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Abstract

In this paper, we propose polynomial forms to represent distributions of state
variables over time for discrete-time stochastic dynamical systems. This problem
arises in a variety of applications in areas ranging from biology to robotics. Our
approach allows us to rigorously represent the probability distribution of state
variables over time, and provide guaranteed bounds on the expectations, moments
and probabilities of tail events involving the state variables. First, we recall
ideas from interval arithmetic, and use them to rigorously represent the state
variables at time t as a function of the initial state variables and noise symbols
that model the random exogenous inputs encountered before time t. Next, we
show how concentration of measure inequalities can be employed to prove rigorous
bounds on the tail probabilities of these state variables. We demonstrate interesting
applications that demonstrate how our approach can be useful in some situations
to establish mathematically guaranteed bounds that are of a different nature from
those obtained through simulations with pseudo-random numbers.

1 Introduction

In this paper, we consider the problem of rigorously quantifying the uncertainty in the states of
a stochastic dynamical system due to the influence of initial state uncertainties and stochastic
disturbance inputs. This problem is fundamental to many applications. For instance, imagine a
stochastic model of an aircraft whose motion is subject to unknown future wind forces. We wish
to understand the distribution of the aircraft’s position at some future time point of interest in order
to make critical decisions whether the aircraft will collide with a building. Solving such problems
requires us to know facts about the distribution of key state variables at some time instants t in the
future. In turn, we wish to use distributions to reason about quantities such as expectations and
moments, as well as probabilities of events.

Our approach in this paper combines ideas from higher order interval arithmetic [19] and concentration
of measure inequalities [11] to arrive at a framework to reason about uncertainties. (a) We represent
state variables as multivariate polynomial forms over so-called noise symbols that represent some
random variables with known, simple distributions. We use intervals that capture uncertainties that
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can be arbitrarily correlated with these noise symbols. In doing so, we directly extend previous work
by Bouissou et al, which considered affine (linear + constant) functions [5]. (b) We define basic
arithmetic operations such as additions and multiplications over polynomial forms, in addition to more
complex operations such as trigonometric functions and rational functions over polynomial forms.
Finally, (c) we present approaches that can naturally provide upper bounds for tail probabilities
such as P(X ≥ t), for a random variable X and a number t, using concentration of measure
inequalities [11]. We demonstrate that the combination of ideas in this paper can be used to reason
about interesting nonlinear and stochastic dynamical systems from the literature, providing direct
comparisons with the related work of Bouissou et al (ibid).

Our comparison reveals many interesting aspects of our approach. Although it is potentially more
expensive than the affine form approach, the approach in this paper provides tighter bounds in most
cases when compared to affine forms. Furthermore, the polynomial form approach of this paper
does not track correlations between the individual terms, in contrast to Bouissou et al, wherein a
lot of effort is spent tracking such correlations over the terms of the affine form. This results in a
computational advantage despite tracking higher order information. We also use the examples to show
some of the challenging aspects of uncertainty propagation. In summary, we show that the approach
presented here can be promising provided the degree bounds on the polynomials are carefully tuned
to the problem at hand.

1.1 Related Work

The problem of approximating the non-linear image of distributions is of considerable practical
importance, and has received attention from many different communities.

For the case of set-valued uncertainties, so-called Taylor models, originally proposed by Berz and
Makino, use polynomials plus error intervals to represent the possible reachable states at some time
t [19, 21]. This been used for outer (and inner) approximating the image of non-linear functions,
and for discrete, continuous [19, 21] and hybrid dynamical systems [7]. In the probabilistic case,
similar methods [12, 26] provide polynomial approximations of non-linear images of probability
distributions in the sense that any expectations and moments using expansions similar to Taylor
models. These approaches guarantee weak convergence for probability distributions, as the degree of
these polynomials is increased.

In this work, we similarly define polynomial approximations of non-linear images of distributions,
based on simple polynomial arithmetics. The resulting representation, called polynomial forms,
provide a stronger guarantee of measure-theoretic inclusion. In other words, polynomial forms
represent a set of distributions, and furthermore, the actual image distribution is included in this set.
In that sense, our work is more akin to the work on imprecise probabilities, such as Dempster-Shafer
or P-box approximations [13, 25], but without the burden of potential combinatorial explosion of
the size of the representation (e.g. number of focal elements), as has been observed in some of the
related work [1, 5]. In the present work, instead of relying on interval arithmetic [20] and on affine
forms [9] as in our previous work, we rely on polynomial forms that share some similarities with
polynomial zonotopes [16], a generalization of zonotopes and Taylor models.

In uncertainty propagation work and surrogate models theory, similar ideas about polynomial expan-
sions have been exploited. Originally, Wiener expansion was used to model stochastic processes with
Gaussian random variables. In that case, an expansion can be made in terms of Hermite polynomials,
a family of orthonormal polynomials. This has been later expanded to various distributions, still using
a decomposition on a basis of orthonormal polynomials. This approach is known as (generalized)
polynomial chaos, see e.g. [2]. Still, the method is known to be limited to a small number of random
variables. In this work, we use a more classical expansion on a monomial basis, without the need to
calculate suitable orthonormal representations, which are expensive to compute.

Our work also uses general concentration of measures inequalities [11] to derive bounds on tail
probabilities that are of interest to risk analysis and safety verification. Concentration of measure
inequalities have been applied in engineering, mostly for model validation against experimental data
[14], but also for bounding the probability of failure events, see e.g. [18, 28]. In comparison, our
work utilizes rigorously derived error bounds that transfer over to bounds that are rigorous, regardless
of the degree bound on the polynomial form approximation. The error bounds also allow the user to
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make trade-offs between faster computation achieved using lower degree polynomials and the quality
of the bounds obtained knowing the associated error.

2 Preliminaries

Let x ∈ Rn represent a n × 1 vector of state variables. We will use U(a, b) to denote a random
variable with a uniform distribution in the range [a, b],N (µ, σ) to denote a Gaussian random variable
with mean µ and standard deviation σ, and TruncNormal(µ, σ, [a, b]) to denote a truncated normal
distribution with mean µ, standard deviation σ and interval [a, b].

Definition 1 (Discrete-Time System). A discrete time dynamical system Π is defined by the tuple
〈x, f,W,X0〉, wherein x represents the state variables that are updated at each time step as:

x(t+ 1) := f(x(t),w(t)), w(t) ∼ W ,

wherein f : Rn+m → Rn is a continuous function that maps the current state x(t) and current
sample stochastic disturbances w(t) sampled from a probability distributionW to yield the next state
x(t+ 1). The initial states of the system are sampled from an initial distribution x(0) ∼ X0.

Example 1 (Turning Vehicle Model). Consider a model of vehicle with state variables x : (x, y, v, ψ)
modeling the position (x, y), velocity v, and yaw angle (ψ). The vehicle’s velocity is stabilized around
v0 = 10 m/s using a proportional feedback and its yaw is stabilized around ψ0 = 0.1 radians. The
dynamical equations are given by:

x′ = x+ τv cos(ψ), y′ = y + τv sin(ψ), v′ = v + τ(Kv(v − v0) + w1), and ψ′ = ψ + w2 .

Here, x′, y′, v′, ψ′ denote the values of the state variables at time t + 1 and x, y, . . . , ψ de-
note state at time t. The disturbance inputs w1 and w2 are specified by their distributions:
w1 ∼ U(−0.1, 0.1), w2 ∼ TruncNormal(0, 0.1, [−1, 1]). Also, the constant parameter is set
to Kv = −0.5. The initial values of the state variables are chosen according to some ini-
tial distributions: x(0) ∼ U(−0.1, 0.1), y(0) ∼ U(−0.5,−0.3), v(0) ∼ U(6.5, 8.0), ψ(0) ∼
TruncNormal(0, 0.1, [−1, 1]).

Given a system Π, we obtain sample trajectories of the system as a sequence of states
xi(0), . . . ,xi(t), . . ., wherein xi(0) is a sample from the distribution X0 and xi(t+ 1) is obtained
from xi(t) by (a) sampling wi(t) according toW and (b) computing xi(t+ 1) = f(xi(t),wi(t)).
Note that the individual disturbance inputs are all drawn independently of each other. However, each
component of x(t) can be correlated with others due to the dynamical update.

Figure 1: Samples from distributions
X0,X5,X10,X15 and X20 for model
from Example 1.

The behavior of Π can also be understood in terms of
the distribution of states Xt at time t with X0 specified
as part of the system’s description. Let Pt(S) denote the
probability that x(t) ∈ S for a measurable set S, and
furthermore, let Pw denote the distribution function for
the disturbance inputs w. For a measurable set S ⊆ Rn,
we have

Pt+1(S) =

∫

x

∫

w

I {f(x,w) ∈ S}Pw(dw)Pt(dx) .

Here I {A} denotes the indicator function for an event
A. The continuity of f(x,w) guarantees that the integral
on the right is well defined. Note that although X0, the
initial probability distribution andW , the distribution of
disturbances are known distributions from families such as Gaussian, Uniform or Exponential, the
distribution Xt for t > 0 is often hard to reason about.

Figure 1 shows the distribution of trajectories at various time instants for the model from example 1.
We support two types of queries involving the intermediate distributions Xt, for some specified time
t ≥ 0, in this paper:

1. Expectations/Moments: Find bounds on E(h(x(t))) for some function h : Rn → R over
the state variables at some time t.
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2. Tail Probability Queries: Find bounds on P(h(x(t)) ≥ c) for some function h : Rn → R
over the state variables at some time t and bound c. Note that lower tail bounds P(h(x(t)) ≤
c) can be rewritten as P(−h(x(t)) ≥ −c).

Going back to Ex. 1, we wish to know what the expectation of x(10) and y(10) are. We may also
seek to know the probability that x(10) ≥ 8.

3 Polynomial Forms

In this section, we present polynomial forms over noise symbols, to represent probability distributions
Xt over the states x(t) at times t ≥ 0. A key distinction, especially from other polynomial expansion
approaches [22], is that we seek to capture Xt conservatively by bounding the error using intervals.

First, we will define the noise symbols. A noise symbol denoted w is a random variable with a known
“primitive” distribution. An environment η is a map from each noise symbol w to its probability
distribution η(w). Let W denote the set of noise symbols. We will assume that the noise symbols are
all mutually independent.

A power product over variables w : (w1, . . . , wk) is of the form wr11 × wr22 · · · × wrkk , for natural
numbers ri ∈ N. For convenience, we write this power product as wr for vector r : (r1, . . . , rk). The
degree of the power product is given by

∑k
j=1 rj = ||r||1. A multivariate polynomial over variables

w is of the form p(w) :
∑m
i=0 aiw

ri . The degree of the polynomial is the maximum degree amongst
all the power products with nonzero coefficients.

Definition 2 (Polynomial Forms). A polynomial form (p + I) over a set of noise symbols N :
{w1, . . . , wk} consists of a multivariate polynomial p(w1, . . . , wk) over the noise symbols and an

“error” interval I : [`, u].

Formally, the semantics of a polynomial form is a set of functions over w.

Jp+ IK =
{
p(w) + f̂(w)

∣∣∣ f̂(w) is measurable, and (∀w) f̂(w) ∈ I
}
.

Informally, a polynomial form represents two types of uncertainties:

(a) A stochastic component p that is simply a polynomial function of the random variables repre-
sented by the noise symbols in the set N . A sample for this component is given by sampling the
individual noise symbols from their distributions and then evaluating p.

(b) A error component I that is assumed to be modeled by some measurable function f̂ :
(w1, . . . , wk) 7→ I that maps sampled values of the noise symbols to the interval I . The
form of this function f̂ is ignored and its range is simply retained. However, note that the choice
in this interval can be arbitrarily correlated with that of w1, . . . , wk.

(c) A sample from a polynomial form is thus taken to be the sum of a sample each from the stochastic
and error components.

A polynomial form (p+I) can also been seen as defining a family of possible distributions (measures)
over R. Let [a, b) be an interval over the real line. A measure µ over the real numbers is compatible
with the polynomial form (p, I) iff for every interval [a, b) over the reals, µ([a, b)) ∈ {P(p(w) + x ∈
[a, b)) | x ∈ I}. The probability P(·) in the definition above is computed over the joint distribution
of the noise symbols in W .

Example 2. Let w1 denote the distribution N (0, 1) and w2 denote U(−1, 1). The polynomial form
(w1 +w2

2) + [−0.1, 0.1] denotes a family of functions over w1, w2. For example, here is one member
of this family:

pj :





w1 + w2
2 − 0.1 sin(w1 + w2) if w1 ≤ 0, w2 ≤ 0

w1 + w2
2 if w1 ≤ 0, w2 ≥ 1

w1 + w2
2 + 0.1 cos2(w2) otherwise

.

Remark 1. We note that a polynomial form p+ I thus represents an unknown function of the form
p(w)+ f̂(w), wherein f̂ belongs to the interval I . We require f̂ to be measurable. Where appropriate,
we can justify further assumptions about f̂ , in terms of the existence of moments E(f̂k).
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3.1 Calculus of Polynomial Forms

We describe elementary operations over polynomial forms, including polynomial form arithmetic and
the application of functions such as sine and cosine.

Let range(p) for polynomial p(w) denote the range of possible values of pi(w). The range can
be computed using standard interval arithmetic approaches that treat each random variable as an
interval ranging over its set of support. We assume basic interval operations such as ⊕ for adding two
intervals, and ⊗ for multiplying intervals (Cf. [9, 19, 20]).

Linear Combinations: Given two polynomial forms (p1 + I1) and (p2 + I2), their sum is given
by the form p1 + p2 + (I1 ⊕ I2). Likewise, the product of a form p+ I by a scalar λ is given by the
form λp+ λI .

Multiplication: Let p1 + I1 and p2 + I2, be the two forms. The multiplication of the forms, denoted
(p1 + I1)⊗ (p2 + I2), is given by the form p+ I with polynomial component p : p1 × p2 and the
interval I : (I1 ⊗ I2)⊕ (I1 ⊗ range(p2))⊕ (I2 ⊗ range(p1)).
Lemma 1 (Soundness of Multiplication). For given polynomial forms (p1 + I1) and (p2 + I2)
J(p1 + I1)⊗ (p2 + I2)K ⊇ {f1 × f2 | f1 ∈ Jp1 + I1K, f2 ∈ Jp2 + I2K }.
Proofs are included in the appendix as part of the supplementary materials.

Truncation: Often polynomial forms grow in degree, especially due to operations such as multipli-
cation. Therefore, we can truncate the polynomial by removing power products that exceed some
maximum degree bounds. Formally, for polynomial form p+ I: (a) Write p = p1 + p2 wherein p1
has all those power products with degree less than the cutoff K, and p2 has the power products with
degree greater than K. (b) The form truncD(p+ I) is then defined as p1 + (I ⊕ range(p2)).

Continuous Functions: Let g : R→ R be a function that is continuous and m times differentiable.
Let p+ I be a polynomial form. We wish to compute a polynomial form corresponding to g(p+ I).
To do so, we proceed as follows:

1. Choose a “center” point c given by the midpoint of range(p).
2. Perform a Taylor series expansion of g around c using the first j + 1 derivatives of g where
j + 1 ≤ m: g(c+ h) = g(c) + g′(c)h+ · · ·+ g(j)(c)h

j

j! +Rj+1.
3. Substitute the polynomial form (p− c+ I) for h using ⊗ as the multiplication operator.
4. The Lagrange remainder Rj+1 is given by estimating the range of the function:
g(j+1)(x) xj+1

(j+1)! for x ∈ range(p+ I).

Let p̂+ Î be the result of carrying out the computations above for a polynomial form p+ I .

Lemma 2. For a m times differentiable function g and j + 1 ≤ m, then Jg(p+ I)K ⊆ Jp̂+ ÎK.

Using the idea above, we can compute functions such as sin, cos and exp over polynomial forms.

3.2 Polynomial Form Uncertainty Propagation

Thus far, we have encountered polynomial forms and studied how to perform basic calculations such
as arithmetic and function applications. We will now extend this to represent the distributions Xt at
time t for a dynamical system Π. Before we do so, we make some simplifying assumptions.

1. Compactly supported distributions: We will assume that all the distributions in Π, including
the initial states and the distribution of the disturbances at each step, have a compact support.
Whereas this is somewhat restrictive, it is possible to artificially truncate distributions such
as Gaussian to a compact interval, and account for the probability of a sample falling outside
of the truncation in our probability calculations (Cf. [24, Section 3.2]).

2. All moments exist: All the moments E(wj) exist for j ≥ 1.
3. Smooth Updates: We assume that the update function f(x,w) of the dynamical system is
C∞: I.e, it is continuous and arbitrarily differentiable.

The approach begins by mapping each state variable xj(0) with a corresponding polynomial form
pj,0 + Ij,0. Initial pj,0 = wj,0 and Ij,0 = [0, 0], wherein wj,0 is a noise symbol with distribution
given by the initial distribution of the state variable xj(0).
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At the tth step, we obtain polynomial forms pj,t + Ij,t corresponding to xj(t). Since, x(t + 1) =
f(x(t),w(t)), we introduce fresh noise symbols corresponding to w(t) and substitute each xj(t) by
the polynomial form pj,t + Ij,t. Next, we use the polynomial form evaluation over the function f to
compute a polynomial form for x(t+ 1).

Example 3. Consider again the example 1. For time t = 0, we initialize the state variables to
polynomial forms, by introducing noise symbols w0, w1, w2 and w3. The state variables at time t = 0
are x(0) : w0, y(0) : w1, v(0) : w2, ψ(0) : w3, whereinw0 : U(−0.1, 0.1), w1 : U(−0.5,−0.3),
w2 : U(6.5, 8.0) andw3 : TruncNormal(0, 0.1, [−1, 1]). Note that x(1) : x(0)+0.1v(0) cos(ψ(0)).
Carrying out these calculations using the polynomial forms yields the form for x(1).

x(1) : w0 + 0.0999306w2 − 0.05w2w
2
3 + [−0.00055, 0.034] .

As we propagate the polynomial forms from one time step to another, we obtain larger polynomials
involving increasing number of noise symbols. At time t = 20, the polynomial for x(20) involves 42
noise symbols and 269 terms:

x(20) : [7.13, 7.60]− 0.31w2
41 + 0.026w4

41 + · · · − 0.045w2w
2
7 − 0.048w2w

2
5 − 0.05w2w

2
3 +w0 .

3.3 Bounding Expectations and Moments

We will now describe how to bound expectations and moments of polynomial forms. Let (p, I) be a
polynomial form involving noise symbols w with the assumptions stated in Section 3.2. Let f̂(w) be
a continuous function over noise symbols w, wherein w belongs to a compact set, and furthermore
f̂(w) ∈ I for l, u ∈ R. For any j ∈ N, let Ij denote the interval over approximation of the set
{xj | x ∈ I}.
Lemma 3. For any j ∈ N, the moment E(f̂ j) is bounded by the interval Ij .

Using this, we can bound the expectation of a polynomial form p + I . Let p =
∑
j ajw

rj . To

compute E(p) :
∑
j ajE(wrj ). Each power-product wrj is expanded out as

∏k
i=1 w

rj,i
i . We use the

pairwise independence of the noise symbols to compute its expectation as
∏k
i=1 E(w

rj,i
i ). For each

noise symbol wi, the environment η maps it to a distribution whose moment generating function is
assumed to be known. The overall expectation of the form is bounded by the interval E(p) + I .

A similar approach can be utilized for higher-order moments. However, they require us to first
compute (p+ I)j using the multiplication operation defined over polynomial forms. The subsequent
section presents an approach to make the computation of higher moments more efficient.

4 Concentration of Measure

In this section, we study how to provide bounds on tail probabilities P(p + I ≥ c) (equivalently
P(p + I) ≤ −c). Let I be the interval [l, u]. We note that P(p + I ≥ c) ≤ P(p ≥ c − u) since
p+ [l, u] ≥ c implies that the latter event p ≥ c− u. For queries of the form P(h(p+ I) ≥ c), we
first evaluate the function h(p+ I) as a polynomial form, reducing it to the former problem. Next,
since we can compute E(p), we restate the problem as P(p− E(p) ≥ c− u− E(p)).

Computing or bounding the probability requires us to bound an integral over the noise symbols w.
These integrals involve indicator functions and are not known in a closed form. For instance, the
polynomial form shown in Ex. 3 has 42 noise symbols and 269 terms, making the integral all but
impossible to compute precisely. In what follows, we present concentration of measure inequalities
to estimate upper bounds.

Let s : c−u−E(p). We will now recall various inequalities that can be used and provide approaches
to calculate the bounds. A more in-depth presentation can be found elsewhere [11].

Chebyshev Inequality: P(p− E(p) ≥ s) ≤ E((p−E(p))2)
s2 .

The numerator is the variance of p. To compute it, we can take the square of the polynomial p−E(p),
and compute its expectation. Likewise, we may extend Chebyshev inequality to consider higher
moments 2m for m ≥ 1. P(p− E(p) ≥ s) ≤ E((p−E(p))2m)

s2m . However, such a computation can be
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expensive if p is a large polynomial involving numerous terms. In such a case, we can exploit the
structure of p to split it into mutually independent components. We will discuss these simplifications
further and show how they enable the application of other concentration inequalities.

4.1 Splitting Polynomial Forms

We briefly discuss ideas around making the polynomial forms sparser to minimize the computational
overhead while maintaining the tightness of the bounds on the expectation and probability queries.
In theory, if we restrict ourselves to polynomials of degree at most d, the number of terms in the
polynomial form after n steps grows as O((n|W |)d), wherein |W | is the number of disturbance
variables in the system and d is the degree limit. This can be prohibitively expensive as n grows in
the thousands, even for a small degree d. We present ideas to control the growth in the size of the
polynomial form and make the calculations for expectations and bounds tractable: (a) Truncation:
moving terms with small ranges from the polynomial to the interval part to reduce the polynomial
size while keeping the error bounds small. We have discussed truncation previously in Section 3.1.
(b) Splitting: writing the polynomial form as the sum of mutually independent components in order
to make the calculation of higher moments faster; and finally (c) Partitioning: balanced partition
approach to select terms that can be truncated to improve our ability to split.

Splitting Polynomials into Components: We describe splitting of polynomials to help us apply
Chebyshev bounds efficiently and also allow us to apply bounds Chernoff and Bernstein bounds. The
idea is to split a polynomial form as a sum of mutually independent polynomials involving a subset
of the variables. Let p :=

∑m
j=1 ajw

rj be a polynomial form. A noise symbol wi is related to wj iff
there exists a term in p that contains both wi and wj with positive powers.

Example 4. Consider the polynomial p = w1w2 + w2
1 + w2

3 + w4w5. We note that the relation
consists of the pairs (w1, w2) and (w4, w5).

Naturally, the relation between noise symbols forms an undirected graph Gp that connects two noise
symbol by an edge if they occur in the same power-product. Next, we compute the strongly connected
components of Gp. This defines a partition of the noise symbols W into disjoint subsets W1, . . . ,Wj ,
and a corresponding “splitting” of p into p1, . . . , pj such that p = p1(w1) + · · ·+ pj(wj).

Example 5. Going back to Ex. 4, we note that the set of noise symbols is partitioned into {w1, w2},
{w3} and {w4, w5}. Likewise, the polynomial p is now split into p = p1(w1, w2) + p2(w3) +
p3(w4, w5) wherein p1 : w1w2 + w2

1 , p2 : w2
3 and p3 : w4w5.

Splitting a polynomial into components can allow us to apply Chebyshev bounds more effi-
ciently. Recall that applying Chebyshev bounds requires us to compute E((p − E(p))2m). (a)
The polynomials p1, . . . , pj are functions of mutually disjoint sets of random variables. There-
fore, pi is independent from pj . (b) The variance V (p) : E((p − E(p))2) can be decomposed as∑j
i=1 V (pi). (c) The fourth moment E((p−E(p))4) can be decomposed as

∑j
i=1 E((pj−E(pj))

4)+

2
∑j−1
i=1

∑j
l=i+1 V (pi)V (pl). Similarly, we can obtain computationally efficient means to calculate

the higher order central moments of p in terms of pi.

Thus the decomposition of a large polynomial into mutually independent parts allows us to save time
when computing the central moments. Splitting a polynomial p into pairwise independent components
also allows us to utilize inequalities over sums of random variables such as Chernoff-Hoeffding and
Bernstein bounds.

Chernoff-Hoeffding Bounds: Let range(pi) : [ai, bi]. The Chernoff-Hoeffding bounds are as
follows [15]: P(p− E(p) ≥ s) ≤ exp

(
− 2s2∑j

i=1(bi−ai)2

)
.

Bernstein Bounds: Using the V (pi) of the individual components pi, yield Bernstein inequali-
ties [4]. Let M be a number chosen such that |pi − E(pi)| ≤ M for each i = 1, . . . , j. We have
P(p− E(p) ≥ s) ≤ exp

(
−s2

2
∑j

i=1 V (pi)+
2sM

3

)
.

Example 6. Consider again the turning vehicle model from Ex. 1. Our goal is to bound the probability
P(y(8) ≥ 2). The polynomial form for y(8) is computed with truncation applied to terms of degree
7 or more, at each step of the computation. The result is a polynomial form over 20 noise symbols
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of degree 6. Using Chebyshev bounds, we conclude that P(y(8) ≥ 2) ≤ 0.009. However, Chernoff
inequality yields a bound 0.95 whereas Bernstein inequality yields 0.81.

In general, for a problem of the form P(p − E(p) ≥ s), Chebyshev bounds are of the form βs−2

whereas Chernoff bounds are of the form exp(−γs2). As s grows larger, the latter bounds will be
tighter. The constants β, γ are computed by our approach.

Balanced Partitioning of Polynomials: A final optimization enables us to selectively move terms
from the polynomials to the error interval in order to enable splitting a large polynomial involving
many noise symbol into the sum of smaller mutually independent polynomials, while at the same
time keeping the overall width of the error interval within bounds. We show that this process can be
reduced to a mixed integer optimization problem to perform a “balanced partitioning” of a weighted
graph [3], whose vertices represent noise symbols and weighted edges represent noise symbols
that occur together with the weight representing how much the width of the error interval. We will
describe this approach and a preliminary study in our supplementary material. A detailed study will
be provided in an extended version of this paper.

5 Experiments

In this section, we describe an evaluation of our approach using some challenging nonlinear stochastic
systems taken from the literature. We present a comparison of our work with the related approach
of Bouissou et al [5], which uses affine forms. Although affine forms are degree one polynomials,
Bouissou et al approach also includes the creation of new noise symbols representing nonlinear
functions of previous noise symbols along with correlations between them.

Our evaluation is based on a C++-based prototype implementation that reads in the description of
a nonlinear dynamical system over a set of system and disturbance variables. The dynamics can
currently include polynomials, rational and trigonometric functions. Our implementation uses the
MPFI library to perform interval arithmetic in order to rigorously bound the errors and guarantee
soundness [23]. On the side, we manually implemented each benchmark as a python program in
order to perform numerical simulations using pseudorandom numbers for comparison.

Table 1 shows the results over a set of 8 benchmark problems. taken from various domains such
as robotics, physics and biology. Each benchmark involves a discrete-time nonlinear stochastic
model along with some “queries” that take the form of computing expectations of state variables, or
bounding probabilities of simple properties. A detailed description of each benchmark and properties
are available as part of the appendix.

First, the results clearly demonstrate that polynomial forms are more computationally expensive in
many cases but nevertheless, can provide tighter bounds when compared to affine forms. Curiously,
the affine form approach times out for the Cartpole model which involves repeated multiplications of
affine forms followed by sin / cos operations. This causes the size of the forms to double at each step.
Polynomial forms avoid this blowup by maintaining higher order terms involving a smaller set of
noise symbols in this case.

Next, we note that in almost all cases, the polynomial form approach is able to provide very tight
interval bounds on the expectations. Note that these bounds are rigorous due to the rigorous interval
arithmetic used in our approach.

Finally, we compare the bounds placed on probabilities. Herein, the polynomial form drastically
improves upon the affine form approach. Nevertheless, the conservative nature of concentration of
measure inequalities is clearly seen. In many cases, however, our approach places upper bounds
on the probabilities of the rare events that are not seen in simulations. Such bounds help us prove
guarantees for these stochastic systems.

6 Conclusion

To conclude, we have provided an approach that provides guaranteed bounds on the expectations
of state variables for nonlinear stochastic dynamics, and show how concentration inequalities can
provide bounds for probabilities of tail inequalities. In the future, we propose to investigate further
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Table 1: Results on nonlinear benchmark models comparing our approach (Poly. Form) against the
affine form approach [5] and 105 simulations. |X|, |W |: # state and disturbance variables, N : #
time steps, D: degree of polynomial form. All timings indicated by the� symbol are in seconds. A
detailed description of the models is provided in the appendix.

Benchmark (|X|, |W |) N D Poly. Form Aff. Form [5] 105 Sim.
Rimless (1,1) 2000 2 �46.1 s �75s �341.3s

Wheel [27] E(x) [1.791,1.792] [1.02,3.73] 1.7911
P(x ≤ 0) 0.036 0.61 0

2DRobot (3,2) 100 2 �35.8s �30.1s �143.4s
Arm [5] E(x): [268.87,268.88] [268.6,270.7] 268.85

P(x ≥ 272): 7E-8 1E-2 0

Cartpole (4,1) 8 2 �45s �3.5s
[27] E(x): [-0.176,0.196] 0.0076

E(θ) : [-0.344,0.346] �Timeout 0.0014
P(x ≥ 2) : 0.006 > 1 hour 0

P(θ ≥ π/6) : 0.017 0

Ebola (5,0) 25 6 �10.1s �1.5s �1.3s
[8] E(I): [0.0983,0.09834] [0.0283,0.157] 0.098

E(e): [0.0756,0.0757] [-0.058,0.184] 0.0757
P(e ≥ 0.1): 0.037 1 3.2E-4

P(I ≤ 0.05): 0.03 1 0

Honeybee (5,0) 25 4 �52.9s �13.6s �28.5s
[6, 10] E(z1): [241.099,241.103] [16.1887,512.898] 241.101

E(z2): [85.393,85.3952] [-49.5456,238.419] 85.396
P(z1 ≥ 265): 0.018 1 0
P(z2 ≤ 60): 0.014 1 0

Coupled (6,3) 15 2 �60.8s �1.1s �2.3s
Vanderpol E(y3): [0.427,0.432] [0.409,0.451] 0.429
Oscillator P(y3 ≥ 0.6) 0.21 0.89 7.21E-4

P(y3 ≤ 0.2) 0.12 0.74 0

Laub-Loomis (7,0) 25 4 �253.9s �8.2s �1.97s
Network E(x1): [0.9429,0.9436] [−∞,∞] 0.9433

[17] E(x2): [0.7592,0.7624] [−∞,∞] 0.761
P(x1 ≤ 0.7): 0.0029 1 0

P(x1 ≥ 0.95): 0.0145 1 0
10x1 Lattice (10,0) 15 4 �71.8s �63.9s �3.6s

Particles E(u1): [-0.0523,-0.0521] [-0.36,-0.01] -0.0521
[29] E(u8): [0.0412,0.0425] [-0.072, 0.068] 0.0418

P(u1 ≥ 0): 5E-4 0.99 0
P(u8 ≤ 0): 0.81 1 0.1385

applications of concentration of inequalities such as the method of bounded differences/variances to
establish bounds on how each disturbance input affects the final property of interest [11].
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7 Broader Impact

We, as a society, rely on mathematical models and their predictions a lot more than we realize. The
current COVID-19 pandemic, the kerfuffle during winter 2019 over the predicted course of hurricane
Dorian, or one of the many causes of the 2008 great depression involving trading in derivatives
based on faulty modeling assumptions, all bear witness to this fact. Beyond this, many safety critical
applications to autonomous control systems such as closed loop medical devices rely on selecting
optimal control strategies based on predictions provided by dynamical system models.

The present work uses tail inequalities to mechanize the derivation of mathematically rigorous bounds
on predictions over future states of stochastic dynamical models. This has beneficial impacts in that,
where it is applicable, such analysis can help us carefully analyze models and quantify uncertainty
in the model predictions. For instance, our work may be used to predict that an aircraft flown using
the control strategy in Ex. 1 will remain free from collision with building 30 meters away from its
predicted trajectory with at least 99% confidence.

At the same time, it is important to realize that in many instances, assumptions that are made such
as “this disturbance behaves like a Gaussian random variable” are, at best, approximations. These
approximations often become less valid when higher order moments or the tail behavior of these
random variables are examined. We note that this paper uses approaches that rely intimately on
knowing the higher order moments and reasoning about tail behaviors of polynomial functions
of random variables. Negative impacts could include a false sense of confidence or trust in the
reliability of a prediction in the case of forecast models or in a control strategy, derived from modeling
assumptions that may be unsound. This negative impact is best mitigated in multiple ways which we
hope to address in our future work: (a) provide a sensitivity analysis on how the conclusions change
if the distributions are perturbed; or (b) work with partially specified families of distributions with
uncertain expectations, variances and higher moments. We note that our approaches in this paper are
highly suited for the latter approach.
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