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Summary

This paper suggests to replace PIs and PIDs, which play a key rôle in control
engineering, by intelligent Proportional-Derivative feedback loops, or iPDs, which
are derived from model-free control. This standpoint is enhanced by a laboratory
experiment.
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1 INTRODUCTION

Proportional-Integral-Derivative and Proportional-Integral regulators, or PIDs and PIs, are, as well-known, the most popular
industrial feedback loops (see, e.g.,6,7,19,20,42,44). They ought therefore to be termed universal. Their serious shortcomings partly
explain nevertheless the important developments of “modern”model-based control theory during the second half of the twentieth
and the beginning of the twenty first centuries. In spite of beautiful achievements, PIs and PIDs still largely prevail in engineering.
This paper aims to suggest a new universal feedback loop. It is derived from Model-Free Control, or MFC, in the sense of15,
i.e., a control setting with two purposes:

• to keep the benefits of PIs and PIDs, and, especially, the futility of almost any mathematical modeling in control
engineering;

• the deletion of many drawbacks of PIs and PIDs like, for instance, the devilish gain tuning difficulties or the lack of
robustness.

The numerous successful concrete applications (see, e.g.,9,15,17, and the corresponding bibliographies for references until the
beginning of 2020) demonstrate that those aims have been fulfilled to a great extent. See, e.g., the recent appraisal in4: “MFC
is computationally efficient, easily deployable even on small embedded devices, and can be implemented in real time.” Sev-
eral conclusive concrete comparisons with PIs and PIDs have been published (see, e.g.,2,3,8,13,22,27,29,35,39,41,43,46,54,55).1 Here we
suggest a single universal feedback loop, i.e., the intelligent Proportional-Derivative controller, or iPD,

u = −
Fest − ÿ∗ +KP e +KDė

�
(1)

which is derived from the ultra-local model of order 2 in the sense of15

ÿ = F + �u (2)

1Comparisons with several other control strategies have also been investigated (see, e.g., 1,4,10,16,30,36,56,57,59,60).
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• u and y are the input and output variables.

• The time-varying quantity F corresponds to the poorly known plant and to the disturbances; Fest is an estimate of F .

• The constant � is chosen such that the three terms of Equation (2) are of the same magnitude.

• y∗ is the reference trajectory.

• e = y − y∗ is the tracking error.

• The constants KP and KD are the gains.

Successful implementation of iPDs have already been achieved a number of times (see, e.g.,8,10,23,26,38,52,53):

• The gain tuning is straightforward.

• Recent algebraic parameter identification techniques18,51 and Riachy’s trick47 permit to avoid tedious numerical deriva-
tions of the output signal y.

• Good robustness with respect to corrupting noises is ensured via a new noise understanding14.

Until today MFC was offering not only the iPD (2) but also the intelligent Proportional controller, or (iP),

u = −
Fest − ẏ∗ +KP e

�
(3)

for the ultra-local model of order 115,
ẏ = F + �u (4)

Assume that “almost” any I/O system may be locally approximated by Equation (2), i.e., by an ultra-local model of order 2.
This postulate, which is the main conceptual novelty of our paper, is vindicated by fifteen years of MFC practice. It applies of
course to a system which is well approximated by an ultra-local-model of order 1, i.e., by Equation (4). The ubiquity of the iPD
(1) follows at once. A laboratory experiment is presented in order to sustain this viewpoint. The Quanser AERO, i.e., a half-
quadrotor, is used as in two recent publications17,34: it is available at the Université de Lorraine. The results shows that adding
an integrator deteriorates the behavior: intelligent Proportional-Integral-Derivative controllers, or iPIDs, might be useless.
Our paper is organized as follows. Basic facts on MFC are reviewed in Section 2. Riachy’s trick47 in particular, which plays a

key rôle in the implementation of iPDs, is detailed in Section 2.4 for the first time since a conference communication ten years
ago where it was only sketched. Section 3 is dedicated to the laboratory experiments. Concluding remarks and suggestions for
future investigations are presented in Section 4.

2 BASIC FACTS ON MODEL-FREE CONTROL

2.1 Generalities
Elementary functional analysis and differential algebra permit to prove15 that under quite weak assumptions any SISO system
with input u and output y may be well approximated by

y(n) = F + �u (5)

where

• the system might be infinite-dimensional and correspond to rather arbitrary functional equations and/or partial differential
equations;

• n ≥ 1 is the derivation order;

• the time-varying quantity F subsumes not only the un-modeled dynamics, but also the external disturbances;

• the constant � ∈ ℝ is such that the three quantities y(n), F , �u in Equation (5) are of the same order of magnitude.

Note that
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• the poorly known plant is not necessarily of order n: y(�), where � > n may be sitting in F ;

• in all the numerous concrete case-studies that were encountered until now, n = 1 or 2;

• it is meaningless to try to estimate � precisely.

If n = 2, Equation (5) yields Equation (2). Associate to Equation (2) the intelligent Proportional-Integral-Derivative controller,
or iPID,

u = −
Fest − ÿ∗ +KP e +KI ∫ e +KDė

�
(6)

where

• y∗ is the reference trajectory,

• e = y − y∗ is the tracking error,

• KP , KI , KD are tuning gains.

Equations (2) and (6) yield
ë +KDė +KP e +KI ∫ e = F − Fest (7)

Select KP , KI , KD such that the roots of the characteristic equation

s3 +KDs
2 +KP s +KI = 0 (8)

have strictly negative real parts. It ensures that limt→+∞ e(t) ≈ 0 if the estimate Fest is “good,” i.e., F − Fest ≈ 0. Thus local
stability around the reference trajectory is trivially ensured via this feedback loop. Note that global stability is obviously dif-
ficult, if not impossible, to study without any mathematical modeling. Let us emphasize that the situation is much worse with
classic PIs and PIDs where no stability property is available in general. The intelligent Proportional-Derivative controller (iPD)
(1)) is obtained by setting KI = 0. The intelligent Proportional-Integral (iPI) (resp. intelligent Proportional (iP)) controller
corresponds to KD = 0 (resp. KI = KD = 0).
The application of the Routh-Hurwitz20,21,44 criterion to Equation (8) shows that the tuning of KP and KI alone does not

permit to get arbitrary roots. It yields

Fact 1. If n = 2, iPs and iPIs do not work in general.

2.2 An estimation integral
Take Equation (2). According to a a classic result of mathematical analysis (see, e.g.,11), F may be approximated, under a weak
integrability condition, by a piecewise constant function. Replace therefore Equation (2) by

ÿ = Φ + �u

where Φ is a constant. It yields via the rules of operational calculus (see, e.g.,58)

s2Y = Φ
s
+ U + sy(0) + ẏ(0)

In order to get rid of the initial conditions, derive both sides twice by d
ds
:

2Φ
s3

= s2 d
2Y
ds2

+ 4sdY
ds

+ 2Y − d2U
ds2

Multiplying both sides by s−N ,N ≥ 3, permits to get rid of positive powers of s, i.e., of time derivatives, which are very sensitive
to corrupting noises. Negative powers of s, which correspond to iterated time integrals: noises are mitigated (see Remark 1
below). Thanks to the correspondance between d

ds
and the multiplication by −t, we get in the time domain for N = 3 (see,

e.g.,10,38)

Fest(t) =
60
�5

t

∫
t−�

(�2 + 6�2 − 6��)y(�)d� − 30�
�5

t

∫
t−�

(� − �)2�2u(�)d� (9)

where � > 0 is “small.”
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Remark 1. According to14 the robustness with respect to corrupting noises is ensured via the integrals in Equation (9). There is
no need to know the precise probabilistic/statistical nature of the noises which are viewed as quick fluctuations around 0. See,
e.g.,40,51 for applications in signal processing.

Remark 2. In practice the integrals in Equation (9) are replaced by finite impulse response (FIR) filters (see, e.g.,45).

2.3 iPs & PIs, iPD & PIDs
2.3.1 PI & iP
Consider the PI regulator

u = kpe + ki ∫ e
where kp, ki are the gains. Derive both sides:

u̇(t) = kpė(t) + kie(t)
A crude sampling yields:

u(t) − u(t − ℎ)
ℎ

= kp
e(t) − e(t − ℎ)

ℎ
+ kie(t) (10)

where ℎ is the sampling period.
Replace F in Equation (3) by ẏ(t) − �u(t − ℎ) and therefore by

y(t) − y(t − ℎ)
ℎ

− �u(t − ℎ)

It yields
u(t) = u(t − ℎ) −

e(t) − e(t − ℎ)
ℎ�

+
KP

�
e(t) (11)

Fact 2. Equations (10) and (11) become identical if we set

kp = −
1
�ℎ
, ki =

KP

�ℎ
(12)

2.3.2 PID & iPD
Consider the PID regulator

u = kpe + ki ∫ e + kd ė
where kp, ki, kd are the gains. Derive both sides: u̇(t) = kpė(t) + kie(t) + kd ë(t). It yields the obvious sampling

u(t) − u(t − ℎ)
ℎ

= kpė(t) + kie(t) + kd ë(t) (13)

Replace in Equation (2) F by ÿ(t) − �u(t − ℎ):
u(t) − u(t − ℎ)

ℎ
= − 1

�ℎ
ë(t) +

KP

�ℎ
e(t) +

KD

�ℎ
ė(t) (14)

Fact 3. Equations (13) and (14) become identical if we set

kp =
KD

�ℎ
, ki =

KP

�ℎ
, kd = −

1
�ℎ

(15)

2.3.3 Sampling and equivalence
The equivalences in Facts 2 and 3, which go back to5,15, are strictly related to time sampling, i.e., to the computer implementation,
as demonstrated by taking ℎ ↓ 0 in Equations (12) and (15). In other words, the above equivalences do not hold in continuous-
time. Those two facts nevertheless

1. explain the ubiquity in “real life” of PIs and PIDs,

2. explain the difficulty of gain tuning for PIs and PIDs,

3. question the necessity of introducing generalized PIDs (see, e.g.,28,49).

Remark 3. Formulae (12) and (15) should not be employed (compare with25) in order to deduce an iP (resp. a PI) from a PI
(resp. an iP).
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2.4 Riachy’s trick
Consider the ultra-local model (2) and the iPID (6). Following Riachy et al.47 write

ÿ +KDẏ = F +KDẏ + �u (16)

Set

Y (t) = y(t) +KD

t

∫
c

y(�)d� (17)

where 0 ≤ c < t. It yields
Ÿ = ÿ +KDẏ

Set
F = F +KDẏ

Equations (2)-(16) read
Ÿ = F + �u (18)

The iPID (6) becomes

u = −
Fest − ÿ∗ +KP e +KI ∫

t
c e −KDẏ∗

�
(19)

Fest is given by (9) where y is replaced by Y . SetKI = 0 in Equation (19) for the iPD. Riachy’s trick permits to implement iPDs
and iPIDs without estimating derivatives.

Remark 4. Resetting c in Equation (17) permits to trivially avoid any integral windup in Equations (17) and (19).

2.5 The key postulate
Assume that almost any system encountered in practice, which is well approximated by Equation (5), where n ≥ 1, may be also
well approximated by Equation (2), i.e., by an ultra-local model of order 2.

Remark 5. The determination of the lowest order n in Equation (5) seems to be a difficult mathematical question33 which is far
from being fully clarified. The above postulate shows that this question may be pointless from an applied standpoint.

3 A LABORATORY EXPERIMENT

3.1 Presentation
Employ as in17,34 the Quanser AERO (see Figure 1), i.e., a half-quadrotor, manufactured by the company Quanser (see the link
https://www.quanser.com/products/quanser-aero/). Two motors driving the propellers, which might turn clockwise
or not, are controlling the angular position y (rad) of the arms.
Write vi, i = 1, 2, the supply voltage of motor i, where −24v ≤ vi ≤ 24v (volt). Introduce the single control variable u. Set

• if u > 0, then v1 = 10 + u and v2 = −10 − u

• if u < 0, then v1 = −10 + u et v2 = 10 − u

The sampling time interval is 10ms. The sample number for estimating integrals is 30.
After exhibiting as in34 the performances of an iP, corresponding to a first order ultra-local model, we show that there is

no degradation with an iPD associated to a second order ultra-local model. Let us emphasize that an iPID, which leads to
oscillations, should be avoided.

Remark 6. The experiments show, as outlined in Remark 1, a good robustness with respect to the unavoidable corrupting noises,
among which the quantization noise is perhaps the most important one.
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FIGURE 1 The Quanser AERO

3.2 iP
Set in Equations (3)-(4) � = 10, KP = 25. Three scenarios are examined:

• Scenario 1: Figure 2 exhibits good performances with a rather simple reference trajectory.

• Scenario 2: With a more complex reference trajectory Figure 3 still displays good performances.

• Scenario 3: At t = 15s, disrupt now manually the system so that it rotates around the base axis. The corresponding
centrifugal force should be seen as a perturbation. Figure 4 shows an excellent rejection.

(a) Reference trajectory and position (b) Control input

FIGURE 2 iP: Scenario 1
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(a) Reference trajectory and position (b) Control input

FIGURE 3 iP: Scenario 2

(a) Reference trajectory and position (b) Control input

FIGURE 4 iP: Scenario 3

3.3 iPD
Employ now with the same device a second order ultra-local model and an iPD. Set � = 10, KP = 25, KD = 10 in Equations
(1)-(2). Figures 5, 6, 7 display the performances with respect to scenarios 4, 5, and 6, which are the analogues of scenarios 1, 2,
and 3 in Section 3.2. The results are similar to those in Section 3.2: they are again excellent.

3.4 iPID
With respect to the iPD (6), the scenarios 7, 8, and 9, which are displayed by Figures 8, 9, and 10, are the analogues of scenarios
1 and 4 in Sections 3.2 and 3.3. The coefficient � = 10, the gains KP = 25 and KD = 10 are the same as in Section 3.3.
Performances deteriorate when the gain KI increases “too much.”
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(a) Reference trajectory and position (b) Control input

FIGURE 5 iPD: Scenario 4

(a) Reference trajectory and position (b) Control input

FIGURE 6 iPD: Scenario 5

4 CONCLUSION

In order to be fully accepted the proposed replacement of traditional PIs and PIDs by iPDs needs of course further confirmations
via many concrete case-studies. If this is the case, several investigations ought to be carried on. Let us mention here:

• The determination of the coefficient � in Equation (2) should be better analyzed. See17 for a first hint.

• The impossibility of ensuring global stability in the context of model-free control should be replaced by a suitable
replanning of the reference trajectory (see, e.g.,12 for a replanning example in the context of flatness-based control).

• The extension to iPDs of the hardware for iPs in32.

• The extension of the treatment of multi-input multi-output (MIMO) systems in36.
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(a) Reference trajectory and position (b) Control input

FIGURE 7 iPD: Scenario 6

(a) Reference trajectory and position (b) Control input

FIGURE 8 iPID: Scenario 7 (KI = 0.001)

• The extension to the discrete-time approach in48.

• A more thorough study of iPIDs in order to determine possible benefits with respect to iPDs.2

• The regulation via PIDs of systems with delays is far from being fully understood (see, e.g.,37,50). It would be rewarding
to extend, if possible, the time series setting in24 for supply chain management.

• The approach to machine learning sketched in17 should benefit from the unicity of the feedback loop advocated here. See
also48.

2Would for instance the most convincing application 31 to an electromagnetic robot, where an iPID is employed, be improved or not by an iPD?
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(a) Reference trajectory and position (b) Control input

FIGURE 9 iPID: Scenario 8 ( KI = 0.01)

(a) Reference trajectory and position (b) Control input

FIGURE 10 iPID: Scenario 9 ( KI = 0.1)
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