
HAL Id: hal-03171965
https://polytechnique.hal.science/hal-03171965

Submitted on 17 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-Accuracy Packet Pacing on Commodity Servers for
Constant-Rate Flows

Mohammed Hawari, Juan-Antonio Cordero-Fuertes, Thomas Heide Clausen

To cite this version:
Mohammed Hawari, Juan-Antonio Cordero-Fuertes, Thomas Heide Clausen. High-Accuracy Packet
Pacing on Commodity Servers for Constant-Rate Flows. IEEE/ACM Transactions on Networking,
2020, 28 (5), pp.1953-1967. �10.1109/TNET.2020.3001672�. �hal-03171965�

https://polytechnique.hal.science/hal-03171965
https://hal.archives-ouvertes.fr

1

High-Accuracy Packet Pacing on Commodity
Servers for Constant-Rate Flows
Mohammed Hawari, Juan-Antonio Cordero-Fuertes, Thomas Clausen

Abstract—This paper addresses the problem of high-quality
packet pacing for constant-rate packet consumption systems, with
strict buffering limitations. A mostly-software pacing architecture
is developed, which has minimal hardware requirements, satisfied
by commodity servers – rendering the proposed solution easily de-
ployable in existing (data-centre) infrastructures. Two algorithms
(free-running and frequency-controlled pacing, for explicitly and
implicitly indicated target rates, respectively) are specified, and
formally analysed. The proposed solution, including both algo-
rithms, is implemented, and is tested on real hardware and under
real conditions. The performance of these implementations is
experimentally evaluated and compared to existing mechanisms,
available in general-purpose hardware. Results of both exhaustive
experiments, and of an analytical modeling, indicate that the
proposed approach is able to perform low-jitter packet pacing
on commodity hardware, being thus suitable for constant rate
transmission and consumption in media production scenarios.

Index Terms—Packet pacing, jitter, constant rate, SMPTE,
implementation, buffering, Pacing Assistant, systems architecture

I. INTRODUCTION

In packet-switched networks, the packet transmission rate
needs to be controlled so that the receive buffer never
overflows. Known as flow control, that task is usually achieved
asynchronously, e.g., with the stop-and-wait Automatic Repeat
reQuest (ARQ) protocol (introduced in [1]), or with a sliding-
window-based algorithm, e.g., as in the Transmission Control
Protocol (TCP) [2]. For either of those, the receiver sends
an explicit signal, authorising the sender to transmit more
data. TCP achieves flow control by permitting a maximum
number — the current receiving window — of transmitted
and unacknowledged data. A TCP Acknowledgment (ACK)
decreases the amount of unacknowledged bytes and thus acts
as authorisation for the sender to transmit subsequent data.

Some applications will consume packets from their receive
buffer at a given rate, independently from the state of the buffer.
An example hereof is a video player, which expects to always
have enough packets available to build the next video frame.
If incoming packets are late, these applications might try to
consume a packet from an empty buffer, a condition known as
buffer starvation – which, in the video player example, results
in a visually unsatisfactory user experience.

The design of the system, the sender, and the receiver, should
prevent this from happening, i.e., each packet in such a stream
must be received before a certain time. This is different from

M. Hawari is with Cisco Systems Paris Innovation and Research Laboratory
(PIRL), 92782 Issy-les-Moulineaux, France; email {mhawari}@cisco.com.

M. Hawari, J.-A. Cordero-Fuertes and T. Clausen are with École
Polytechnique, 91128 Palaiseau, France; emails {mohammed.hawari,juan-
antonio.cordero-fuertes,thomas.clausen}@polytechnique.edu.

flow control, which seeks to delay transmission by the sender
until after it has been confirmed that there is buffer space
available by the receiver.

A. Towards Software Pacers

If a sender transmits, and receiver consumes, packets at the
exact same rate, the receive buffer will be subject to neither
overflow nor to starvation – assuming that the delay introduced
by the network between sender and receiver is close to constant.
That approach is adopted by the Society of Motion Picture and
Television Engineers (SMPTE) to standardise the transport of
production-grade multimedia streams over IP/Ethernet networks.
For example, SMPTE 2022-6 [3], SMPTE 2059 [4] and SMPTE
2110-21 [5] define timing constraints on production-grade
multimedia streams, and on network equipment, so as to avoid
buffer overflow and starvation. Those standards were designed
under the assumption that packets belonging to such streams
are to be transmitted at Constant Rate (CR).

Therefore, as the SMPTE standards are intended as enablers
for the broadcasting industry to migrate media processing from
dedicated to commodity hardware, the latter must be able to
generate and carry SMPTE-compliant, i.e., sufficiently regular,
CR streams.

Furthermore, migration from “all media-dedicated hardware”
to “all software running on commodity hardware” includes an
intermediate state with gateway devices, i.e., with dedicated
hardware, consuming SMPTE-compliant CR streams received
over IP/Ethernet, and converting them into the Serial Digital
Interface (SDI) format [6], used by media-dedicated hardware.
As a transition technology, gateway devices may have (for
reasons of cost-containment) limited memory, i.e., limited re-
ceive buffers. Consequently, upon reception of an insufficiently
regular stream, such buffers are potentially exposed to overflow
and starvation.

This motivates the design of a packet pacer – a system,
which buffers an incoming, and potentially insufficiently regular,
packet stream and releases the packets sufficiently regularly
for a CR receiver to never be subject to buffer overflow, nor
to starvation. In support of transitioning from dedicated, to
commodity, hardware, such a packet pacer should be a generic
software solution, requiring also only generic hardware.

B. Related Work

Previous work related to packet pacing can be categorised into
techniques to avoid congestion control and reduce queueing
delays, into specifically scheduling of packet transmission for
video-streaming, and into implementability considerations for
real-time packet transmission.

2

CR-PG Best-Effort
processing

te tc

Pacer
B1

CR-PC
B2

tc

Figure 1: System overview: A stream of packets, generated by a Constant-
Rate Packet-Generator (CR-PG), undergoes some Best-Effort processing, and
hence a loss of regularity. Those packets are buffered into B1 by the Pacer,
which transmits them, with sufficient regularity, so that the receive buffer B2

of a Constant-Rate Packet-Consumer (CR-PC) never undergoes overflow or
starvation. Packet transmissions (by the CR-PG) and consumptions (by the
CR-PC) occur at times, sorted into a sequence tc.

1) Techniques to avoid congestion and reduce queuing
delays: In [7], the effects of pacing on TCP flows are
shown to bring higher fairness at the cost of lower overall
throughput, especially as the number of concurrent flows
increases. Further, [8] identifies a point of inflexion in the
number of flows, above which pacing reduces throughput. This
is explained by a synchronisation phenomenon when TCP
flows experience simultaneous congestion window reductions,
leading to inefficient network usage, first described in [9].
Pacing is also a building block of Bottleneck Bandwidth and
Round-trip time (BBR) [10], a congestion control algorithm
for TCP that reacts to congestion by reducing the pacing rate,
instead of by solely reducing the TCP congestion window.
In [11] and [12], dynamic pacing schemes are proposed to
improve transport-layer performance in small-buffer networks
and reduce congestion. Queue-Length Based Pacing (QLBP),
described in [11], uses the number of buffered packets to de-
termine the pacing rate. In [12], a poly-logarithmic-complexity
online pacing algorithm is shown to reduce short-timescale
burstiness, while still transmitting each packet before a given
deadline.

2) Video streaming: In [13], the problem of scheduling
packet transmissions so that a CR receiver experience neither
buffer overflow nor starvation is formulated in the framework of
network calculus, and the set of feasible packet departure curves
is determined, given the characteristics of the receiver and the
network. In [14], this problem is addressed for stored video,
and an optimal packet transmission schedule is constructed,
given a non-necessarily-constant packet consumption profile
at the receiver. This is applicable, e.g., to Variable Bit-Rate
(VBR) video streaming.

3) Implementability: Given the real-time nature of the pacing
task, implementing it as a piece of software proves challenging.
In [15], the scalability of traditional implementations of pacing
(e.g. the Linux Hierarchical Token Bucket (HTB) or the Fair
Queue (FQ) queueing discipline (qdisc)) is shown to be limited
for large number of flows to be paced, due to the intrinsic
per-flow cost.

Software pacing without relying on timers is proposed in

[16], by introducing a concept of gap-frames: interleaving
carefully-sized IEEE 802.3 flow control frames (as defined in
[17]) and packets from a flow of interest. IEEE 802.3 flow
control frames are dropped by a packet switch on the network
path, resulting in pacing of the flow of interest. In [18], a timer-
based implementation is introduced, compared to the gap-frame
approach and is experimentally shown to outperform the latter
in terms of accuracy. That conclusion is challenged in [19],
which uses the gap-frame approach to implement rate-control in
a packet generator and evaluates the resulting pacing accuracy
to be higher than in [16] and [18]. A possible explanation
is that the implementation in [19] relies on the Data Plane
Development Kit (DPDK) [20], which is designed to provide
higher and more predictable performance than is the Linux
network stack, which was used in [16] and [18].

C. Statement of Purpose

The objective of this paper is to propose a software-based
packet pacer, able to run on commodity hardware, able to
accept an insufficiently regular packet stream, and able to
return a sufficiently regular packet stream, suitable for any CR
receiver – including receivers expecting an SMPTE compliant
packet stream. This is illustrated in figure 1.

Further, given that the aforementioned production gateway
devices are opaque packets consumers, this paper – unlike
e.g., [13] – assumes that the pacer sees the Constant-Rate
Packet Consumer (CR-PC) as an opaque component, i.e., with
an unknown packet-consumption curve.

The required real-time properties make running a pacer as
software on commodity hardware challenging. This paper
analyses and formalises those challenges. This paper also
generalises the previously discussed use of gap-frames [16],
[19] for accurate packet scheduling, into the notion of a Pacing-
Assistant – which enables abstract expression and analysis of
packet pacing algorithms.

Finally, within this framework, software pacing algorithms
are analysed, are implemented, and are subjected to exhaustive
experimental tests, confirming the viability of the postulated
approach.

D. Paper Outline

The remainder of this paper is organised as follows. Section II
formalises the pacing problem and section III discusses the
limitations of a pure-software approach. Section IV introduces
Pacing-Assistants (PA), as a form of hardware-assistance,
and proposes algorithms using it. Those are supported by
a theoretical analysis provided in section V, and are shown to
be effectively implementable on general-purpose hardware in
section VI. Section VII presents the associated experimental
evaluation. Section VIII discusses the obtained results and their
practical impact for media production. Section IX concludes
this paper.

II. SYSTEM MODEL

While the theoretical objective of packet pacing is to generate
a perfectly constant-rate packet stream, the formalism of time

3

sequences is introduced in this section, to provide a practical,
quantitative definition of a sufficiently-regular constant-rate
packet stream.

A. Time sequences

The regularity of packet stream is only described by the se-
quence of transmission times. Defined hereafter, the formalism
of time sequences enables describing any sequence of recurring
events.

Definition. A time sequence is a nondecreasing sequence of
times t = (ti)i∈N, such that lim

n→+∞
tn = +∞. The abstract

event happening at time ti is called the i-th cycle of t, or the
i-th t-cycle.

Definition. The following metrics are used to quantify the
potential periodicity of a time sequence.

• The period of t is, when it exists, T := lim
n→+∞

tn
n . This

definition is equivalent to the average duration between

two consecutive events, i.e., T := lim
n→+∞

1
n

n∑
i=1

ti − ti−1.

• The frequency of t is the inverse of the period, when it
exists, f := 1

T .
• The Peak Period jitter of t is:

Jp (t) = lim sup
i≥0

|T − (ti+1 − ti)|

• The Asymptotic Long Term (ALT) jitter of t is:

JALT (t) = inf
i0∈N
u≥0

sup
i≥i0
ti≥u

|T (i− i0)− (ti − u)|

JP (t) asymptotically measures how far the duration between
two consecutive cycles, ti+1 − ti, is from the period T . The
definition of JALT (t) is interpreted by comparing t with a
perfectly-regular time sequence t′ whose i-th cycles occur
at t′i = T × i. t and t′ have the same period T . As it is
perfectly-regular, t′ can be used to measure the current time
with a granularity of T , provided that a well-known number i
of t′-cycles have elapsed. JALT (t) asymptotically quantifies
the maximal error on that measurement if t is used in place
of t′. Therefore, JALT (t) provides a certain measure of the
irregularity of t when compared with the perfect time sequence
t′ of same period T .

In the rest of this paper, tp is the time sequence corresponding
to the packet transmission times by the pacer of figure 1. tc

is the time sequence corresponding to the packet production
times by the Constant-Rate Packet Generator (CR-PG), and
consumption times by the CR-PC1. The periods and frequencies
are respectively denoted by T p, T c, fp and f c.

1The assumption here is, that the CR-PC would be able to – was it connected
directly to CR-PG, such as would be the case for a video camera and a
viewscreen – consume packets at the precise rate at which they were generated.
Pacing is intended for compensating for the best effort processing variation
that occurs in case when CR-PC and CR-PG are not directly connected, as in
figure 1.

B. (b, f)-paced streams

In the following, a definition of a sufficiently regular constant-
rate packet stream is given as a property, relating the time
sequence tp associated with packet transmission, with a buffer
size b and a packet consumption rate f , both associated with
the receiver. It is assumed that there is no delay between
the sender and a receiver. Upon reception of the i-th packet,
an infinite-sized buffer at the receiver would contain i− ftpi
packets. That motivates the following definition:

Definition. A system sends a (b, f)-paced stream if the packet
transmission time sequence (tpi)i∈N are such that there exists
a time, t0, and an integer, i0, satisfying:

∀i ≥ i0 : tpi ≥ t0 =⇒ 0 ≤ (i− i0)− f × (tpi − t0) ≤ b (1)

i.e., a virtual receiver, consuming packets at a rate f and with
a b-sized input buffer, may choose an integer number i0 and a
time t0, so that, dropping the i0 first packets and only starting
consumption after time t0 prevents any overflow or starvation.

This definition reflects only the asymptotic behaviour of
packet transmissions, i.e., is sensitive neither to the initial
variability of the stream, nor to the initial behaviour of the
consumer. Moreover, the provided definition is still valid if
the delay between the transmitter and the receiver is constant
— and not null as initially assumed — because any constant
delay can be captured in t0, i.e., the time packets start being
consumed.

Using equation (1) for i and i+ 1, taking the difference, and
dividing by f , yields:

Property 1. If a stream of packet transmission time sequence
tp is (b, f)-paced, then there exists an integer i0 such that for
all integers i ≥ i0:∣∣∣∣ 1f − (tpi+1 − t

p
i

)∣∣∣∣ ≤ b

f

i.e., the buffer of a virtual receiver, as in the definition of a
(b, f)-paced stream, never experiences variations larger than
b between two arrivals.

Property 1 gives necessary conditions — real-time constraints
— that must be verified if a stream is to be qualified as
sufficiently-regular. Specifically, the (i+ 1)-st packet can be
output neither before time tpi + 1−b

f nor after time tpi + 1+b
f .

Consequently, if a (b, f)-paced stream is to be generated by
software, the latter must be executed on a system providing
(i) some notion of time consistent with the frequency f , so
that software can wait at least 1−b

f between two transmissions,
and (ii) execution-time guarantees so that a transmission can
never occur more than 1+b

f after the previous transmission.
Those constraints shall be used in section III to demonstrate
the difficulty of pure-software pacing.

For the time sequence tp associated with the transmission
of a (b, f)-paced stream, property 1 only provides necessary
conditions, not sufficient ones. As a counter-example, a packet
stream transmitted at times t′i = Ti+ ln (i) verifies property 1
without being (b, f)-paced.

The following property uses the peak period jitter and ALT
jitter to provide metrics, quantifying to what extent a stream

4

is constant-rate. In particular, it provides a necessary and a
sufficient condition to qualify a (b, f)-paced stream.

Property 2. t is a time sequence of frequency f , associated
with the packet transmission times of a stream.

1) If the stream is (b, f)-paced, JALT (t) ≤ b
2f .

2) Conversely, if JALT (t) < b
2f , then the stream is (b, f)-

paced.
3) If t satisfies

∃i0 : ∀i ≥ i0 :

∣∣∣∣ 1f − (ti+1 − ti)
∣∣∣∣ ≤ b

f
(2)

then Jp(t) ≤ b
f .

4) Conversely, if Jp(t) < b
f , then t satisfies equation (2).

Proof: (See Appendix in the provided supplementary
material)

While, as per property 1, a too high value of Jp is incompati-
ble with sufficient regularity, the latter is shown to be equivalent
to a low value of JALT by property 2. JALT shall therefore
be used to verify the correctness of the algorithms developed
in this paper.

III. LIMITATIONS OF A PURE SOFTWARE APPROACH

In this section, a software execution model is given, and
shown to be rich enough to describe commonly-used com-
modity hardware. As part of that model, timers are defined as
components, enabling software to have access to time – which
is necessary to transmit a sufficiently-regular CR stream. By
inspecting the available timers on a commodity server and
the achievable latency, software-pacing is finally proven to be
challenging.

A. Software Execution Model

In this paper, software execution on a commodity server
is modelled asynchronously. A server is modelled as a set
of programmable components, each considered as a reactive
system, maintaining an internal state, and receiving notifications
from other components. Software run by a component consists
of the specification, for each received notification, of a sequence
of actions to be executed by the component. This sequence,
called the notification handler, consists of actions which
are either updates to the internal state, or transmissions of
notifications to other components2.

Not only can such an execution model describe interrupt-
driven components — as a notification models an interrupt, and
a handler models an Interrupt Service Routine (ISR) — but it
can also describe components busy-waiting for some condition
involving an external state, and executing some action as soon
as that condition is verified. In that latter case, the notification
is the external state update, and the handler is the action
executed whenever the condition is satisfied. The latency of a
component is the — generally unknown — execution duration
of the handler associated with a received notification.

2A more formal treatment of that topic is provided by input/output automata
defined in [21].

That execution model describes any commodity server
based on an interruptible Central Processing Unit (CPU), and
running a preemptive multitask operating system. Considering,
e.g., an x86 64 server running a Linux kernel, three types of
components can be described, each exhibiting an asynchronous
behaviour.

1) A user-space application: is composed of a sequence of
instructions, either updating an internal state (such as registers
or private memory), reading from or writing to an external
state (such a read/write operation in shared memory, or a
nonblocking system call), or performing a blocking system
call. Therefore, the application is modelled as a component,
interacting with external states and the operating system’s
kernel by way of notifications. For example, a system call
is modelled as a notification sent to the operating system’s
kernel. The completion of a system call is modelled as
the reception of a notification, whose handler models the
subsequent instructions.

2) The operating-system kernel: registers ISRs within the
interrupt controller, and, when a device (conceptually another
component) raises an interrupt (conceptually sends a notifica-
tion), the CPU jumps to the address of the corresponding ISR.
In the absence of runnable threads, the kernel is idle and only
waits to be interrupted.

3) In hardware: the CPU performs Input/Output (I/O)
operation (e.g., inw or outw instructions) or accesses nonlocal
memory (via Direct Memory Access (DMA), or memory
that does not reside in a register) by sending requests to
the relevant components (e.g., the memory controller or the
DMA controller). The CPU effectively stalls until a response
is notified back, which can be modelled as the subsequent
instructions being the handler to that response.

B. Timers

While the aforementioned model does not allow to express a
time at which a given action shall be performed, software-based
generation of a paced packet stream still requires the ability
to perform an action after a certain release-time. The solution
is provided by a component, a timer, sending notifications
at well-specified times. Any handler executed upon such a
notification is therefore known to necessarily complete after a
determined time. In particular, when a program is generating a
(b, f)-paced stream, each packet transmission must occur upon
notification from a timer.

Generalising the software architecture observed in the Linux
kernel, timers available to the different components of a
commodity server are classified in two categories. Timers
from the first category — clock event devices in Linux
terminology — are components, raising interrupts (periodically
or at programmable times), so that software may have a notion
of time. Timers from the second category are derived from
clocks — clock sources in Linux terminology — which must
be explicitly requested for the current time, expressed as a
numerical timestamp. Timers from the second category are
implemented by probing a clock for the current time, and
sending a notification whenever the probed value is posterior
to a given time.

5

Considering timers available to the three types of components
described in section III-A:

1) In hardware: the CPU and chipset have direct access
to the clocks originating from one or multiple oscillators on
the motherboard. These clocks are used to maintain clock
sources such as the Time Stamp Counter (TSC), and clock event
devices such as the Local Advanced Programmable Interrupt
Controller (LAPIC) timer. The TSC and the LAPIC timer
will be used as typical examples of clock sources and clock
event devices. This is also without loss of generality, as the
following is also applicable to other clock sources and clock
event devices (e.g., the High Precision Event Timer (HPET) on
x86 64 or the Generic Timer on ARM). The TSC is a register,
containing the number of elapsed CPU-cycles since the last
reset, and which exhibits an access latency in the order of a
few dozen nanoseconds [22]. The LAPIC timer is a device
operating asynchronously, and which is to be programmed to
raise an interrupt at a programmed time. tTSC,h denotes the
time sequence corresponding to TSC-cycles, and tL,h denotes
the one corresponding to interrupts from the LAPIC timer.

2) The operating system kernel: can register an ISR to be
executed upon notifications from the LAPIC timer. For the
i-th interrupt raised by the LAPIC timer, the time at which
the matching ISR starts is denoted tL,ki . That defines a time
sequence tL,k, different from tL,h. Therefore, in kernel-space,
software can be specified to be executed after times defined
by that time sequence. The latency tL,ki − tL,hi between the
LAPIC i-th interrupt and the start of execution of the matching
ISR may vary, intuitively making the time sequence tL,k less
regular than tL,h.

In kernel-space, software is also able to read the TSC register,
compare its value to a given threshold, and execute an action,
whenever the read value is larger than the threshold. This
effectively enables the kernel to execute a sequence of actions,
each starting at times corresponding to a time sequence tTSC,k,
different from tTSC,h, as the former takes into account the
latency between the update of the TSC, and the execution of
the corresponding action in kernel-space.

3) In user-space: any system call, specified to suspend a
program for a fixed amount of time — such as nanosleep
— or to schedule a notification at a given time — such as
alarm — relies on a clock event device (e.g., the LAPIC
timer), itself relying on an interrupt. It is serviced in kernel
space, the corresponding notification is dispatched to the
suspended program, which is finally awoken by the scheduler.
Consequently, a user space program can specify actions to be
executed at times corresponding to a time sequence tL,u with
tL,ui − tL,ki being the latency between the beginning of the
i-th LAPIC ISR execution, and the time when the user-space
program resumes execution.

A user space program can also compare the current time —
obtained from a clock source by way of a system call such as
clock_gettime — to a predefined threshold, so as to start
executing an action after a specified time. That allows a user
space program to specify actions to be executed according to
a time sequence tTSC,u derived from the times at which the

TSC is updated3. tTSC,u is different from tTSC,k due to the
latency between the update of the TSC, and the execution of
the specified action in user space.

C. Timer limitations: drift

In the setup in figure 1, if the packet pacing frequency fp is
slightly different from the packet consumption frequency f c,
the buffer B2 is necessarily subject to overflow or starvation.
The cause for this drift between f c and fp can be traced to
insufficient timer accuracy.

The nominal frequencies of hardware clocks are usually
given with a tolerance expressed in parts per million (ppm).
For example, a 1 MHz clock with a tolerance of 100 ppm
has an actual frequency between 999.9 kHz and 1.001 MHz.
Because of that inaccuracy, the notion of time given by any
timer is never exact. Moreover, due to thermal fluctuations, the
frequency of a periodic timer is not stable. Consequently, if a
pacer and the CR-PC do not have access to a common source
of time, drift will necessarily occur.

D. Latency

In section III-B, hardware and software layers of a typical
commodity server were shown to have access to different timers.
Conceptually, and following the terminology of section III-A,
timer notifications from hardware to the different software
layers are propagated with a certain latency. While most of the
literature on real-time operating systems emphasises obtaining
latency upper bounds, the definition of pacing given in section II
is insensitive to the addition of any constant delay to the packet
transmission time sequence. Consequently, the achievability of
packet pacing only depends on obtaining a reduced amplitude
between maximal and minimal latency. The sources of those
latency variations are categorized as:

1) State-induced: From different initial states, software
execution time will differ, yielding differences in latency.
At the hardware layer, the micro-architectural state of the
CPU — e.g., the state of the caches, or the out-of-order
execution pipeline — has an impact on the execution time
of an instruction sequence. This variability can be analysed
and exploited, as in [23]. Depending on the power-save state
of the CPU, the start of execution of an ISR may be subject
to a variable latency. At the software layer, the state of the
kernel varies from one execution of an ISR to another, which
may incur branching in some parts of the code, also yielding
variable latency, detectable in user space.

2) Contention-induced: Latency variations may also be
caused by contention for a given resource; when two tasks
are contending for some resource the latency experienced by
one of them varies, depending on whether it has access to the
resource before the other one.

Preemption, i.e., suspension of the current execution to
process another notification, is a case of contention for a
CPU core, and is responsible for latency variations. User-space
software may be preempted by higher-priority tasks, scheduled

3A user space program can also directly probe the TSC without any system
call.

6

Time Between SMIs SMI Execution time

1.0 1.5 2.0 2.5 3.01e−05 2e−05 3e−05 4e−05

0

200

400

600

Time (s)

c
o

u
n

t

Figure 2: Distribution of the time between SMIs and their duration.

on the same CPU core. A user-space or kernel-space program
may be preempted by a non-masked interrupt, because the
matching ISR will then need to be executed.

Conversely, the existence of non-preemptible sections in the
operating system, i.e., sections which cannot be preempted by
a high-priority task, is a cause for contention for a CPU core;
because a high-priority task is unable to preempt the operating
system, it is sporadically delayed, thus, experiences latency
variations.

Contention-induced sources are already controllable with
Real-Time Operating Systems (RT-OS) such as the PREEMPT-
RT patch for the Linux kernel [24] or Xenomai [25]. As
much as possible, RT-OSs reduce non-preemptible sections in
their kernel, to allow a task, specified as high-priority by the
user, to always preempt a low-priority task. For example, the
PREEMPT-RT patch replaces the majority of spinlocks from
the kernel source code with mutexes, allowing preemption to
occur at those points. Consequently, an RT-OS has a lower
maximal latency, especially on a highly-loaded system as shown
in [24].

However, System Management Interrupts (SMI) are not mask-
able, may happen sporadically, and do execute transparently to
the kernel, i.e., instead of being serviced by an ISR specified by
the kernel, the current code execution is suspended to execute
firmware code, opaquely to the operating system. SMIs may
indistinctly preempt the execution of kernel code or user-space
code and are impossible to disable, making them a major
source of latency variations, even on an RT-OS. Reducing
non-preemptible sections in the operating system’s kernel (as
performed by the PREEMPT-RT patch for the Linux Kernel)
has no impact on SMIs, as those are executed in a context
which is transparent to the kernel. A more detailed analysis of
the impact of SMIs on system performance is given in [26].

E. Quantitative analysis of the impact of SMIs

In the following, the pacer of figure 1 is a pure-software
pacer, i.e., is only implemented as a a reactive system, driven
by timers, described in section III-B. Due to the latency
variations, described in section III-D, the instants at which
packets are enqueued into the Network Interface Card (NIC)
for transmission, are subject to peak period jitter, itself yielding
peak period jitter on the packet transmissions on the wire.

Measurements performed in [27] suggest that SMIs are
responsible for a peak period jitter in the order of 20 µs. That is
experimentally confirmed by running the hwlat_detector
tracer, which is part of the Linux tracing subsystem.
hwlat_detector consists of kernel-space code, specifically
designed to measure the impact of SMIs, by polling the TSC

te

Pacing
Assistant

Pacing
software

Sends commands
among:

- Send packet i
- Wait j x Te

Qc

Figure 3: Architecture of a PA-based pacer

in an uninterruptible loop. SMIs are detected when the TSC
evolution undergoes irregular jumps, as those mean that the
current CPU core was executing non-kernel code, i.e., it was
servicing an SMI. Figure 2 shows the obtained results, and
confirms that SMIs are happening frequently (every second),
and incur a latency ranging from 10 µs to 40 µs.

For a SMPTE-compliant stream received by a typical gateway
device, the target frequency fp of packet transmissions times
tp is in the order of fp = 135 000 Hz, while the receive buffer
size is in the order of B2 = 4. As per property 1, the maximal
admissible peak period jitter is Jp(tp) = B2

fp ≈ 30 µs, which
approaches the measured and sporadic additional latency from
SMIs. Therefore, in the context of media production, software
generation of a (B2, f

p)-paced stream is potentially unreliable.
That result is quantitatively and qualitatively confirmed by the
experimental results presented in section VII.

IV. PACING WITH A PACING-ASSISTANT

In sections III-C and III-E, the peak period jitter obtained
by pure software pacing methods was shown to be at least in
the order of 40 µs, which is too high for the media production
use cases described in the introduction.

As the root cause to that jitter is the unpredictable and
unavoidable latency spikes incurred by CPU preemption
to service SMIs, a natural solution consists of delegating
the time-sensitive tasks of sending packets, and of waiting
between transmissions, to an uninterruptible external system,
communicating with the main server through a command
queue. That approach enables packet-pacing with the required
accuracy (contrary to a purely software-based one), while still
being implementable with commodity servers and networking
hardware (see section VI), i.e., in a commodity data centre.

A. Assisted Pacing

That uninterruptible external system is modelled by an
abstract component, called a Pacing-Assistant (PA), capable
of sending packets spaced by a precise amount of time, and
not subject to the previously discussed jitter sources, as it
is uninterruptible. In other words, that component can send
packets, synchronously with a time sequence of negligible
ALT-jitter. Defined as an abstraction in this section, a PA is
shown to be constructible with general-purpose networking
hardware in section VI.

Figure 3 depicts the architecture of a pacer relying on a PA.
A PA is periodically notified by a timer, at times defining a
time sequence te, with a period T e, and frequency fe. The

7

Algorithm 1: Packet pacing
Primitive : wait, send, dur(p) as defined in section IV-A
Primitive : dequeuePacket: returns an input packet from B1

Parameter :nmin: minimum value for wait
Parameter :nmax: maximum value for wait
Parameter : τ : target pacing period (in te cycles)
Precondition :nmax > 2nmin

Precondition : ∀p : nmin ≤ τ − dur(p)
Precondition : dequeuePacket always returns a packet.

1 s← 0;
2 while True do
3 if s < 1 then
4 p ← dequeuePacket();
5 send(p);
6 s← s+ τ − dur(p);
7 end
8 else if s ≥ nmax + nmin then
9 wait(nmax);

10 s← s− nmax;
11 end
12 else if s ≤ nmax then
13 wait(bsc);
14 s← s− bsc;
15 end
16 else
17 wait(nmin);
18 s← s− nmin;
19 end
20 end

software part of the pacer communicates with the PA by way
of commands, inserted into a command queue Qc.

At each te-cycle, the PA dequeues a command from Qc, if
one is available. Commands are one of the following categories:
• wait(n): when this command is dequeued by the PA,

the next n te-cycles are skipped, which is equivalent to
waiting n × T e. Afterwards, the next command in Qc
is dequeued, if available. It is assumed that there is a
minimum value nmin and a maximum value nmax to the
admissible values for n. In order to prevent holes in the
range of values that PA can wait:

nmax > 2× nmin (3)

• send(p): when this command is dequeued by the PA, the
transmission of packet p starts, and lasts for a number of
cycles, dependent on the size of p. After the transmission
completes, the next command in Qc is dequeued, if
available.

The cost of a command is the number of te-cycles spent
processing it, i.e., the cost of wait(n) is n, and the cost of
send(p) is the number of te-cycles necessary to transmit p,
denoted by dur(p).

B. PA-based free-running pacing

As a PA is able to send packets aligned with a time sequence
te of negligible jitter, a software pacer only needs to enqueue
a sequence of wait and send operations, whose execution
(upon dequeueing by the PA) will generate a (B2, f

c)-paced
stream. τ is the target number of te-cycles between two
consecutive packets. For a target period T c, τ is defined as
the ratio T c

T e . Algorithm 1 specifies the sequence of operations
to enqueue, so that the PA generates a stream with period T c.

As used in algorithm 1, the wait and send primitives
enqueue the corresponding operation in the command queue
Qc if it is not full, and are blocking otherwise.

Assumption 1. The command queue Qc never starves, i.e., at
each te-cycle, the PA is always either processing a wait or
a send command. Also, the commands are reliably enqueued
in Qc.

Algorithm 1 alternates between issuing a sequence of wait
commands, and issuing a single send command. s is the
(possibly fractional) number of te cycles between the execution
(by the PA) of the last enqueued wait command and the
execution of the next send command to be enqueued.

Thus, a send command is enqueued as soon as there is
less than a full te-cycle in s. If s > bsc (i.e., s is fractional),
the remaining fraction of te-cycle is accumulated for the next
sequence of wait operations. Also, as the parameter passed
to wait must be within [nmin, nmax], the algorithm slices s
appropriately, so that only compliant wait calls are performed.

Discussion: Algorithm 1 uses the explicit value τ . If te and
tc are neither derived from the same oscillator, nor otherwise
synchronized, T c is not necessarily a rational multiple of T e.
Thus, the quotient τ = T c

T e cannot be meaningfully digitally
represented. Also, as stated in section III-C, the nominal values
of T e, and T c are given with a non-zero tolerance (due, e.g., to
the underlying hardware being subject to thermal noise), and
thus, cannot be used to compute τ .

Therefore, algorithm 1 is only usable when the timers
originating the time sequence te and tc are synchronized, so
that τ is known exactly.

C. PA-based frequency-controlled pacing

When τ is unknown, frequency-controlled pacing replaces
τ with a frequency-controller. A frequency-controller is an
external signal F , such that, after the elapse of u te-cycles,
F (u) estimates the total number of packets transmitted by a
CR packet generator of period T c.

Formally, a frequency-controller is an integer-valued function
F , satisfying:

lim
u→∞

u

F (u)
=
T c

T e
(4)

Being an integer-valued function, F is an alternative to
an explicit value τ , as it avoids the representation problem
described in the discussion of section IV-B.

Algorithm 2 uses F to achieve pacing at the target frequency
f c. That algorithm is derived from algorithm 1, but replaces the
input parameter τ with a variable τcur. The core idea driving
frequency-controlled pacing, consists of using F to periodically
update τcur. The period of those updates is determined by an
input parameter W .

Algorithm 2 maintains a variable ynow, containing the total
cost of all enqueued operations at a given point of the execution.
Under assumption 1, this means that, if an operation is
enqueued when ynow = y, then it will be executed at y-th
te-cycle by the PA. The value ylast of ynow at the last update
of τcur is also maintained. Every W te-cycles, τcur is updated
to a new value ynow−ylast

F (ynow+W)−F (ylast+W) . As estimated by F ,

8

Algorithm 2: Controlled packet pacing
Primitive : Same as in algorithm 1
Parameter :nmin, nmax as in algorithm 1
Parameter :F : frequency-controller
Parameter :W : update window
Precondition :nmax > 2nmin

Precondition : ∀p, ∀a ∈ N :
nmin ≤ W

F (a+W)−F (a)
− dur(p)

1 s← 0;
2 τcur ← 0;
3 ylast ← −W ;
4 ynow ← 0;
5 while True do
6 if s < 1 then
7 if ynow − ylast ≥W then
8 τcur ← ynow−ylast

F (ynow+W)−F (ylast+W)
;

9 s← 0;
10 ylast ← ynow;
11 end
12 p ← dequeuePacket();
13 send(p);
14 s← s+ τcur − dur(p);
15 ynow ← ynow + dur(p);
16 end
17 else if s ≥ nmax + nmin then
18 wait(nmax);
19 s← s− nmax;
20 ynow ← ynow + nmax;
21 end
22 else if s ≤ nmax then
23 wait(bsc);
24 s← s− bsc;
25 ynow ← ynow + bsc;
26 end
27 else
28 wait(nmin);
29 s← s− nmin;
30 ynow ← ynow + nmin;
31 end
32 end

that value is the average (over a duration of ylast − ynow te-
cycles) number of te-cycles between two packet arrivals of a
CR-stream of period T c. In other words, algorithm 2 performs
the same pacing as does algorithm 1, but with a parameter,
τ , adjusted periodically to reflect the spacing between packet
transmissions estimated by F .

Also, at a given point of the execution time, frequency-
controlled pacing only needs to evaluate F in F (ynow+W) and
F (ylast +W), i.e., two digitally-representable, finite-precision
values, making frequency-controlled pacing implementable.

Discussion: Frequency-controlled pacing is designed to avoid
drift due to the numerical value τ = T c

T e not being accurately
accessible. Algorithm 2 thus implicitly extracts the target pacing
rate from an external signal (the frequency-controller), which
is therefore required.

V. ANALYSIS

This section analytically quantifies the period and ALT-
jitter of the packet transmissions obtained when applying the
algorithms detailed in section IV. As per property 2, those
metrics are sufficient to assess whether the transmissions are
(B2, f)-paced. Also, the correctness of those algorithms is
verified.

A. Safety

A program is safe when it can be guaranteed that no
program execution will cause an undesirable state to be reached.
It is achieved for algorithms 1 and 2 if and only if the
arguments passed to the wait primitive are within the interval
[nmin, nmax].

The two algorithms assume that, at any time, for any dequeued
packet p, and for any value of τ (either given, for algorithm 1,
or dynamically computed for algorithm 2) nmin ≤ τ−dur(p).
The opposite would require the PA to somehow wait less than
nmin cycles, i.e., that the pacer is requested to pace at a higher-
than-its-maximum-frequency. Considering both algorithms at
the beginning of the j-th iteration of the while loop, the
values of the state variables are denoted with index j so that,
e.g., the value of s is sj . τj = τ for algorithm 1, and τj = τcur
at the j-th iteration for algorithm 2.

Property 3. sj satisfies the following.
1) For all j > 0, sj ∈ [0, 1) ∪ [nmin,+∞).
2) sj ≥ 1 =⇒ nmin ≤ sj − sj+1 ≤ nmax.

Proof: (See Appendix in the provided supplementary
material)

Algorithms 1 and 2 only call the wait primitives when
sj ≥ 1, with parameter sj−sj+1. The second part of property 3
proves that parameter is always in [nmin, nmax], hence the
safety of the algorithms.

B. Free-running pacer period

Analysing the state of algorithm 1 at the beginning of the
j-th iteration of the main loop, sj is defined as the value
of state variable s, Nj as the total count of enqueued send
operations, and yj as the total cost of all enqueued operations.
Initially, s1 = 0, N1 = 0 and y1 = 0. At each iteration, s is
decremented by the cost of the enqueued PA-operation and
incremented by τ if a packet is transmitted, yielding:

sj = τNj − yj (5)

For all integers i > 0, ji is defined, so that the ji-th iteration of
the loop enqueues the send operation sending the i-th packet.
Then, equation (5) implies:

sji = (i− 1)τ − yji (6)

As sji ∈ [0; 1[by construction, and yji is an integer number
of te-cycles, then yji = b(i− 1)τc. Per assumption 1, yji is
also the number of elapsed te-cycles, when the i-th packet will
be transmitted. The time of that transmission is therefore given
by:

tpi = teb(i−1)τc = τT ei+ o(i) (7)

This proves that the period of the paced stream is τT e.

C. Frequency-controlled pacer period

A similar analysis is performed for algorithm 2. At the j-th
iteration of the main loop, yj is the total cost of all enqueued
operations. ji is defined such that, the i-th send operation is
enqueued at the ji-th iteration of the main loop.

9

Buffer state

W Φ

5

10

15

20 40 60 80

Elapsed te cycles

N
um

be
r

of
 p

ac
ke

ts

F (a)
sent packets (b)
consumed packets (c)

Figure 4: Frequency-controlled pacer: F , sent packets , consumed packets by a
perfect CR-consumer. Note: the CR consumer on the figure starts at an arbitrary
time, i.e., an X-axis offset, and after an arbitrary number of dropped packets,
i.e., a Y-axis offset. The ALT jitter is the asymptotic maximum horizontal
distance Φ between curve (b) and an optimally-shifted curve (c)

Property 4. With the previous notations, yji satisfies:

yji =

⌊
W

i− 1− F (W (k(i)− 1))

F (Wk(i))− F (W (k(i)− 1))

⌋
+W (k(i)− 1)

(8)

with k(i) defined as

k(i) = max{k ≥ 1
∣∣ F (W (k − 1)) + 1 ≤ i}

Furthermore, τcur is updated exactly at the iterations of the
main loop where the state satisfies ynow − ylast = W .

Proof: (See Appendix in the provided supplementary
material)

By definition of k(i), and by maximality:

F (W (k(i)− 1)) + 1 ≤ i < F (W (k(i))) + 1

The second precondition of algorithm 2 yields:

F (W (k(i)− 1)) +
W

nmin
≥ F (W (k(i)))

Combining those two last equations:

i− 1 ≤ F (W (k(i))) ≤ i+
W

nmin
− 1

yielding: F (W (k(i))) = i + o(i). Applying in the equation
given by property 4 yields:

yji = O(1) +
W (k(i))

F (W (k(i)))
(i+ o(i)) =

T c

T e
i+ o(i)

tpi = T ci+ o(i)

Consequently, algorithm 2 results in a packet transmission time
sequence of frequency f c.

D. ALT-Jitter

The ALT-jitter of the stream, generated by algorithms 1 and 2,
can be evaluated for each of the algorithms, as follows

1) ALT jitter for the free-running pacer: For all i0 and t0,
and i so that i ≥ i0 and tpi ≥ t0 and from equation (7):

|T p(i− i0)− (tpi − t0)| = |τT e(i− i0)− (tebiτc − t0)|
≤|T e(biτc − bi0τc)− (tebiτc − t0)|+ |T e({iτ} − {i0τ})|
≤ sup
j≥bi0τc
tej≥t0

|T e(j − bi0τc)− (tej − t0)|+ T e

Considering the supremum over all possible i, then the infimum
over all i0 and t0 yields:

JALT (tp) ≤ JALT (te) + T e (9)

The ALT-jitter of the stream, JALT (tp), is thus bounded by a
component originating from the internal jitter of the PA, and a
component bounded by one period T e. The latter component
disappears if T p is a multiple of T e, i.e., if τ ∈ N.

2) ALT-jitter for the frequency-controlled pacer: For algo-
rithm 2, te is assumed to be perfectly periodic, i.e., that
∀i : tei = T ei. This is justified by the fact that the ALT-
jitter of te is negligible with respect to the one introduced
by the variations in τcur. Figure 4 illustrates equation (8) by
representing (a) the function F , (b) the total number of packets
transmitted by the pacer, and (c) the cumulative number of
consumed packets by a perfect CR-consumer. On this figure,
bounding the ALT jitter consists of asymptotically bounding
the horizontal distance Φ between (b) and (c).
AW (F) and CW (F) are defined as:
AW (F) := T e lim sup

k
|τ(F (W (k + 1))− F (Wk))−W |

CW (F) := T e inf
k1∈N
k0∈N

sup
k>k0

|τF (kW)− kW + k1W |

AW (F) is the maximum time interval error when using F
to measure a time interval of length W te-cycles. CW (F)
measures how accurately τF tracks the number of elapsed te

cycles on the long term. An upper bound on the ALT-jitter is
given by Property 5.

Property 5. Under the assumption that te is perfectly periodic,
the ALT-jitter of the stream tp generated by algorithm 2 is
bounded by:

JALT (tp) ≤ AW (F) + CW (F) + T e (10)

Proof: (See Appendix in the provided supplementary
material)

This bounds the ALT jitter of tp into three components:
• AW (F), which bounds the error |τcur − τ |;
• CW (F), which quantifies how accurately F tracks the

number of packets consumed by a perfect consumer, when
evaluated at multiples of W ; and

• T e, which bounds the rounding error, since τcur is not
necessarily integer.

VI. CONSTRUCTING A PACING-ASSISTANT AND A
FREQUENCY-CONTROLLER

Algorithms 1 and 2 rely on a Pacing-Assistant, providing
hardware assistance for pacing. Algorithm 2 also requires a
frequency-controller. Procedures for building those elements
with commodity hardware are described in this section.

10

A. Constructing a Pacing-Assistant

This software-based method for implementation of a Pacing-
Assistant relies on a commonly-available NIC, and the network
infrastructure connected to it. The NIC and network infrastruc-
ture must satisfy the following:
• The NIC has a well-defined line rate r, and is able to

saturate its output interface at rate r, by consuming packets
from a Transmit (TX) queue. The latter consists of an
in-memory queue, into which software inserts packets to
be sent, and out of which the NIC dequeues packets and
actually transmits them on the wire.

• There is a type of packets — gap packets — consumed by
the NIC at rate r and dropped by some equipment along
the network path, before reaching CR-PC, as introduced
in [16], [19]. Two possible options for gap packets are
(i) packets with a bad Cyclic Redundancy Check (CRC),
dropped by any receiver but still effectively consumed by
the NIC at rate r, and (ii) IEEE 802.3 Flow Control frames,
which should be dropped by any network equipment
(e.g., a layer 2 switch) with disabled IEEE 802.3 Flow
Control. The maximum IEEE 802.3 frame size (usually
at least 1538 bytes) must also be larger than twice the
minimum frame size (usually around 64 bytes), so that
condition (3) from section IV-A holds.

Given that, a PA can be implemented as follows. The PA
command queue Qc is the TX queue of the NIC. The timer of
the PA (which events occur at time sequence te) is implemented
as the byte-clock of the NIC, i.e., the timer whose cycles
correspond to the transmission of a byte from the TX queue
to the wire. The wait(u) and send(p) PA commands are
implemented as u-sized gap packets and p packets, respectively.

As discussed in section IV-B, for an Ethernet NIC whose byte-
clock is derived from a local oscillator, and is not synchronized
with any external source, drift will occur, effectively limiting
the applicability of algorithm 1.

However, the Synchronous Ethernet (SyncE) standard [28],
[29] specifies a network architecture, where the Ethernet
physical clock of multiple devices — Network Elements (NE)
— is derived from a common master by way of a Phase-
Locked Loop (PLL), replacing the local free-running oscillator.
Consequently, if the NIC used to build the PA relies on SyncE,
and the CR-PC relies on the same external time source, then
the nominal value T c/T e is exact and algorithm 1 can be used.

B. Constructing a frequency controller: basic version Fb
The frequency-controlled pacer of algorithm 2 relies on a

function, F , satisfying equation (4), section IV-C. If the pacing
software is implemented on a system receiving notifications
from two timers, at respective time sequences tα and tβ , and
of respective periods T c and T e, then at the u-th notification
from the second timer, it can count Fb(u) as the total number
of received notifications from the first timer, i.e., Fb(u) is
interpreted as the cumulative number of consumed packets
by the CR-PC (as tα is of period T c) after u te-cycles have
elapsed (as tβ is of period T e). Following, and by definition:

Fb(u) := max
{
i ∈ N

∣∣ tαi ≤ tβu}

Also, by definition tαFb(u)
≤ tβu and by maximality tαFb(u)+1 >

tβu.

u

Fb(u)
≥ u

Fb(u)

tαFb(u)

tβu

u→+∞−−−−−→ T c

T e

And
u

Fb(u)
<

u

Fb(u)

tαFb(u)+1

tβu

u→+∞−−−−−→ T c

T e

Thus, Fb satisfies equation 4 and is thus a frequency-controller.
Consequently, if the system on which algorithm 2 is imple-
mented receives notifications from two timers of period T c

and T e, a basic version of a suitable frequency controller can
be constructed. Methods to implement access to such timers
are detailed in the following.

1) Receiving notifications at tα: In the abstract setup,
depicted in figure 1, the CR-PG is transmitting packets with
a period T c. If tα is defined as the arrivals at the pacer of
an auxiliary CR packet stream, output directly by the CR-
PG, and bypassing best-effort processing, then tα is a time
sequence of period T c. In the context of media processing,
often relying on IP multicast streams, such an auxiliary stream
can be implemented by simply replicating (in the network path)
the original media stream transmitted by the CR-PG.

2) Receiving notifications at tβ: At the u-th te-cycle, Qc(u)
is the total cost of all the operations in Qc. With assumption 1
from section IV-B, the command queue Qc is never subject to
starvation. In algorithm 2, ynow is the cost of all the commands
enqueued by the software. With ynow(u) as the value of ynow
at the u-th te-cycle, and per assumption 1:

Qc(u) = ynow(u)−max
{
i ∈ N

∣∣ tei ≤ u}
As Qc(u) is bounded, lim

u→+∞
ynow(u)

u = fe. The time sequence

tβ is defined as the sequences of times at which ynow increases
by 1, i.e., ∀k : ynow(tβk) = k. Then:

lim
k→+∞

tβk
k

= lim
k→+∞

tβk
ynow(tβk)

= T e

The period of tβ is thus T e, making that time sequence
suitable for constructing a frequency-controller Fb. Following
that construction, at any time, the value Fb(ynow) used in
algorithm 2 is the number of elapsed tα cycles and Fb(ylast),
is the value of Fb(ynow) at the previous iteration.

C. Constructing F : NW -regularized version, Fr
Algorithm 2 only evaluates F at multiples of W (see

section V), and thus, estimates τcur at the k-th update as
W

F (kW)−F ((k−1)W) . Consequently, the variations of τcur will
increase with the variability of F (kW) − F ((k − 1)W).
Increasing W has the disadvantage of reducing how often
τcur is updated, making the algorithm more likely to deviate
from the targeted period T c.

Given parameters W and NW , the NW -regularized construc-
tion of F , Fr is derived from Fb as obtained in section VI-B,
and is defined as:

Fr(t) =
1

NW

NW−1∑
l=0

Fb(t− lW)

11

Following that construction, instead of periodically updating
τcur by using the increments Fb(W + ynow)−Fb(W + ylast),
algorithm 2 uses a moving average of these increments over
the past NW ·W te-cycles. That approach allows to smooth
the variations of the basic version Fb, but still keeps updating
τcur every W te-cycles.

D. Implementation considerations of algorithms 1 and 2
The validity of the analysis provided in section V, and hence

the correctness of the obtained pacing system is conditioned by
the assumption 1 in section IV-B, i.e., the non-starvation of the
command queue Qc. This is equivalent to the non-starvation
of the TX queue of the NIC, which motivates the following
implementation choices.

First, algorithms 1, and 2 were implemented as a user-space
application, using DPDK for direct access to the NIC. This
allows to busy-wait on the state of the TX queue, and to
enqueue a packet as soon as possible, hence maintaining the
TX queue full as often as possible. Using DPDK instead of
the network stack of the OS kernel also prevents any kernel-
originated cross-traffic, which would be injected into the TX
queue along with the gap packets and the stream to be paced,
and would behave as spurious additional wait commands.

Then, to minimise the number of times the OS kernel
suspends that user-space application, it is assigned to a specific
CPU core, isolated from any other tasks by the isolcpus
kernel boot option. All hardware interrupts are also rerouted
to a CPU core different from that. To avoid any spurious page
fault, a call to mlockall is performed to guarantee that all
the memory used for pacing is locked into physical memory.

As the pacing software thread is alone to be runnable on
its assigned CPU core, the Linux kernel is prevented from
issuing periodic ticks on that CPU core, as the nohz_full
kernel boot option is enabled, and the kernel, compiled with
the CONFIG_NO_HZ_FULL option. The used version of the
Linux kernel is the 4.19.3, without the PREEMPT-RT patch,
as, in the absence of any concurrent task on the used CPU
core, and with all hardware interrupts rerouted to different
CPU cores, there is no need for preemption, and hence, no
reason to make the kernel more preemptible.

Finally, SMIs are the only remaining cause for the preemption
of the pacing software. As stated in section III-E, SMIs may
last up to 40 µs, while the time taken by a typical 10 Gbit/s
NIC to drain all the 1500-bytes-sized packets from its 512-
packets TX queue is in the order of 0.5 ms. As a consequence,
SMIs are unlikely to be responsible for the starvation of the
TX queue, and, therefore, do not impact assumption 1.

VII. EXPERIMENTAL EVALUATION

The pacing algorithms 1 and 2 are evaluated in experimental
scenarios sourced from a media production setup. The experi-
mental setup and methodology are described in section VII-A.
Qualitative and quantitative results are provided in section
VII-B, with metrics derived from the peak period jitter and
ALT jitter of the paced stream tp. The frequency-controlled
approach is experimentally analysed in section VII-C, and
an experimental estimation of the two constants AW (F) and
CW (F), evoked in section V, is also provided.

Setup Video output Video failure type
No Intermediary Yes n/a
Linux + iptables No Permanent

DPDK forwarding Yes with failures Sporadic
pacer (freerun) Yes with failures Periodic

pacer (controlled) Yes n/a

Table I: Video status of the CR-PC

A. Setup and methodology

The setup used to evaluate algorithms 1 and 2 is an
implementation of the abstraction from figure 1, with (i) a
CR-PG and a CR-PC, both implemented as commodity off the
shelf broadcasting pieces of equipment sending and receiving a
SMPTE 2022-6 1080i59.94 CR video stream, at a nominative
packet rate of f c = 4497×30

1.001 ≈ 134 775.22 pkts/s, (ii) a pacer
implemented as software running on an x86 64 Linux server,
and implemented as described in section VI (iii) the time
sequence tc (corresponding to packet consumptions by the CR-
PC) defined by the signal output by a tri-level sync generator,
i.e., a piece of broadcasting equipment distributing an out-of-
band common clocking signal to CR-PG and CR-PC.

The pacer runs in either frequency-controlled, or free-running,
mode, depending on the algorithm under test. The PA is as
described in section VI-A, and uses IEEE 802.3 flow control
frames. The pacing software is implemented as described
in section VI-D. A 10 Gbit/s network switch ensures the
interconnection between the CR-PG, the CR-PC, and the pacer.
As described in section VI-B, F is constructed by way of
an auxiliary stream, implemented as a statically-configured
multicast replication of the stream transmitted by the CR-PG.
The stream transmitted by the pacer is also replicated to a
device — detailed below — for quantitative evaluation.

Unless stated otherwise, the frequency-controlled mode uses
a value W = 1 s = 1 250 000 000 B and an NW -regularised
F with NW = 2. The best-effort processing stage depicted
on figure 1 is not part of the experimental setup, as the pacer
accumulates the packets of the stream of interest into B1,
making it lose all its timing properties. Given this setup, the
methodology to obtain quantitative results is described from
the perspective of instrumentation, and baseline experiments.

1) Instrumentation: An accurate evaluation of the jitter of a
periodic stream is difficult to obtain using software methods
on commodity platforms, for the exact same reasons as those
motivating the use of hardware-assisted pacing, i.e., variable
latency due to unavoidable causes, e.g., SMIs. Consequently,
the measurements are performed using dedicated hardware,
implemented on a NetFPGA-SUME programmable card, [30].
The Open Source Network Tester (OSNT)4[31] for this card
appears suitable capturing packets with accurate timestamps.
However, a suboptimal Direct Memory Access (DMA) design
of OSNT prevents packets and timestamps acquisition, at a rate
as high as that of the flow of interest. Consequently, for the
purpose of the experiments in this section, the original DMA
design in OSNT was replaced by the Xilinx DMA/Bridge
Subsystem for PCI Express (XDMA) intellectual property core

4OSNT offers a Verilog/VLSI design for the NetFPGA SUME card.

12

0.00

0.25

0.50

0.75

1.00

10 100 1000

TBF (s)

C
D

F

Experiment
DPDK Forwarding
pacer (freerun)

Figure 5: Empirical distribution of the Time Between Failures

– and, a minimal DPDK driver for acquisition of packets and
of timestamps, was implemented.

Timestamp acquisition on this platform is dependent on the
accuracy (how valid the nominal frequency is) and jitter of its
internal clock. It is assumed (from the datasheet [32] of the
Silicon Lab Si5324 oscillator used on the NetFPGA SUME
board), that this jitter, being in the order of the nanosecond,
is negligible for the results presented in this paper. However,
because of the accuracy limitations of any hardware oscillator
— as described in section III-C — and because no clock
drift compensation was implemented, the absolute values
of the measured packet transmission timestamps tp are not
independently exploitable, and must be compared to baseline
values, obtained as described in the following.

2) Baseline experiments: The free-running and frequency-
controlled PA-based pacers are compared to three baseline
experiments:
• No intermediary element exists between the CR-PG

and CR-PC. This is expected to show the most regular
behaviour.

• The PA-based pacer is replaced with a Linux iptables-
based setup, redirecting the received stream from the
CR-PG to the CR-PC, and using the NetFPGA board
for measurement. This is designed to quantify the impact
of the Linux networking stack on the periodicity of the
stream, thus motivating the need for PA-based pacing,
even when the stream undergoes minimal processing.

• The pacer is replaced with a basic DPDK-based forwarder,
sending the packets to the CR-PC and the NetFPGA board
as fast as possible. This allows to assess whether bypassing
the Linux kernel is sufficient to maintain a reliably low-
jitter compatible with the CR-PC.

B. Results

As the used CR-PC gives no indication about the occupation
of its 8-packets buffer, no direct quantitative experimental data
can be extracted. However, the CR-PC consumes SMPTE 2022-
6 packets to produce video, which gives a qualitative feedback:
the presence, or absence, of video. Qualitative and quantitative
results are presented hereafter.

1) Qualitative results: status of CR-PC: Table I summarizes
the state of the video output of CR-PC. In the case where there
is no intermediary node between CR-PG and CR-PC, no buffer

overflow or starvation is observed, i.e., the video output of
CR-PC never stops. Similarly, the frequency-controlled pacer
also generates a sufficiently regular stream, so that the video
output does not stop.

When going through the Linux network stack, the stream
is not sufficiently regular for consumption by the CR-PC,
and buffer overflow or starvation are so frequent, that the
video never locks, i.e., the receiver never consumes a sufficient
number of consecutive SMPTE 2022-6 packets to be able to
generate valid video output.

In case (i) of the DPDK-based forwarder, and (ii) of the free-
running pacer, video is output by the CR-PC, but interruptions
occur, due to overflows or starvations. Qualitatively, the failures
seem to happen sporadically in (i), and periodically in (ii). In
order to better understand the nature of those failures, the
Time Between Failures (TBF) is measured in both cases over
twenty-four hours, and its Cumulative Distribution Function
(CDF) is shown on figure 5.

In case (i), failures are effectively periodic as the CDF is
close to a step function, i.e., there is only one value of TBF.
Periodic and repeated failures are explained by a mismatch
between the period T p of the output of the free-running pacer,
and the period T c of CR-PC. Because of that mismatch, the
buffer occupation increases at a fixed frequency ∆f = 1

Tp− 1
T c .

As a consequence, after a fixed amount of time proportional
to the receive buffer capacity B2 and the drift ∆f , overflow
will occur (or starvation if ∆f is nonpositive). After that event,
a video failure occurs, the CR-PC is reset, and the process
repeats with the same drift ∆f , hence, failure after the same
duration. Consequently, drift-induced failures are periodic.

In case (ii), the CDF shows that the TBF values are spread
across a wide range of possible values, i.e., failures are sporadic.
This is due to the latency spikes experienced by the DPDK-
based forwarding process, triggering violations of property 1,
thus starvation or overflow.

2) Quantitative results: timed captures with the NetFPGA
board: For each setup, and corresponding output packet time
sequence tp, and for the i-th transmitted packet, the Packet
Inter-arrival Times (PIT), defined as tpi+1−t

p
i , is measured with

the NetFPGA board. The statistical deviation of the PIT from
the period value T p is an indicator of how often property 1is
violated. Figure 6 shows that both versions of the PA-based
algorithm produce PIT values which present a step-function-
like CDF, i.e., a very reduced peak-period jitter.

Surprisingly, according to the experimental data, the CR-PG
does not actually generate a perfectly constant-rate stream, as
the PIT distribution is observably different from a Dirac.

The DPDK-based and Linux-based forwarders are work-
conserving setups, i.e., they do not artificially delay the
incoming packets from the CR-PG. As such, the difference
between the measured PIT distribution at the output of both
of those setups, and the PIT distribution for the setup with
no intermediary, quantifies the distortion introduced by the
operating system or the hardware itself. The high-spread
observed in both cases in figure 6 confirms that, without
hardware assistance, accurate pacing is not feasible.

The PIT distributions for algorithms 1 and 2 are indistin-
guishable on figure 6, as the main difference between them is

13

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 20 40 60 80100

PIT (μs)

C
D

F

Experiment
pacer (controlled)
pacer (freerun)
no intermediary
Linux+iptables
DPDK forwarding

0.00

0.25

0.50

0.75

1.00

134765 134770 134775 134780

Number of packet received per second

C
D

F

0.00

0.25

0.50

0.75

1.00

-20 -15 -10 -5 0 5

Simulated buffer state (packets)

C
D

F

Figure 6: Empirical distribution of Packet Inter-arrival Times (left), of packets received during one second (middle), and of a simulated representation of the
CR-PC ingress buffer (up to an additive constant).

their mean value, i.e., T p. The CDF of the number of packets
received in one-second samples is therefore plotted as well
on figure 6. This shows that the work-conserving setups and
frequency-controlled pacer maintain the target T p, whereas the
free-running version introduces a frequency-drift, which leads
to the observed periodic video failures.

The PIT distribution gives fine-grained information quantify-
ing how often the peak period jitter Jp is too high. In order to
construct fine-grained information quantifying how often the
ALT-jitter is too high, for each i, and for each setup, the value
i − f ctpi is computed. This value is the simulated state of a
virtual receiver upon reception of the i-th packet of the studied
stream, if the receiver starts consuming packets immediately
after receiving the first one (i.e., i0 = 0 and t0 = 0, see
section II). Figure 6 also shows the empirical CDF of this
value.

The analysis of figure 6 allows to conclude as to why no video
was observed in the Linux forwarding case: the graph shows
a significant fraction of values far from each other hinting
at frequent, large variations of the buffer state, necessarily
leading to overflows or starvation. The frequency-controlled
pacer leads to a contained buffer occupancy, between -1 and 2,
hence JALT (tp) ≤ 2, validating that the built pacer generates
a (4, fc)-paced stream as per property 2.

C. Experimental qualification of F

The bound on the ALT jitter from section V-D2 depends
on the behaviour of function F , summarised as two constants
AW (F) and CW (F). As they only depend on the values of
F at multiples of W , i.e., values F (Wk) for all integers k, a
sample of values fW,k = F (Wk) is experimentally acquired by
using the frequency-controlled pacer with parameters NW =
N0
W = 1 and W = W 0 ≈ 100 µs. From this base sample, the

constants AW (F) and CW (F) are estimated for all values of
W which are multiple of W 0 and all NW . Figure 7 illustrate
these estimates by showing, the sensitivity of these constants
both to varying W for a fixed NW , and to NW for a fixed W .

This figure gives a conclusive argument for increasing NW
instead of W . AW — which quantifies the deviation from a
perfect CR stream due to the instantaneous frequency-error of
the pacer — can be observed to be insensitive to increasing
only W . That result confirms the intuition motivating NW -
regularisation: solely increasing W improves the τcur estimate,

but at the cost of less frequent τcur updates (as they happen
every W). Globally, AW is therefore not improved by an
increased W .

Figure 7 also shows that, fixing W and increasing NW
considerably reduces AW . That result also confirms the
intuition: increasing NW yields a more accurate estimate τcur
but does not change how often τcur is update.

Figure 7 also shows that CW is similarly sensitive to
increasing W or NW . This is interpreted as an unexpected
burst of tα cycles (see sections VI-B) being smoothed by
averaging over a longer duration (which is the consequence of
both increasing W and NW). That smoothening improves how
well τ × F (Wk) tracks the number of te-cycles, i.e., Wk.

Finally, AW + CW , i.e., the bound established in section V,
decreases faster when increasing NW , than it does when
increasing W . That gives a conclusive argument for increasing
NW instead of W .

The measured values of AW + CW remain higher than the
observed ALT jitter for W = 1 s and NW = 1. Especially if
the ALT jitter were equal to the value of AW +CW predicted
on figure 7, the used CR-consumer would necessarily have
starved with an 8-packets buffer. That shows AW +CW + T e

to be a fairly conservative bound on the ALT jitter.

D. Operational perspective
The experimental results show that (B2, f

c)-pacing is feasible
with the frequency-controlled pacing approach. Also, property 5,
and the method used to experimentally evaluate F , yields a
practical policy for choosing NW and W : if a stream is to be
paced with a target buffer size B2, repeating the experiments
performed in section VII-C allows to determine which values
of NW and W need to be chosen so that AW +CW +1 ≤ B2

fc .
As per property 5, the stream will then be guaranteed to be

(B2, f
c)-paced.

VIII. DISCUSSION

In a professional broadcasting environment, the loss of more
than a single video-frame (due to a single packet loss) per day
is unacceptable [33]. In the absence of high-capacity buffers,
jitter and drift must be contained. Considering a system with a
receive buffer of reduced capacity (in the order of 10 packets),
and receiving a packet stream with a frequency of 134775.22
packets per second, the impact of the approach proposed in
this paper is discussed hereafter.

14

20

40

60

80

5 10 15 20

Nw

A
 w

 (
 μ

 s
)

30

40

50

60

5 10 15 20

Nw

C
 w

 (
 μ

 s
)

30

60

90

120

5 10 15 20

Nw

A
w

+
C

w
 (

 μ
 s

)

W
1
2
3
4
5

25

50

75

0 5 10 15 20

W (s)

A
 w

 (
 μ

s)

25

35

45

55

0 5 10 15 20

W (s)
C

 w
 (

 μ
 s

)

60

90

120

150

0 5 10 15 20

W (s)

A
w

+
C

w
 (

 μ
s)

NW

1
2
3
4
5

Figure 7: Experimental estimation of AW (F) (maximal error when F is used to measure a time interval of length W), CW (F) (maximal error when τF is
used to track the current time modulo W) and AW (F) + CW (F), by varying NW (regularisation parameter used in the NW -regularised version of F) and
W (sampling period of F).

A. Practical impact of jitter reduction

The model from section II shows that a consistently small
jitter (in the order of a few dozen microseconds) is necessary
to enable lossless reception and timely consumption at a
CR-PC with small buffers. From an operational perspective,
if the experienced jitter is too high, the receiving CR-PC
needs to provision a larger buffer. This is not necessarily
practically possible, for example, IP-to-SDI gateway devices
are usually implemented on FPGAs, with limited and non-
evolutive buffering capacity.

Because the proposed pacing system uses commodity servers
and general-purpose networking hardware, it is flexible enough
to absorb any jitter, and to adapt to any CR-PC.

Finally, the proposed pacing algorithms assume that, when-
ever a send operation is enqueued, the corresponding packet
must be available to the pacer. That condition requires that
the pacer stores a sufficient number of packets (in the B1

buffer of figure 1), before starting the execution of the chosen
pacing algorithm. That initial buffering necessarily introduces
some unavoidable delay, depending on the jitter of the input
stream. However, this buffering is not specific to pacing; even
in the absence thereof, before starting packet consumption, the
CR-PC would need buffer the same amount of packets — and,
therefore, add the same delay — as would the pacer.

B. Quantitative impact of drift compensation

The SMPTE stream used in the experimental evaluation
has a nominal PIT of

(
4497∗30Hz

1.001

)−1 ≈ 7419.761 32 ns.
Introducing, for example, a 0.1 ns error results in a PIT of
7419.76132− 0.1 = 7419.661 32 ns, hence an effective packet
rate of 1

7419.661 32 ns = 134777.04 packets per second. That is,
a drift of 134777.04− 134775.22 ≈ 1.82 packets per second.

In the context of professional broadcast, SMPTE streams
are unidirectional (allowing, e.g., multicast transmission), and,
therefore, no explicit flow control is performed. In that context,
if the CR-PC receives 1.82 packets more than consumed every
second, a 10 packets receive buffer will overflow after at most
10/1.82 ≈ 5.5 s, which is far from the expected reliability of

a single frame loss per day. Consequently, achieving pacing
for professional broadcast requires the frequency-controlled
approach.

IX. CONCLUSION

Systems relying on constant-rate packet consumption, and
using receivers with small buffers, require transmitted packets
to be regularly paced. This paper shows that such high-accuracy
packet pacing can be implemented in software, through designs
imposing minimal hardware requirements, captured in the
notion of Pacing-Assistant.

Data processing workflows requiring CR packet streams
(such as media processing for broadcasting), and which are
traditionally implemented using dedicated hardware, can, using
the approach proposed in this paper, be replaced by software
running on commodity hardware, and still benefit from a
guaranteed sufficiently regular stream. Two pacing algorithms
were presented and analysed. While the free-running algorithm
is only applicable when the Pacing-Assistant and the packet
consumer internal clocks are synchronised, the frequency-
controlled algorithm has a broader-scope, at the expense of
increased operational complexity, arising from the construction
and parametrisation of a frequency-controller (as described in
section VII-D).

An implementation of the approach proposed in this paper has
been tested in real conditions and hardware, and the viability
of software-based packet pacers has been experimentally
demonstrated for media-production streams.

From among the conclusions of this paper, the experiments
and analysis presented demonstrate, that the proposed approach
is able to bring additional functionalities (pacing regularity and
minimisation of buffer occupation), which are not available
through standard mechanisms as provided in general-purpose
hardware.

REFERENCES

[1] R. Benice and A. Frey, “An Analysis of Retransmission
Systems,” vol. 12, no. 4, pp. 135–145. [Online]. Available:
http://ieeexplore.ieee.org/document/1088975/

15

[2] J. Postel, “Transmission Control Protocol.” [Online]. Available:
https://www.rfc-editor.org/info/rfc0793

[3] “ST 2022-6:2012 - SMPTE Standard - Transport of High Bit Rate Media
Signals over IP Networks (HBRMT),” pp. 1–16.

[4] ST 2059-2:2015 : SMPTE Profile for Use of IEEE-1588 Precision Time
Protocol in Professional Broadcast Applications. The Society of Motion
Picture and Television Engineers.

[5] “ST 2110-21:2017 - SMPTE Standard - Professional Media Over
Managed IP Networks: Traffic Shaping and Delivery Timing for Video,”
pp. 1–17.

[6] ST 292-1:2011 : 1.5 Gb/s Signal/Data Serial Interface. The Society
of Motion Picture and Television Engineers. [Online]. Available:
http://standards.smpte.org/lookup/doi/10.5594/S9781614824299

[7] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the
performance of TCP pacing,” in Proceedings IEEE INFOCOM 2000.
Conference on Computer Communications. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies (Cat.
No.00CH37064), vol. 3. IEEE, pp. 1157–1165. [Online]. Available:
http://ieeexplore.ieee.org/document/832483/

[8] M. Ghobadi and Y. Ganjali, “TCP Pacing in Data Center
Networks,” in 2013 IEEE 21st Annual Symposium on High-
Performance Interconnects. IEEE, pp. 25–32. [Online]. Available:
http://ieeexplore.ieee.org/document/6627732/

[9] L. Zhang, S. Shenker, and D. D. Clark, “Observations on the Dynamics
of a Congestion Control Algorithm: The E ects of Two-Way Tra c,” in
Proceedings of ACM Sigcomm, vol. 91, pp. 133–147.

[10] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh,
and Van Jacobson, “BBR: Congestion-based congestion
control,” vol. 60, no. 2, pp. 58–66. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3042068.3009824

[11] Y. Cai, T. Wolf, and W. Gong, “Delaying Transmissions
in Data Communication Networks to Improve Transport-Layer
Performance,” vol. 29, no. 5, pp. 916–927. [Online]. Available:
http://ieeexplore.ieee.org/document/5753556/

[12] V. Sivaraman, H. Elgindy, D. Moreland, and D. Ostry, “Packet Pacing in
Small Buffer Optical Packet Switched Networks,” vol. 17, no. 4, pp. 1066–
1079. [Online]. Available: http://ieeexplore.ieee.org/document/4895292/

[13] P. Thiran, J.-Y. Le Boudec, and F. Worm, “Network calculus applied
to optimal multimedia smoothing,” in Proceedings IEEE INFOCOM
2001. Conference on Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Society (Cat.
No.01CH37213), vol. 3. IEEE, pp. 1474–1483. [Online]. Available:
http://ieeexplore.ieee.org/document/916643/

[14] J. D. Salehi, Z.-L. Zhang, J. F. Kurose, and D. Towsley, “Supporting stored
video: Reducing rate variability and end-to-end resource requirements
through optimal smoothing,” vol. 24, no. 1, pp. 222–231. [Online].
Available: http://portal.acm.org/citation.cfm?doid=233008.233047

[15] A. Saeed, N. Dukkipati, V. Valancius, V. The Lam, C. Contavalli,
and A. Vahdat, “Carousel: Scalable Traffic Shaping at End Hosts,” in
Proceedings of the Conference of the ACM Special Interest Group on Data
Communication - SIGCOMM ’17. ACM Press, pp. 404–417. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3098822.3098852

[16] R. Takano, T. Kudoh, Y. Kodama, M. Matsuda, H. Tezuka, and
Y. Ishikawa, “Design and evaluation of precise software pacing mecha-
nisms for fast long-distance networks.”

[17] “IEEE Standard for Ethernet,” pp. 1–4017.
[18] R. Takano, T. Kudoh, Y. Kodama, and F. Okazaki, “High-resolution

timer-based packet pacing mechanism on the linux operating system,”
vol. 94, no. 8, pp. 2199–2207.

[19] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and
G. Carle, “MoonGen: A Scriptable High-Speed Packet Generator,” in
Proceedings of the 2015 ACM Conference on Internet Measurement
Conference - IMC ’15. ACM Press, pp. 275–287. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2815675.2815692

[20] D. Intel, “Data plane development kit.”
[21] N. A. Lynch and M. R. Tuttle, “An introduction to input/output automata,”

vol. 2, no. 3, pp. 219–246.
[22] A. Fog, “Instruction tables: Lists of instruction latencies, throughputs and

micro-operation breakdowns for Intel, AMD and VIA CPUs,” vol. 93, p.
110.

[23] S. Müller, “CPU Time Jitter Based Non-Physical True Random Number
Generator,” in Linux Symposium. Citeseer, p. 23.

[24] F. Cerqueira and B. Brandenburg, “A comparison of scheduling latency
in Linux, PREEMPT-RT, and LITMUS RT,” in 9th Annual Workshop
on Operating Systems Platforms for Embedded Real-Time Applications.
SYSGO AG, pp. 19–29.

[25] J. H. Brown and B. Martin, “How fast is fast enough? Choosing between
Xenomai and Linux for real-time applications,” in Proc. of the 12th
Real-Time Linux Workshop (RTLWS’12), pp. 1–17.

[26] B. Delgado and K. L. Karavanic, “Performance implications of System
Management Mode,” in 2013 IEEE International Symposium on
Workload Characterization (IISWC). IEEE, pp. 163–173. [Online].
Available: http://ieeexplore.ieee.org/document/6704682/

[27] A. Toussaint, M. Hawari, and T. Clausen, “Chasing Linux Jitter Sources
for Uncompressed Video,” in 2018 14th International Conference on
Network and Service Management (CNSM), pp. 395–401.

[28] J.-L. Ferrant, M. Gilson, S. Jobert, M. Mayer, M. Ouellette, L. Montini,
S. Rodrigues, and S. Ruffini, “Synchronous ethernet: A method to
transport synchronization,” vol. 46, no. 9, pp. 126–134.

[29] G. ITU, “8261-Timing and synchronization aspects in packet networks.”
[30] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W.

Moore, “NetFPGA SUME: Toward 100 Gbps as Research
Commodity,” vol. 34, no. 5, pp. 32–41. [Online]. Available:
http://ieeexplore.ieee.org/document/6866035/

[31] G. Antichi, M. Shahbaz, Y. Geng, N. Zilberman, A. Covington,
M. Bruyere, N. Mckeown, N. Feamster, B. Felderman,
M. Blott, A. Moore, and P. Owezarski, “OSNT: Open source
network tester,” vol. 28, no. 5, pp. 6–12. [Online]. Available:
http://ieeexplore.ieee.org/document/6915433/

[32] “ANY-FREQUENCY PRECISION CLOCK MULTIPLI-
ER/ JITTER ATTENUATOR.” [Online]. Available:
https://www.silabs.com/documents/public/data-sheets/Si5324.pdf

[33] B. J. Olsson, “IP QoS Objectives For Broadcast Services,”
in NAB 2014 Conference Contribution (May Be Retrieved at
https://www. Researchgate. Net/Publication/261476525 IP QoS Object
Ives For Broadcast Services).

Mohammed Hawari received the Diplôme
d’Ingénieur from École Polytechnique (Palaiseau,
France) in 2015, and the Masters degree in Advanced
Communication Networks (École polytechnique and
École nationale supérieure des télécommunications)
in 2016. He is currently undertaking an industrial
PhD under joint supervision of André Surcouf (Cisco
Systems) and Thomas Clausen (École polytechnique).
His research interests include high-performance
and deterministic networking, real-time systems,
cloud computing, and high-precision network

instrumentation.

Juan Antonio Cordero Fuertes is a research assis-
tant professor at École polytechnique. He graduated
in Mathematics (“Licenciatura”, M.Sc.) and Telecom-
munication Engineering (B.Sc.+M.Sc., “Ingenierı́a
Superior”) at the Universidad Politécnica de Cataluña
(Technical University of Catalonia, UPC, Spain) in
2006 and 2007, respectively. He got his Ph.D. at
École polytechnique in 2011, with a dissertation on
the optimization of link-state routing protocols for
operation in MANETs and compound (wired/wire-
less) Autonomous Systems. As part of his PhD, he

participated in the development of OSPF for MANETs. Before joining faculty
at École Polytechnique, Juan Antonio held postdoctoral research positions
at the Université catholique de Louvain (UCL, Belgium) and at the Hong
Kong Polytechnic University (Hong Kong SAR, People’s Republic of China).
Juan Antonio’s scientific interests include wireless mesh and mobile ad
hoc networking, routing protocols and information dissemination algorithms,
integration of wired and wireless networks, Internet measurements and future
Internet architectures.

16

Thomas Clausen is a graduate of Aalborg University,
Denmark (M.Sc., PhD – civilingeniør, cand.polyt),
and a Senior Member of the IEEE. Thomas has,
since 2004 been on faculty at École Polytechnique,
France’s leading technical and scientific university,
where he holds the Cisco-endowed “Internet of
Everything” academic chaire.
At École Polytechnique, Thomas leads the computer
networking research group. He has developed, and
coordinates, the computer networking curriculum,
and co-coordinates the Masters program in “Ad-

vanced Communication Networks” (ACN). He has published more than 80
peer-reviewed academic publications (which have attracted more than 12000
citations) and has authored and edited 24 IETF Standards, has consulted for the
development of IEEE 802.11s, and has contributed the routing portions of the
recently ratified ITU-T G.9903 standard for G3-PLC networks – upon which,
e.g., the current SmartGrid & ConnectedEnergy initiatives are built. He serves
on the scientific council of ThinkSmartGrids (formerly: SmartGridsFrance).

