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ARTICLE

Electronic correlations and transport in iron
at Earth’s core conditions
L. V. Pourovskii 1,2✉, J. Mravlje3, M. Pozzo 4 & D. Alfè 4,5

The transport properties of iron under Earth’s inner core conditions are essential input for the

geophysical modelling but are poorly constrained experimentally. Here we show that the

thermal and electrical conductivity of iron at those conditions remains high even if the

electron-electron-scattering (EES) is properly taken into account. This result is obtained by ab

initio simulations taking into account consistently both thermal disorder and electronic

correlations. Thermal disorder suppresses the non-Fermi-liquid behavior of the body-

centered cubic iron phase, hence, reducing the EES; the total calculated thermal conductivity

of this phase is 220Wm−1 K−1 with the EES reduction not exceeding 20%. The EES and

electron-lattice scattering are intertwined resulting in breaking of the Matthiessen’s rule with

increasing EES. In the hexagonal close-packed iron the EES is also not increased by thermal

disorder and remains weak. Our main finding thus holds for the both likely iron phases in the

inner core.
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Knowing the transport properties of iron at high-pressure and
high-temperature conditions relevant to the Earth’s core is
essential for modeling the Earth’s geodynamo mechanism

that maintains the Earth’s magnetic field1. The key quantity is the
thermal conductivity that needs to be low enough for the transfer
of heat in the liquid outer core to proceed by a convective
mechanism2. Whereas quite low values of thermal conductivity
were assumed (based on extrapolation of low-temperature data to
higher temperatures) for a long time3,4, recent first-principle
calculations5,6 reported higher values.

These results have important implications. If the thermal
conductivity is high, convection can be sustained only by a large
heat flow4 associated with a younger Earth’s inner core (some
evidence for the latter was recently reported7). The thermal
conductivity of solid iron is a key input for models of the inner
core’s anisotropy8–10; a rather high conductivity has been recently
predicted for hexagonal close-packed (hcp) ϵ-Fe at the relevant
conditions11,12. Experimentally, reaching high temperatures and
high pressures is challenging, and there is large scatter in the data
from direct measurements13–15. The transport properties are not
the only ones to be determined with poor confidence: whereas the
main constituent of the solid inner core is usually assumed to
be the hcp ϵ phase, some experiments show evidence of the body-
centered cubic (bcc) phase16,17. bcc-Fe was also predicted to be
the stable phase of iron at inner-core conditions by recent
molecular dynamics simulations18.

From the theoretical side, the transport mechanisms in iron at
Earth’s core conditions are also incompletely understood with
several important fundamental questions not resolved to date: (i)
whereas and to what extent the electronic correlations affect the
transport properties is being intensely debated12,19–21, (ii) the
question of the interplay of the EES and electron-lattice scattering
(ELS), namely: Is the Mathiessen’s rule that estimates the total
scattering rate from the sum of the individual ones valid? (iii)
Does the Wiedemann–Franz law that relates the thermal and
electrical conductivity apply? For correlated metals in a Fermi
liquid regime, the proportionality constant (the Lorenz number)
for the EES is greatly affected by the energy dependence of the
corresponding inelastic scattering rate12.

For crystalline hcp-Fe, Pourovskii et al.12 found a moderate
impact of electronic correlations with the EES being far less
important than the previously calculated11 ELS. They speculated
that the EES could increase if the large thermal disorder due to
the motion of the ions close to (and above) the melting tem-
perature was taken into account. Xu et al.20 evaluated EES for the
perfect hcp lattice and combined it with a separately calculated
ELS term using Mathiessen’s rule. They obtained a significant
reduction of the total conductivity, and found the EES further
increasing when thermal disorder in the liquid state was included.

The questions on the relative impact of EES and its interplay
with the ELS are also highly relevant if the main constituent of the
inner core is the bcc iron phase16–18. The bcc phase has been
pointed out to be significantly more correlated, compared with
hcp-Fe, due to a van-Hove singularity in its electronic structure
slowing down electrons19,22,23. Dense bcc iron is expected to exist
only at high temperatures close to melting; its stabilization is
predicted to be induced by anharmonic ionic vibrations24 or a
complex self-diffusion mechanism18. Very strong deviations from
the perfect bcc crystalline order are thus expected. Therefore,
possible impact of these distortions on electronic correlations
needs to be taken into account. Intuitively, one might expect the
crystalline disorder to slow down the electrons further, which
would enhance the effects of electronic correlations. The impact
of intertwined crystalline disorder and many-electron effects on
transport has not been assessed in previous theoretical studies in
iron at Earth’s core conditions12,25, except by Hausoel et al.19 who

evaluated the strength of correlations in a thermally disordered
face-centered cubic (fcc) phase of Ni at Earth’s core conditions
finding the impact of lattice vibrations on correlations insignif-
icant, and Xu et al.20 who, conversely, found that the thermal
disorder (whose effects they evaluated in the liquid state)
increases the EES significantly.

In the present work, we investigate these questions by con-
sidering electron transport in iron under conditions relevant
to the inner core. Iron at these conditions is modeled by the
density-functional+ dynamical mean-field theory (DFT+DMFT)
method26–28 applied to a set of Fe supercells (SCs) randomly
chosen from configurations produced by molecular dynamics
(MD) simulations, as done earlier in refs. 19,20. Our transport
calculations thus include both the effects of lattice distortions due
to the thermal motion of ions and the electronic correlations.
Focusing on the bcc phase, where both the electronic correlations
and complex nonharmonic lattice degrees of freedom are
expected to play an important role18,22–24,29, we find that the
positional disorder does affect the electronic correlations. How-
ever, in contrast to expectations, we find that their strength is
suppressed. The van Hove singularity present in perfect bcc-
Fe23,30 is smoothed by thermal disorder, which thus reduces the
EES. The total thermal conductivity is to a large extent deter-
mined by the effects of thermal disorder alone, and reduced by
less than one-quarter by the EES. Even with the EES artificially
increased above our calculated value, its impact on the total
resistivity is far less than expected on the basis of Matthiessen’s
rule. We derive a qualitative explanation of this surprising result
that holds universally in the limit of strong disorder, i.e., in
proximity to melting temperatures (and above). Since the thermal
disorder wipes out the sharp characteristic features of the DOS,
one may expect a similar behavior of the EES for hcp, fcc, and
liquid iron. We verify the generality of our conclusions with
explicit DFT+DMFT calculations of transport in the thermally
disordered hcp phase, for which we obtain values of the total
conductivity and EES contribution that are very similar to those
for bcc. The relative insensitivity of the transport properties to
both increase of the EES and particularities of the lattice structure
thus implies a robustly high conductivity in the presence of a
strong EES also in other solid and liquid iron phases.

Results
Electron–electron scattering in the presence of thermal dis-
order. We first present our key results on the conductivity of bcc-
Fe at the inner core conditions. The resulting total electrical
resistivity and thermal conductivity at temperature T= 5802 K
for our set of randomly selected 3 × 3 × 3 SCs are shown in Fig. 1
(open triangles; the average over the SCs is shown with the bold
star) together with the results for the perfect bcc and hcp12 lat-
tices (for which the temperature dependence is also shown). The
resistivity of perfect lattices is due to the EES term only; the
temperature dependence in the case of bcc exhibits a rather slow
non-Fermi-liquid23 increase in contrast to the Fermi-liquid hcp
phase12. The ELS starts contributing once lattice distortions are
included. With the magnitude of the distortions predicted by our
MD simulations, the ELS is by far the dominating term, as one
sees by comparing the total conductivities with purely ELS ones
also shown in Fig. 1.

One may notice that the spread of calculated conductivities
within the set is quite small. The value of the total bcc-Fe thermal
conductivity averaged over all 8 distorted SCs in our set is equal
to 220Wm−1 K−1 compared with 584Wm−1 K−1 for the EES
only (perfect bcc lattice) and 275Wm−1 K−1 for the ELS only; the
latter is evaluated within DFT31,32, see “Methods”. For the
electrical resistivity, the corresponding values are 6.02 × 10−5,
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1.56 × 10−5, and 5.82 × 10−5Ω⋅cm, respectively. By comparing
the total conductivity κ with electron-lattice κel–lat, one infers that
the EES reduces the thermal conductivity by about 20%; its
impact on electrical resistivity is even smaller. It is instructive to
check the validity of the Wiedemann–Franz law κ= L0σT, where
L0= 2.44 × 10−8WΩK−2 is the standard Lorenz number, by
taking the ratios of thermal and electrical conductivity. For the
perfect lattice, we obtain L= 1.57 × 10−8 WΩK−2, whereas for
the distorted one, we obtain L= 2.28 × 10−8 WΩK−2. The former
result deviates from the standard Lorenz number due to the
frequency-dependent inelastic scattering rate. The latter result is
close to L0. As pointed out above, thermal disorder provides the
largest contribution to the total scattering. This dominant
contribution of thermal disorder, in contrast to the inelastic
EES, influences the thermal and electrical conductivity equally
resulting in an almost standard value for the Lorenz number.

Self-energy and spectral function. The electronic correlations,
which are the origin of EES, are described in our framework by
the local electronic self-energy. We have computed this quantity
for a set of eight 2 × 2 × 2 bcc SCs with the fully self-consistent
DFT+DMFT method (see Methods section). In order to eluci-
date the effect of thermal disorder on electronic correlations,
one may compare the self-energy calculated in distorted SC with
that in perfect lattices. Of particular relevance to transport is the
low-frequency behavior of the imaginary part of the Matsu-
bara33 self-energy ImΣðiωnÞ. The extrapolation of jImΣj to low
frequencies characterizes the electron-scattering rate, and the
slope of the approach characterizes the electronic renormaliza-
tion m�=m ¼ ½1� dImΣðiωnÞ=diωn�jωn!0. Larger magnitude of
ImΣðiωnÞ thus points to stronger correlations. The calculated
imaginary part of the Matsubara self-energies for different Fe 3d
orbitals and atoms in the set of SCs is shown in Fig. 2a, together
with those for the perfect bcc and hcp lattices.

One sees that thermal disorder significantly modifies the
electronic self-energies. The self-energies at different positions
differ, and the largest differences are comparable to the value itself.
One also sees that, unlike in the case of the perfect bcc structure,
where there is a clear distinction between the more correlated non-
Fermi liquid eg and the less correlated Fermi-liquid t2g self-energy,
the self-energies of different atoms and orbitals quasi-uniformly
span the full range of values. Therefore, thermal disorder is

sufficiently large for the resulting self-energies not to resemble
those of the perfect bcc structure. (If the disorder were smaller, one
would still resolve the t2g/eg blocks). The self-energy 〈Σ〉 averaged
over all sites and orbitals of all eight SCs is close to the bcc result
for the less correlated t2g orbital and to the Fermi-liquid self-
energies of hcp-Fe. This average self-energy, analytically continued
to the real axis, Fig. 2b, was used to evaluate the conductivity in the
3 × 3 × 3 SCs. The more correlated bcc eg result represents a rough
upper bound. The average scattering rate (given by �hImΣðωÞi)
vs. ω exhibits a characteristic Fermi-liquid parabolic shape (Fig. 2b),
with its value at the Fermi level, �hImΣðω ¼ 0Þi ¼84meV, being
close to the value of 90meV previously obtained for hcp-Fe12. The
thermal disorder thus reduces the electronic correlations compared
with the perfectly crystalline bcc result.

In order to understand the origin of this effect, it is
convenient also to look at the corresponding DFT+DMFT
spectral function. Namely, the stronger correlations for the eg
orbital in the case of bcc structure occur due to the proximity to
a van-Hove singularity19,22,23,34. The 3d spectral function
averaged over all sites in all eight 2 × 2 × 2 SCs is shown in
Fig. 2c and is compared to the one for the perfect bcc. One sees
that the narrow peak of eg states in the vicinity of ω= 0 is
almost completely smeared by lattice distortions. This smearing
of the low-frequency peak in turn leads to weaker correlations.
One thus has a counterintuitive situation that the disorder
actually leads to a suppression of electronic scattering at low
energies.

Evolution of transport as a function of distortion. It is
important to notice that whereas the electronic self-energies are
actually suppressed when evaluated in the presence of thermal
disorder, as shown above, the calculated resistivity is strongly
increased. This implies that the increase must be attributed to the
ELS due to the distortions.

In order to understand better the influence of distortions, it is
convenient to study the evolution of transport vs. distortion
strength. To that end, we chose a representative 2 × 2 × 2 SC, for
which the calculated thermal conductivity of 240Wm−1 K−1 is
close to the one obtained from the average over the whole 2 × 2 ×
2 set. The atomic coordinate Ri of a given site i in this 2 × 2 × 2 SC
can be written as Ri ¼ R0

i þ τi, where R
0
i denotes the position of

the atom in the perfect 2 × 2 × 2 SC and τi is the corresponding
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Fig. 1 Electrical and thermal conductivity of iron under Earth’s inner-core conditions. a The total resistivity of iron at Earth’s core volume (7 Å3 per atom,
density 13.2 g cm−3) obtained by the density-functional theory+ dynamical mean-field theory (DFT+DMFT) method. The curves vs. temperature with
filled circles/squares are for the perfect hexagonal close-packed (hcp)12 and body-centered cubic (bcc) unit cells, respectively, calculated with the full
rotationally invariant Coulomb vertex U. The rest of shown data is obtained using the density–density (Ising) vertex. The empty red square is the perfect
bcc result. In the case of perfect lattices, the electron-lattice-scattering (ELS) term is absent, and the resistivity is due to the electron–electron-scattering
(EES) term only. The empty triangles are for eight different distorted 3 × 3 × 3 bcc supercells. The bold blue star is the average value over the distorted bcc
supercells. The black cross is the average value over the representative 150-atom hcp supercell. The ELS resistivity calculated within DFT for bcc (purple
empty diamond) is also shown. b The total thermal conductivity of iron at Earth’s core volume obtained by DFT+DMFT. The meaning of symbols is the
same as for panel (a).
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displacement in the distorted cell. Introducing a scaling parameter
λ for the distortion, Rλ

i ¼ R0
i þ λτi, one can smoothly tune the

distortion from the vanishing one λ= 0, to the actual distortion in
the molecular dynamics simulation snapshot, λ= 1, and beyond.

We performed full self-consistent DFT+DMFT calculations
for a set of λ; the resulting electrical and thermal conductivities vs.
λ are shown in Fig. 3. One can identify the regime of weak
disorder with, in particular, a rather rapid decay of κ vs. λ < 0.25.
By inserting the average self-energy 〈Σ〉 of fully distorted SCs
instead of the DMFT self-energies calculated at a given λ,
one obtains a significantly larger conductivity at λ= 0 and a
yet steeper decay. The difference in behavior of conductivities vs.

λ < 0.25 for those two cases is due to the evolution of electronic
self-energies upon increasing distortions. Namely, the distortions
suppress the non-Fermi-liquid behavior of eg orbitals (see Fig. 2)
and reduce the overall magnitude of scattering � jImΣðωÞj;
this reduction of EES partially compensates the enhancement of
ELS with λ.

The decrease in the conductivity becomes drastically slower
for λ > 0.5. This saturation of conductivity clearly seen in Fig. 3
is due to the phenomenon of resistivity saturation that is known
to occur in weakly correlated metals at elevated temperatures35,
and to play an important role for the transport in Fe6. Namely,
in weakly correlated metals, the resistivity saturates at a so-
called Mott–Ioffe–Regel value that corresponds to a scattering
length equal to the minimal interatomic distance. As one sees in
the inset of Fig. 3a, the electrical resistivity vs. λ starts deviating
from the linear scaling for λ ≥ 0.75, thus exhibiting this
saturation effect. Notice that a change in λ emulates a change
in temperature, as phonon displacement is proportional to
temperature. Hence, at our simulation temperature of 5802 K,
corresponding to λ= 1, the onset of saturation already
occurred.

On the other hand, when electronic correlations become
dominant, the resistivity can grow further, which is called
the bad-metal regime35. This is evidenced by the data in Fig. 4b,
where we artificially increased the strength of the ESS, as
discussed below. We stress that our approach correctly repro-
duces both the phenomenon of resistivity saturation and the bad-
metal regime, whichever is applicable in the given case.

We also notice that for λ > 0.5, the evolution of transport vs. λ
obtained with full DFT+DMFT calculations becomes basically
indistinguishable from that obtained with the site and orbital
average self-energy 〈Σ〉 at the real distortion, λ= 1. This implies
that the evolution of self-energy vs. λ has no impact on the
transport at large distortions λ > 0.5. Moreover, in this strong
disorder regime, the site and orbital fluctuations of the self-energy
do not affect the conductivity. Based on these two observations,
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one can evaluate the transport for large supercells in the strong-
disorder regime even without explicit knowledge of self-energy at
every site, but simply resorting to 〈Σ〉 obtained with DFT+DMFT
calculations for smaller cells at a similar level of thermal disorder.

Optical conductivity and interpretation of the results. To
investigate the interplay between thermal disorder and the EES
further, we also artificially tuned the strength of EES by mul-
tiplying the imaginary part of DMFT self-energy by a constant
α, and evaluated the transport for a fixed distorted lattice.
Namely, we calculated the optical conductivity Eq. (8) as a
function of the scale factor α, i.e., with the self-energy ΣαðωÞ ¼
RehΣðωÞi þ αImhΣðωÞi used for all orbitals and sites of a SC.
Such a “cartoon”-scaled self-energy, though not satisfying the
exact Kramers–Kronig relations between ReΣðωÞ and ImΣðωÞ,
does capture the main features of the strong EES regime in
“Hund’s system” like iron: the states away from the Fermi
surface have short lifetimes due to correlations, but do not have
strongly reduced dispersions36. Uniformly scaling both the real
and imaginary parts would respect the Kramers–Kronig rela-
tions, but in result, one would apply a large coherent Fermi-
liquid renormalization to 3d bands far from the Fermi surface.
The latter is a physically incorrect representation of the strongly
correlated limit in iron.

A larger SC size is preferable in calculations with the scaled
self-energy Σα in order to properly evaluate the DC-conductivity
limit at small values of α. We thus chose a representative 3 × 3 × 3
SC with the conductivities at α= 1 very close to the average one
(see Fig. 1). The resulting optical conductivity vs. α is displayed in
Fig. 4.

The calculated optical conductivity is generally smooth and
virtually constant at small ω→ 0 due to a strong disorder
suppressing the Drude peak coming from the intraband
transitions in favor of low-lying interband transitions. At small
α ≤ 0.4, the Drude peak is still present, due to insufficiency of
the 3 × 3 × 3 SC size to describe the electron-lattice scattering
for very long-lived quasiparticle states. One may notice a rather
slow decrease in conductivity vs. α; the DC conductivity σ(ω=
0) is reduced by less than half of its initial value with the EES
increased by a factor of 40.

Matthiessen’s rule predicts the total (electrical or thermal)
resistivity to be given by a sum of contributions due to separate
scattering mechanisms. In the present case, the total Matthies-
sen’s rule thermal conductivity κM is given by 1/κM= 1/κel–lat+
1/κel–el, where our calculated κel–lat= 275Wm−1 K−1 and κel–el
for given α is calculated in the perfect bcc lattice from Σα(ω). The

resulting relative deviation ϵM ¼ κ� κM
κM

of Matthiessen’s rule
conductivity with respect to the actual one, i.e., the one calculated
directly in the representative SC from Σα(ω), is plotted in the inset
of Fig. 4a as a function of α. One sees that Matthiessen’s rule is
satisfied reasonably well at a small EES, but at the large EES limit,
the deviation becomes significant with Matthiessen’s rule under-
estimating the conductivity by about one-third. For the largest
considered value of α= 8, for which κel−el= 148Wm−1 K−1,
Matthiessen’s rule κM= 96Wm−1 K−1 is markedly smaller than
the actual total conductivity κ= 125Wm−1 K−1.

In order to understand this effect, we return to the expression
for the DMFT conductivity (Eq. (8)). To simplify the discussion,
it is convenient to neglect site/orbital dependence of the self-
energy (which we argued above does not play an important role at
the relevant conditions). Under this assumption, the self-energy
has no momentum dependence, and the DC conductivity can be
written as

σ /
Z

dω
X
k

X
νν0

jvkνν0 j2AkνAkν0 ð�df =dωÞ: ð1Þ

The spectral function Akν ¼ � 1
π Imðωþ μ� ϵkν � ΣÞ�1 can be

further simplified by assuming that the self-energy is well
described by a constant Σ ~−iΔ. The spectral functions hence
take a Lorentzian form with the width given by Δ. We observed
that large disorder leads to a behavior that enables a further
simplification of the expression above: (i) The eigenenergies
become approximately equidistantly distributed, ϵkν+1− ϵkν ≈ C,
where C is a constant. (ii) The current matrix element jvkνν0 j loses
strong dependence on ν, ν0 and essential physics can be
reproduced by substituting it by a constant. Under these
assumptions, the conductivity simplifies to a form

σ /
Z

dωv2
X
k

X
ν

Akν

X
ν0

Akν0 ð�df =dωÞ

¼ v2
Z

dω
Z

dϵAϵðωÞ
� �2

ð�df =dωÞ;
ð2Þ

where in the last equality, we replaced the summation over band
energies by a Riemann integral

X
ν

Akν !
1
πC

Z W=2

�W=2
dϵ

Δ

ðωþ μ� ϵÞ2 þ Δ2
; ð3Þ

where W is the bandwidth.
Now, when W≫Δ, the Riemann integral reduces to integration

of a Lorentzian over range (−∞,∞) and can be approximated by a
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Fig. 4 Electron–electron scattering and Matthiessen’s rule in body-centered cubic Fe. a The optical conductivity of a representative body-centered cubic
3 × 3 × 3 supercell vs. scale factor α applied to the imaginary part of dynamical mean-field-theory (DMFT) self-energy. The inset shows the relative
deviation of calculated thermal conductivity from the Matthiessen’s rule as a function of α. b Calculated thermal and electrical resistivity as a function of
the scale factor α. Notice the slow dependence in the vicinity of α= 1.
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constant. The resulting σ hence does not depend on Δ anymore.
Only when one increases the electronic scattering above the full
bandwidth (Δ≫W), a new regime occurs, where integral (3)
becomes ∝W/Δ. In this regime, the resistivity strongly (∝Δ2)
increases as a function of Δ. One sees a crossover to this regime in
Fig. 4b at very large α. However, in the relevant range α ~ 1
enhancement of Δ, reducing the contribution of each individual Akν,
at the same time leads to the spectral functions further from Fermi
energy contributing to the DC conductivity. This increase in the
number of contributing ν “conduction channels” hence compen-
sates for the loss of conductivity due to a shorter electronic lifetime.
In result, the dependence of σ on Δ at α ~ 1 is weak as seen
in Fig. 4b. That is in contrast to the usual Drude behavior σ∝ 1/Δ
occurring when the EES contribution (subsequently combined with
ELS using Matthiessen’s rule) is calculated for the undistorted
lattice.

Electronic structure and conductivity of the hcp-Fe phase.
What are the implications of our analysis for the case of the hcp
phase, which is another candidate for the inner core’s principal
component, and for the outer core liquid phase? Should one
expect a different behavior with stronger influence of EES from
that found for bcc-Fe? We show below that in fact this is not the
case. The EES magnitude comes out to be very similar. In fact, the
distinction between crystalline phases (as well as between them
and the liquid phase) becomes smaller with increasing motion
amplitude of the ions, and peculiar features of their electronic
structure are washed away. We compare the corresponding DFT
densities of states obtained by averaging over MD configurations
in Fig. 2d. Indeed, the difference between various iron crystalline
phases as well as between them and liquid is quite insignificant. In
contrast, it is striking in the case of the corresponding perfect
lattices at Earth’s core density. Namely, the DFT density of states
of perfect bcc-Fe (and its DFT+DMFT spectral function, Fig. 2c)
features a peak at the Fermi level EF due to the van-Hove sin-
gularity, while the density of states of perfect hcp-Fe features a dip
at EF (see, e.g., Fig. 3 of ref. 23).

We verified the validity of these qualitative arguments by explicit
calculations of the conductivity for a representative configuration of
thermally disordered hcp-Fe. We employed the same DFT+DMFT
approach as in the bcc case, see Methods for more details of these
calculations. The electronic self-energy in the thermally disordered
hcp phase is found to preserve its Fermi-liquid character12; the
average hcp self-energy is virtually coinciding with the bcc one, see
Figs. 2a and b. The resulting values of total (ELS+EES) electrical
resistivity and thermal conductivity for hcp-Fe are 6.37 × 10−5

Ω⋅cm and 214Wm−1 K−1, respectively. The reduction due to the
EES is 9 and 24% for the electrical and thermal conductivity,
respectively. As one sees (Fig. 1), the thermal conductivity of
thermally disordered hcp-Fe is virtually the same as that of
thermally disordered bcc. Our value for the total (ELS+EES)
thermal conductivity of hcp-Fe, 214Wm−1 K−1, is higher than the
previous theoretical values of 190 and 147Wm−1 K−1 reported by
Pourovskii et al.12 and Xu et al.20, respectively. Both refs. 12 and 20

employed Matthiessen’s rule to evaluate the total thermal
conductivity; as shown above, this rule underestimates
the conductivity. By applying Matthiessen’s rule to combine
our ELS contribution of 280Wm−1 K−1 with the EES one of
605Wm−1 K−1, the latter is calculated in the perfect hcp lattice
using the corresponding average self-energy (Fig. 2b); we obtain the
same total conductivity as ref. 12. Matthiessen’s rule thus leads to an
underestimation of the hcp conductivity by about 10%. Besides
resorting to Mathiessen’s rule, Xu et al.20 employed a less elaborate
evaluation of the ELS conductivity, in which the saturation effect
was imposed through a parallel resistor correction. Their method

gives a markedly smaller ELS conductivity in the relevant regime as
compared with our MD-based approach that naturally includes the
resistivity saturation, see Fig. 3.

Discussion
In conclusion, our main results are: (1) the overall reduction of
iron conductivity due to the EES is only about 20%; this reduction
is too weak to significantly alter the picture of a highly conductive
core matter previously obtained by the DFT first-principles
calculations5,6,11. The resulting total thermal conductivity is
above 200Wm−1 K−1 for both the likely solid iron phases in the
inner core, bcc and hcp. Nevertheless, the EES reduction is not
negligible and should be, in general, included in the detailed
modeling of the inner core, (2) in bcc-Fe, the EES is not increased
but rather suppressed by thermal disorder, and (3) in the relevant
regime, the total conductivity exhibits markedly weaker depen-
dence on the EES as compared with predictions of the simple
Matthiessen’s rule.

With drastic differences in the electronic structure of different
iron phases being suppressed by thermal disorder, a similar
behavior can also be expected for the fcc and liquid iron phases at
the core conditions. Intuitively, substitutional disorder and small-
atom impurities are not likely to have an important effect in the
presence of strong thermal disorder; however, the impact of
alloying with light elements on the EES needs to be evaluated by
direct calculations. Finally, given a slow dependence of the total
thermal conductivity on the magnitude of the EES in the thermal-
disorder-dominated regime demonstrated in Fig. 4, it is unlikely
that electronic correlations would drastically affect the transport
properties, even if the magnitude of EES turned to be somewhat
larger than that found in the present work.

Methods
DFT molecular dynamics. Our DFT molecular dynamics were performed with the
VASP code31. We used the projector-augmented wave method31,37 to describe the
interactions between the electrons and the ions, and expanded the single-particle
orbitals as linear combinations of plane waves (PW), including PW with maximum
energies of 293 eV. For the 16-atom bcc SCs, the Brillouin zone was sampled using
the 0.25 0.25 0.25 point only (in units of reciprocal lattice vectors) and for the 36-
atom HCP SCs using a 3 × 3 × 3 Monckhorst–Pack grid. For larger cells, we used
the Γ point only. The time step was 1 fs, and the temperature was controlled using a
combination of Nosé38 and Andersen39 thermostats.

DFT+DMFT electronic structure and transport calculations. The DFT+DMFT
calculations were performed using a full-potential self-consistent in the charge-
density approach40,41 based on the Wien-2k code42 and TRIQS library43,44. These
calculations were carried out for a set of 8 distorted 2 × 2 × 2 bcc supercells (SCs)
with the volume 7 Å3 per atom randomly drawn from configurations produced by
DFT molecular dynamics simulations. All our DFT+DMFT calculations for the
SCs were done for the temperature T= 5802 K (β= 1/T= 2 eV−1). We employed
the same values of the Coulomb interaction parameters U= 5.0 eV, JH= 0.93 eV as
in the previous study of the conductivity in perfect hcp12, and the energy window
[–12.2 eV, 4.0 eV] around the Fermi level for the Kohn–Sham states used to
construct Wannier orbitals representing Fe 3d states. The DMFT impurity problem
was solved by the hybridization–expansion quantum Monte Carlo impurity sol-
ver45. The density–density approximation was employed for the interaction vertex
(which leads to an overestimation of the EES thermal conductivity by 23 and 29%
for the perfect hcp and bcc iron phases, see Fig. 1 and ref. 21), and the nondiagonal
elements of the bath Green’s function were neglected in the impurity problem.

Each SC was first converged by about 20 fully self-consistent DFT+DMFT
iterations with subsequent 10 additional DMFT cycles using the converged
Kohn–Sham Hamiltonian. Each Monte Carlo run employed 1010 Monte Carlo
moves and 200 moves/measurement. Subsequently, 25 additional runs were carried
out starting from the same converged value of the DMFT bath Green’s function
and resetting the random sequence. The 25 self-energies thus calculated were
then averaged to obtain the final high-precision DMFT self-energy, which was
analytically continued using the Maximum Entropy method46 to the real-energy
axis. Such full DFT+DMFT run for a single 16-atom cell typically took about
7 days of calculation time on a 64-core cluster.
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Our DMFT conductivity calculations were carried out within the Kubo linear-
response formalism. Namely, the electrical and thermal conductivity reads

σαα0 ¼
e2

kBT
K0

αα0 ; ð4Þ

καα0 ¼ kB K2
αα0 �

ðK1
αα0 Þ2

K0
αα0

" #
; ð5Þ

where α is the direction (x, y, or z), kB is the Boltzmann constant.
The kinetic coefficients Kn

αα0 read

Kn
αα0 ¼ 2π_

Z
dωðβωÞnf ðωÞf ð�ωÞΓαα0 ðω;ωÞ; ð6Þ

where 2 is the spin factor, f(ω) is the Fermi function, and the transport distribution
Γαα

0
is given by

Γαα
0 ðω1;ω2Þ ¼

1
V

X
k

Tr vαðkÞAðk;ω1Þvα
0 ðkÞAðk;ω2Þ

� �
; ð7Þ

where V is the unit-cell volume, A(k, ω) is the DMFT spectral function, and vα(k) is
the velocity, see ref. 44. The optical conductivity is evaluated from the transport
distribution as follows:

σαα0 ðΩÞ ¼ 2πe2_
Z

dωΓαα
0 ðωþΩ=2;ω�Ω=2Þ

f ðω�Ω=2Þ � f ðωþΩ=2Þ
Ω

:

ð8Þ

Without the additional EES contribution evaluated by DMFT, our approach
would reduce to the conventional Kubo–Greenwood DFT formalism routinely
used to evaluate the ELS contribution to the resistivity11,47. The present approach
thus additionally takes the EES into account. In the conductivity calculations for
the bcc 16-atom, bcc 54-atom, hcp 36-atom, and hcp 150-atom SCs, we employed
10 × 10 × 10, 5 × 5 × 5, 7 × 7 × 6, and 4 × 4 × 4 k mesh in the full Brillouin zone,
respectively.

The total thermal conductivity along the [100] direction thus calculated and
averaged over all 8 distorted 2 × 2 × 2 SCs is equal to 245Wm−1 K−1. However, the
16-atom 2 × 2 × 2 SC is not sufficient for a precise evaluation of the conductivity in
bcc-Fe. As shown in Supplementary Fig. 2, one needs at least 3 × 3 × 3 54-atom bcc
SCs to reach the convergence for the ELS conductivity. Full DFT+DMFT
calculations are too time-consuming for these 54-atom supercells. Instead, a
randomly chosen set of eight 3 × 3 × 3 supercells was drawn from our MD
simulations and converged in DFT. The average self-energy 〈Σ(iωn)〉 previously
obtained for the 2 × 2 × 2 set (the blue curve in Fig. 2a) was subsequently inserted at
each site together with the average double-counting term. Once the chemical
potential was found, the conductivity was calculated using 〈Σ(iωn)〉 analytically
continued to real frequencies (Fig. 2b). This approach is based on the observation
that the conductivity becomes insensitive to the site and orbital dependence of self-
energy at the realistic distortion levels, see Fig. 3 and the corresponding discussion.
We also benchmarked this procedure on the 2 × 2 × 2 set; thus, calculated
conductivities are in a good agreement with the full calculations, with the resulting
average κ= 232Wm−1 K−1 compared with 245 Wm−1 K−1 for full calculation in
which the site and orbital dependence is retained. The resulting total thermal
conductivity evaluated with 3 × 3 × 3 SCs and shown in Fig. 1, κ= 220Wm−1 K−1,
is only slightly reduced compared with the magnitude obtained with the 2 × 2 × 2
SCs (see Supplementary Fig. 1).

Whereas the size of our SCs is insufficient to ensure dynamic stability of the bcc
structure—for that a tour de force with 1024 atoms was needed in Belonoshko
et al.18—the choice of the unit-cell shape constrains the dynamics of ions to those
representative of the bcc structure in the thermodynamic limit, especially when the
influence on the integrated quantities such as conductivity is considered. Moreover,
in the relevant range of high temperatures, the EES is due to on-site electronic
correlations that are determined by the local environment of each site. The local
environment is unlikely to be highly sensitive to large-scale complex lattice
dynamics effects, e.g., the “self-diffusion” mechanism proposed in ref. 18 as the
origin of bcc-Fe stability. The increase in SC size, if anything, will be impacting the
EES by inducing more random thermal disorder on the local level, since the
constrains on atom movements due to the periodic boundary conditions are
relaxed. One may notice that the magnitude of the average electronic self-energy in
bcc diminishes with increasing thermal disorder (Fig. 2, in particular, notice the
suppression of the average bcc SC self-energy with respect to the eg-orbital one of
the perfect bcc). Given that in bigger unit cells the motion of atoms is constrained
less, the EES is thus likely to be suppressed even further. Hence, our main result of
a weak EES should be robust with respect to the SC size.

We applied the same framework to evaluate the conductivity in the hcp phase.
To reduce the computational effort in this case, we made use of the fact that the
conductivity varies little between different SCs, as one sees in the example of bcc
(Fig. 1). Hence, we chose a single representative 36-atom hcp SC (3 × 3 × 2 in
crystallographic unit cells with c/a= 1.6 and volume 7 Å3 per atom) from a set
randomly drawn from our MD simulations. The value of calculated ELS
conductivity for the chosen SC was the closest to the average over this set of 15 SC
configurations. For that 36-atom SC, we performed the same full DFT+DMFT

calculation as described above for the set of 2 × 2 × 2 bcc SCs. Parameters of this
calculation (the temperature T= 5802 K, the values of U, JH, the energy window for
Wannier construction, and number of quantum Monte Carlo cycles) were the same
as for the bcc case. We performed 10 self-consistent DFT+DMFT iterations, with
20 additional runs from the same converged bath Green’s function to obtain the
high-precision self-energy for the analytical continuation. Transport calculations
were performed as described above for the case of bcc. The conductivity values
reported below are averaged over 3 directions: c, and two in-plane ones, a and ⊥a.
The resulting value for the total thermal conductivity of the 36-atom hcp SC is
234Wm−1 K−1. Analogously to the case of bcc, we checked the convergence of
our result with respect to the SC size. To that end, we chose a representative 150-
atom hcp SC (5 × 5 × 3 of crystallographic hcp unit cells) from the corresponding
MD dynamics simulations. This SC size is sufficient to virtually converge the
ELS conductivity with respect to SC size, as we verified by calculating the
ELS conductivity for yet bigger hcp SCs. The chosen 150-atom SC had a ELS
conductivity close to the average one. Subsequently, we inserted the site- and
orbital-averaged self-energy 〈Σ(iωn)〉, obtained for the 36-atom SC (black curves in
Fig. 2a and b), into this 150-atom SC and calculated the total conductivity. The
resulting values of total electrical and thermal conductivities, which are cited in the
“Results” section, are about 9% lower than those for 36-atom SC; this moderate
reduction of total conductivity with increasing SC size is similar to that in bcc-Fe as
noted above. By inserting the same average self-energy into the 36-atom SC, we
verified that the value of conductivity thus calculated differs by only 1% from the
one, cited above, evaluated for the same 36-atom SC with the original site- and
orbital-dependent self-energy.

By evaluating the ELS contribution for the same 150-atom SC in the same
framework (i.e., by setting the self-energy to zero in the spectral functions A(k, ω)
in Eq. (7)), we also extracted the reduction of total conductivity due to the EES. The
ELS contribution calculated in this way, 280Wm−1 K−1, closely agreed with that
calculated for the same SC by the standard DFT approach of refs. 31,32.

DFT transport calculations. For the sake of comparison, the ELS contribution was
also computed separately using the DFT-based framework of refs. 11 and 47. These
DFT calculations of the ELS-only electrical and thermal conductivities were per-
formed via the Kubo–Greenwood and the Chester–Thellung–Kubo–Greenwood48

formula, respectively, as implemented in VASP32. We employed settings similar to
those employed in ref. 11, by averaging over 72 statistically independent config-
urations on cells, including between 16 and 250 atoms.

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request.

Received: 3 December 2019; Accepted: 21 July 2020;

References
1. Buffett, B. Geomagnetism under scrutiny. Nature 485, 319–320 (2012).
2. Christensen, U. R. & Aubert, J. Scaling properties of convection-driven

dynamos in rotating spherical shells and application to planetary magnetic
fields. Geophys. J. Int. 166, 97–114 (2006).

3. Stacey, F. & Loper, D. A revised estimate of the conductivity of iron alloy at
high pressure and implications for the core energy balance. Phys. Earth.
Planet. In. 161, 13–18 (2007).

4. Olson, P. The new core paradox. Science 342, 431–432 (2013).
5. de Koker, N., Steinle-Neumann, G. & Vlček, V. Electrical resistivity and

thermal conductivity of liquid Fe alloys at high P and T, and heat flux in
Earth’s core. Proc. Natl. Acad. Sci. USA 109, 4070–3 (2012).

6. Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. Thermal and electrical
conductivity of iron at Earth’s core conditions. Nature 485, 355–358 (2012).

7. Bono, R. K., Tarduno, J. A., Nimmo, F. & Cottrell, R. D. Young inner core
inferred from ediacaran ultra-low geomagnetic field intensity. Nat. Geosci. 12,
143 (2019).

8. Romanowicz, B., Li, X.-D. & Durek, J. Anisotropy in the inner core: could it be
due to low-order convection? Science 274, 963–966 (1996).

9. Buffett, B. A. Onset and orientation of convection in the inner core. Geophys.
J. Int. 179, 711–719 (2009).

10. Monnereau, M., Calvet, M., Margerin, L. & Souriau, A. Lopsided growth of
Earth’s inner core. Science 328, 1014–1017 (2010).

11. Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. Thermal and electrical
conductivity of solid iron and ironsilicon mixtures at Earth’s core conditions.
Earth. Planet. Sci. Lett. 393, 159–164 (2014).

12. Pourovskii, L. V., Mravlje, J., Georges, A., Simak, S. I. & Abrikosov, I. A.
Electron-electron scattering and thermal conductivity of ϵ-iron at Earth’s core
conditions. New J. Phys. 19, 073022 (2017).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18003-9 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4105 | https://doi.org/10.1038/s41467-020-18003-9 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


13. Ohta, K., Kuwayama, Y., Hirose, K., Shimizu, K. & Ohishi, Y. Experimental
determination of the electrical resistivity of iron at Earth’s core conditions.
Nature 534, 95 (2016).

14. Konôpková, Z., McWilliams, R. S., Gómez-Pérez, N. & Goncharov, A. F.
Direct measurement of thermal conductivity in solid iron at planetary core
conditions. Nature 534, 99 (2016).

15. Williams, Q. The thermal conductivity of Earth’s core: a key geophysical
parameter’s constraints and uncertainties. Ann. Rev. Earth Planet. Sci. 46,
47–66 (2018).

16. Dubrovinsky, L. et al. Body-centered cubic iron-nickel alloy in Earth’s core.
Science 316, 1880–1883 (2007).

17. Hrubiak, R., Meng, Y. & Shen, G. Experimental evidence of a body centered
cubic iron at the Earth’s core condition. http://arXiv.org/abs/1804.05109
(2018).

18. Belonoshko, A. B. et al. Stabilization of body-centred cubic iron under inner-
core conditions. Nat. Geosci. 10, 312–316 (2017).

19. Hausoel, A. et al. Local magnetic moments in iron and nickel at ambient and
Earth’s core conditions. Nat. Commun. 8, 16062 (2017).

20. Xu, J. et al. Thermal conductivity and electrical resistivity of solid iron at
Earth’s core conditions from first principles. Phys. Rev. Lett. 121, 096601
(2018).

21. Pourovskii, L. V. Electronic correlations in dense iron: from moderate
pressure to Earth’s core conditions. J. Phys.: Condens. Matter 31, 373001
(2019).

22. Vonsovsky, S. V., Katsnelson, M. I. & Trefilov, A. V. Localized and itinerant
behavior of electrons in metals. Phys. Met. Metallogr. 76, 247 (1993).

23. Pourovskii, L. V. et al. Electronic properties and magnetism of iron at the
Earth’s inner core conditions. Phys. Rev. B 87, 115130 (2013).

24. Vocadlo, L. et al. Possible thermal and chemical stabilization of body-centred-
cubic iron in the Earth’s core. Nature 424, 536–539 (2003).

25. Drchal, V., Kudrnovský, J., Wagenknecht, D., Turek, I. & Khmelevskyi, S.
Transport properties of iron at Earth’s core conditions: the effect of spin
disorder. Phys. Rev. B 96, 024432 (2017).

26. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field
theory of strongly correlated fermion systems and the limit of infinite
dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

27. Anisimov, V. I., Poteryaev, A. I., Korotin, M. A., Anokhin, A. O. & Kotliar, G.
First-principles calculations of the electronic structure and spectra of strongly
correlated systems: dynamical mean-field theory. J. Phys. Condens. Matter 9,
7359 (1997).

28. Kotliar, G. et al. Electronic structure calculations with dynamical mean-field
theory. Rev. Mod. Phys. 78, 865–951 (2006).

29. Katanin, A. A. et al. Orbital-selective formation of local moments in α-iron:
first-principles route to an effective model. Phys. Rev. B 81, 045117 (2010).

30. Maglic, R. Van hove singularity in the iron density of states. Phys. Rev. Lett.
31, 546–548 (1973).

31. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector
augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

32. Desjarlais, M. P., Kress, J. D. & Collins, L. A. Electrical conductivity for warm,
dense aluminum plasmas and liquids. Phys. Rev. E 66, 025401 (2002).

33. Mahan, G. D. Many Particle Physics, 3rd edn. (Plenum, New York, 2000).
34. Mravlje, J. et al. Coherence-incoherence crossover and the mass-

renormalization puzzles in Sr2RuO4. Phys. Rev. Lett. 106, 096401 (2011).
35. Gunnarsson, O., Calandra, M. & Han, J. E. Colloquium: saturation of electrical

resistivity. Rev. Mod. Phys. 75, 1085–1099 (2003).
36. Wadati, H. et al. Photoemission and dmft study of electronic correlations in

SrMoO3: effects of hund’s rule coupling and possible plasmonic sideband.
Phys. Rev. B 90, 205131 (2014).

37. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979
(1994).

38. Nosé, S. A molecular dynamics method for simulations in the canonical
ensemble. Mol. Phys. 52, 255–268 (1984).

39. Andersen, H. C. Molecular dynamics simulations at constant pressure and/or
temperature. J. Chem. Phys. 72, 2384–2393 (1980).

40. Aichhorn, M. et al. Dynamical mean-field theory within an augmented plane-
wave framework: Assessing electronic correlations in the iron pnictide
LaFeAsO. Phys. Rev. B 80, 085101 (2009).

41. Aichhorn, M., Pourovskii, L. & Georges, A. Importance of electronic
correlations for structural and magnetic properties of the iron pnictide
superconductor LaFeAsO. Phys. Rev. B 84, 054529 (2011).

42. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. & Luitz, J. WIEN2k, An
augmented Plane Wave+ Local Orbitals Program for Calculating Crystal
Properties (Techn. Universitat Wien, Austria, 2001).

43. Parcollet, O. et al. TRIQS: a toolbox for research on interacting quantum
systems. Comput. Phys. Commun. 196, 398–415 (2015).

44. Aichhorn, M. et al. TRIQS/DFTTools: a TRIQS application for ab initio
calculations of correlated materials. Comput. Phys. Commun. 204, 200–208 (2016).

45. Gull, E. et al. Continuous-time monte carlo methods for quantum impurity
models. Rev. Mod. Phys. 83, 349–404 (2011).

46. Beach, K. S. D. Identifying the maximum entropy method as a special limit of
stochastic analytic continuation. Preprint at https://arxiv.org/abs/cond-mat/
0403055 (2004).

47. Davies, C., Pozzo, M., Gubbins, D. & Alfè, D. Constraints from material
properties on the dynamics and evolution of Earth’s core. Nat. Geosci. 8,
678–685 (2015).

48. Chester, G. V. & Thellung, A. The law of Wiedemann and Franz. Proc. Phys.
Soc. 77, 1005–1013 (1961).

Acknowledgements
We are thankful to I.A. Abrikosov and S.I. Simak for valuable discussions and critical
reading of the paper. Useful discussions with G. Sangiovanni, M. Ferrero, and J. Vuči-
čević are also acknowledged. L.V.P. acknowledges support of the European Research
Council grant ERC-319286-QMAC as well as computational resources of the Swedish
National Infrastructure for Computing (SNIC) at the National Supercomputer Centre
(NSC). L.V.P. is grateful to the computer team at CPHT for support. J.M. acknowledges
support by Program P1-0044 of Slovenian Research Agency. D.A. and M.P. acknowledge
support from the Natural Environment Research Council (NERC) Grant No. NE/
M000990/1 and No. NE/R000425/1. The DFT calculations are performed on the
Monsoon2 system, a collaborative facility supplied under the Joint Weather and Climate
Research Programme, a strategic partnership between the UK Met Office and NERC.
Calculations are also performed at University College London Research Computing on
the Materials and Molecular Modelling hub Grant No. EP/P020194/1 and on the Oak
Ridge Leadership Computing Facility (Contract No. DE-AC05-00OR22725).

Author contributions
L.V.P. carried out the DFT+DMFT electronic structure and transport calculations. D.A.
and M.P. carried out the DFT molecular dynamics and transport calculations. J.M.
derived the analytical expressions for the simplified model. L.V.P., J.M., and D.A. wrote
the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-18003-9.

Correspondence and requests for materials should be addressed to L.V.P.

Peer review information Nature Communications thanks Giorgio Sangiovanni and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18003-9

8 NATURE COMMUNICATIONS |         (2020) 11:4105 | https://doi.org/10.1038/s41467-020-18003-9 | www.nature.com/naturecommunications

http://arXiv.org/abs/1804.05109
https://arxiv.org/abs/cond-mat/0403055
https://arxiv.org/abs/cond-mat/0403055
https://doi.org/10.1038/s41467-020-18003-9
https://doi.org/10.1038/s41467-020-18003-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Electronic correlations and transport in iron at�Earth’s core conditions
	Results
	Electron–nobreakelectron scattering in the presence of thermal disorder
	Self-energy and spectral function
	Evolution of transport as a function of distortion
	Optical conductivity and interpretation of the results
	Electronic structure and conductivity of the hcp-Fe phase

	Discussion
	Methods
	DFT molecular dynamics
	DFT+DMFT electronic structure and transport calculations
	DFT transport calculations

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




