves of the hyperbolic subsystem thanks to the matrix
Ba,in

11 . Here we have used the notation Pa
i that refers to the 3 × 4 matrix (Pa

i )ij = P a
ij ,

for i = 1, . . . , 3 and j = 1, . . . , 4.
• Heat-flux continuity (at the external surface) and total energy conservation (at the

shock front) provide us with a Robin condition for the parabolic subequation

Na
22∂ξÛ ii|a + Ma

iiÛ |a + Ses,0
ii X̂a + Ses,1

ii dtX̂a = 0. (A 8)

We have used the notation Ma
ii that refers to the row vector (Ma

ii)j = Ma
4j , for j = 1, . . . , 4.

Evolution equations for the boundary deformations is given by selecting the row corre-
sponding to velocity V̂x in (2.14) and read

Sa,1
2

˙̂
Xa +N sf

2iδ∂ξÛi +Ma
2iÛi + Sa,0

2 X̂a = 0. (A 9)

Appendix B. Derivation of the adjoint problem

B.1. Variation of the Lagrange functional

We express the variations of L (3.3) with respect to the direct variables (Û , X̂es, X̂sf) in

the directions (δÛ , δX̂es, δX̂sf). The main manipulations consist in replacing operators
for boundary conditions and evolution equations by their expressions and performing
integrations by part. The successive cancelling of the variations with respect to each of the
independent variables yields the adjoint problem (3.10), (3.10), (3.11), (3.12) and (3.13).
The definition of an adjoint deformation and an adjoint deformation velocity naturally
stem from this derivation. Finally, we give some details about the implementation of
boundary conditions for the adjoint problem.

After some integrations by part, and with the detailed expressions (A 7)-(A 9), the
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expanded form of the variations of (3.3) in the directions (δÛ , δX̂es, δX̂sf) reads

δL = ∇Û |tf
J · δÛ |tf +∇X̂es|tf

J · δX̂es|tf +∇X̂sf |tf
J · δX̂sf |tf

+

∫ tf ,ξsf

t0,0

(
∂tÛ

†
− L†Û

†
)
)>

δÛdtdξ −
∫ ξsf

0

[
Û
†>δÛ

]tf
t0

dξ

−
∫ tf

t0

[
Û
†>

Aδ∂ξÛ −
(
∂ξ(Û

†>
A)− Û

†>
B
)
δÛ

]ξsf
0

dt

−
∫ tf

t0

ν̂†es
>

Bes,in
11

[
δÛ i|es − Pes

i

(
I3δÛ |es − Nesδ∂ξÛ |es − Ses,0δX̂es − Ses,1dtδX̂es

)]
dt

−
∫ tf

t0

ν̂†sf
>

Bsf,in
11

[
δÛ i|sf + Psf

i

(
Nsf

ii δ∂ξÛ |sf + Ssf,0δX̂sf + Ssf,1dtδX̂sf

)]
dt

−
∫ tf

t0

η̂†es

(
Nes

22δ∂ξÛ ii|es + Mes
ii δÛ |es + Ses,0

ii δX̂es + Ses,1
ii dtδX̂es

)
dt

−
∫ tf

t0

η̂†sf

(
Nsf

22δ∂ξÛ ii|sf + Msf
ii δÛ |sf + Ssf,0

ii δX̂sf + Ssf,1
ii dtδX̂sf

)
dt

−
∫ tf

t0

µ̂†es

[
Ses,1
2 dtδX̂es +N es

2jδ∂ξÛj +M es
2jδÛj + Ses,0

2 δX̂es

]
dt

−
∫ tf

t0

µ̂†sf

[
Ssf,1
2 dtδX̂sf +N sf

2jδ∂ξÛj +M sf
2jδÛj + Ssf,0

2 δX̂sf

]
dt, (B 1)

where (I3)33 = 1 and (I3)ij = 0 for (i, j) 6= (3, 3). We have used the notation Na
ii that

refers to the row vector (Na
ii)j = Na

4j , for j = 1, . . . , 4.

• Cancelling variations δÛ for all 0 6 ξ 6 ξsf and t0 6 t 6 tf , yields the adjoint
evolution equation

∂tÛ
†

= L†Û
†

⇔ ∂tÛ
†
− A>∂2ξ Û

†
+
(
B> − 2 ∂ξA>

)
∂ξÛ

†
−
(
C> − ∂ξB> + ∂2ξA>

)
Û
†

= 0, (B 2)

which is equivalent to (3.10).

• Cancelling variations δÛ at t0 and tf yields the optimality condition (3.14b) and
terminal condition (3.14a).

• Cancelling variations δÛ |es and δÛ |sf yields boundary conditions (3.11a) and
(3.12a).

• Cancelling variations δ∂ξÛ |es and δ∂ξÛ |sf yields boundary conditions (3.11b) and
(3.12b),
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• Cancelling variations δX̂a for all t0 6 t 6 tf yields a scalar ODE

dt

(
ν̂†a
>

Ba,in
11 Pa

i S
a,1 + η̂†aS

a 1
ii + µ̂†aS

a,1
2

)
= ν̂†a

>
Ba,in

11 Pa
i S

a,0 + η̂†aS
a 0
ii + µ̂†aS

a,0
2 , (B 3)

which defines

X̂†a = ν̂†a
>

Ba,in
11 Pa

i S
a,1 + η̂†aS

a 1
ii + µ̂†aS

a,1
2 , (B 4)

and

˙̂
Xa

†
= ν̂†a

>
Ba,in

11 Pa
i S

a,0 + η̂†aS
a 0
ii + µ̂†aS

a,0
2 , (B 5)

which are used in (3.13).

• Cancelling variations δX̂a at t0 and tf yields the optimality condition (3.14b) and
terminal condition (3.14a).

B.2. Implementation of the adjoint boundary conditions

As the adjoint evolution equation (3.10) has the same incompletely parabolic structure
as the direct evolution equation (2.12), suitable boundary conditions have to be applied
on the hyperbolic subsystem and the parabolic subequation (see § 3.2). The boundary
conditions for the hyperbolic subsystem is deduced from the first three rows of (3.11a),
which are decomposed into incoming and outgoing components of matrix B>11, as defined
in (A 5) (

Bin
11

)
ji
Û†i j =

(
Bin

11

)
ji
ν̂†es j +∆in

ji

[
M es
j2µ̂
†
es − (B21)i Û

†
ii

]
, (B 6a)(

Bout
11

)
ji
Û†i j = ∆out

ji

[
M es
j2µ̂
†
es − (B21)i Û

†
ii

]
, (B 6b)

with

∆in =
[
R11 diag {max{sign(λi), 0}} R−111

]>
,

∆out =
[
R11 diag {min{sign(λi), 0}} R−111

]>
,

where sign(x) = returns the sign of x and 0 when x = 0.

As the adjoint problem is integrated backward in time, (B 6a) (respectively B 6b)
corresponds to the outgoing (resp. incoming) information at the external surface.

At each integration step, Bin
11
>
ν̂†es, η̂

†
es and µ̂†es are unknown informations that will

be determined thanks to Û
†
|es and X̂es through the relations (B 6a), (3.11b) and the

definition of X̂†es (B 3). This leads to solving a 5×5 linear system

Ŵ = QẐ, (B 7)

with

Ŵ =


(
Bin

11

)>
Û
†
i

X̂†es
A22

N22
Û
†
ii

 , Ẑ =

 Bin
11ν̂
†
es

η̂†es
µ̂†es

 , (B 8)
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and the matrix Q is defined by blocks which are conformal to the elements of Ŵ and Ẑ

Q =

 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 ,

Q11 = diag{1, 1, 1}, Q12 = 0, (Q13)i = M es
2j∆

in
ji,

(Q21 Q22) = PesSes,1, Q23 = Ses,1
2 ,

Q31 = Pes
12
>, Q32 = Pes

22, Q33 = 0.

Once Bin
11
>
ν̂†es, η̂

†
es and µ̂†es have been determined, the adjoint velocity deformation

˙̂
Xes

(B 3) and the right hand side of (B 6b) are determined.
The Robin boundary condition for the parabolic subequations in (3.10) is taken from

the fourth row of (B 6b), where the right hand side depends on η̂†es and µ̂†es, that have
been determined above.

The same procedure applies at the shock front.

Appendix C. Connection with a target implosion simulation

The terminal time tf is varied in an interval whose upper bound represents the end
of the shock-transit phase for an actual ICF target design. To determine this bound, we
build on the results of Varillon et al. (2020) according to which perturbations propagate
close to linear waves in the conduction and compression regions with wave speeds close
to the eigenvalues of the advection matrix B (2.12d). An external perturbation reaches
the ablation layer as a heat-conductivity wave and then initiates a system of reflected
isentropic acoustic waves and entropy waves in the compression region.

A simulation of the shock-transit phase for the chosen ICF target design (LMJ target
A1040 of Saillard, 2000) with the ICF code FCI2 (Buresi et al. 1986) allowed us to
obtain travel time estimates for a sequence of these waves going back and forth between
the ablation front (af) and the shock front (sf). We then identified that over the duration
of the shock-transit phase, a forward acoustic wave initially launched from the ablation
front can almost accomplish the sequence of trips (af → sf → af → sf → af → sf). From
the equivalent travel times in the chosen self-similar ablation wave, the same sequence
of trips is observed over the interval 1 < t < 3.69: see table 7. We thus conclude that
the end of the shock-transit phase for the target corresponds to a time smaller than 3.69
for the self-similar wave. Consequently, we set the upper bound on the terminal time to
be max tf = 3.5. Over the time laps 1 6 t 6 3.5, the self-similar ablation wave is thus
equivalent, in terms of wave trips, to the shock-transit phase of the actual target.

From t0 to max{tf}, the shock front has travelled along a distance dsf . We choose to
conserve the dimensionless number

ϑ =
dsf

max{λ⊥}
(C 1)

between the chosen ICF target design and the self-similar ablation wave. From the
simulation of the ICF target implosion we get ϑ = 1.4, and from the self-similar ablation
flow (table 1) dsf = 4.4, yielding the lower bound min{k⊥} ≈ 2. However, ICF implosion
studies explore a range of Legendre modes lower than 60, typically 10 6 l 6 103 (Haan
et al. 2015, figure 3). We take this range for our study, which corresponds then to the
interval 0.33 6 k⊥ 6 33. Of course, when transposing these results to the actual geometry
of a target, we must keep in mind that curvature effects may modify results for k⊥ < 2.
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Wave type Ablation layer Shock front

Forward isentropic acoustic 1.05 → 1.28

Entropy 1.78 ← “

Forward isentropic acoustic “ → 2.18

Entropy 3.02 ← “

Forward isentropic acoustic “ → 3.69

Entropy 5.13 ← “

Table 7. Arrival times of characteristic waves at the ablation layer and shock front, from an
external perturbation at t0 = 1.

(a) (b)

Û |qt0

Û
†
|qt0

(Û
†
|qt0)⊥

Û |q+1
t0c

Figure 15. Geometrical view of the normalization (adapted from Foures et al., 2013).

Appendix D. Optimisation procedure

Once the gradient of the Lagrange functional with respect to the initial condition
(3.15) has been determined at the end of the q-th iteration, a new initial condition

(Û , X̂es, X̂sf)|q+1
t0 is computed thanks to a gradient descent

Û |q+1
t0 = Û |qt0 + ε∇Û |t0

L, (D 1a)

X̂a|q+1
t0 = X̂a|qt0 + ε∇X̂a|t0

L, for a = es, sf (D 1b)

with ε the descent step. As it appears in the Lagrange functional, the unit normalization
constraint is not enforced through a Lagrange multiplier. If such a method is used, the
associated Lagrange multiplier would be determined such that the new initial condition
would be normalized to unit, and would interfere with the choice of the descent step of
the gradient method. This method proves to be very sensitive to the choice of descent
step, as was observed in (Foures et al. 2013), and therefore we have prefered the following
two methods:

• The power iteration technique amounts to choose Û |q+1
t0 = ∇Û |t0L = Û

†
|t0 and to

rescale it to unity. This method is robust but makes no use of the information contained
in Û |qt0 .
• The true gradient technique proposes a geometrical interpretation of the normaliza-

tion (Douglas et al. 2000; Foures et al. 2013). The initial conditions Û |t0 have to belong
to a unity hypersphere to comply with the normalization constraint. Hence, each new
Û |q+1

t0 is the result of the rotation of Û |qt0 by an angle c in the plane defined by Û |qt0 and
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Figure 16. Gain curves for Chu’s energy and residuals s⊥ (D 5) and sL2 (D 4). For (a) rc = 1,
(k⊥, tf ) = (32, 1.1), and (b) rc = 0.01, (k⊥, tf ) = (1, 1.1).

∇Û |t0
L = Û

†
|qt0 (figures 15a and b). To proceed, Û

†
|qt0 is projected onto the subspace

perpendicular to Û |qt0 (figure 15a). This projection

(Û
†
|qt0)⊥ = Û

†
|qt0 −

∫ ξsf
0
Û
†
|qt0Û |

q
t0dξ∫ ξsf

0
‖Û |qt0‖2dξ

Û |qt0 , (D 2)

is then normalized and Û |q+1
t0 is built as a linear combination of Û |qt0 and the normalized

(Û
†
|qt0)⊥, which are orthogonal to one another (figure 15b)

Û |q+1
t0 = cos(c)Û |qt0 + sin(c)(Û

†
|qt0)⊥, with c =

‖(Û
†
|qt0)⊥‖

‖Û
†
|qt0‖

. (D 3)

The choice of the most adapted method to our problem is not evident. According to
Kerswell et al. (2014; 2018), it seems that there is no alternative to confronting each
method by numerical experiment. The results presented in the present article have been
obtained with the power iteration method but the true gradient method has been tested
and led to the same optima.

The convergence of the procedure is assessed by two residuals:
• The first one is based on the L2 norm of the difference between two subsequent

initial conditions

sL2 =

∥∥∥Û |qt0 − Û |q+1
t0

∥∥∥2
L2

+
(
X̂es|qt0 − X̂es|q+1

t0

)2
+
(
X̂sf |qt0 − X̂sf |q+1

t0

)2
∥∥∥Û |q+1

t0

∥∥∥2
L2

+
(
X̂es|q+1

t0

)2
+
(
X̂sf |q+1

t0

)2 . (D 4)

• The second one is based on the geometrical fact that when convergence is reached

the adjoint state Û
†
|t0 is colinear to the OIP Û |t0

s⊥ =

∥∥∥(Û , X̂es, X̂sf)|t0⊥
∥∥∥∥∥∥(Û , X̂es, X̂sf)|t0
∥∥∥ . (D 5)

Convergence curves for two optimal responses are given as illustrations (figures 16).
As illustrated on figure 16b, sL2 is more conservative as it saturates while s⊥ keeps on
decaying. Even for the cases where the residuals are not saturating (figure 16a), the
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decay quickly slows down after a few iterations. To improve the convergence speed, a
more sophisticated descent algorithm could be useful, such as conjugate gradient. The
true gradient method is well adapted to such a perspective, as the line maximization —
which is the difficulty of conjugate gradient — is performed directly on the scalar c, with
a search interval that is furthermore restricted, by the definition of c, to [0, π].
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