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Abstract.– We present some “in silico” experiments to design combined chemo- and immunother-
apy treatment schedules. We introduce a new framework by combining flatness-based control,
which is a model-based setting, along with model-free control. The flatness property of the
used mathematical model yields straightforward reference trajectories. They provide us with
the nominal open-loop control inputs. Closing the loop via model-free control allows to deal
with the uncertainties on the injected drug doses. Several numerical simulations illustrating
different case studies are displayed. We show in particular that the considered health indicators
are driven to the safe region, even for critical initial conditions. Furthermore, in some specific
cases there is no need to inject chemotherapeutic agents.

Keywords: Biomedical control, cancer, nonlinear control, fault accommodation, flatness-based
control, model-free control, shooting method.

1. INTRODUCTION

We consider drug injections scheduling for cancer treat-
ments from a control point of view (see, e.g., Chap. 10 in
Padmanabhan et al. (2021) for bibliographical references).
Among the many models which have been used, those
stemming from an earlier work of Stepanova (1979) are
quite popular. Most appealing are several publications by
d’Onofrio and different coauthors: see especially d’Onofrio
et al. (2012). Such approaches to chemo- and immunother-
apy led in recent years to promising control-theoretic inves-
tigations: see, e.g., Alamir (2014); Schättler & Ledzewicz
(2015) and references therein; Moussa et al. (2020); Sharifi
et al. (2017, 2020a). They employ various optimization
techniques which are related to optimal control, model
predictive control, and robust control.

We explore here another route via tools which are com-
bined here for the first time, although they both gave rise
to an abundant literature in control engineering:

(1) Flatness-based control (see Fliess et al. (1995, 1999);
and Sira-Ramı́rez & Agrawal (2004); Lévine (2009);
Rudolph (2021)) is a model-based approach which has

been well received in many industrial domains. See,
e.g., Bonnabel & Clayes (2020) for tower cranes.

(2) Besides being useful in concrete case-studies (see, e.g.,
Amasyali et al. (2020); Park & Olama (2021); Park et
al. (2021); Telsang et al. (2021); Tumin et al. (2021)
for energy management), model-free control in the
sense of Fliess & Join (2013, 2021) has already been
illustrated in biomedicine (MohammadRidha et al.
(2018); Bara et al. (2018); Faraji et al. (2021)) and
in bioengineering (Truong et al. (2021)). Note that
the terminology “model-free control” has been used
many times with different definitions: see Chareyron
& Alamir (2009) in oncology.

Our virtual patient is modeled through two ordinary dif-
ferential equations presented by d’Onofrio et al. (2012).
This system is trivially flat with obvious flat outputs. The
design of suitable reference trajectories with the corre-
sponding open-loop controls becomes straightforward. A
major source of uncertainty, according to Sharifi et al.
(2020a), is the unknown fluctuation of the drug delivery
to the tumor, which should be related to actuators faults,
i.e., to a classic topic in fault-tolerant control (see, e.g.,
Noura et al. (2015)). It has been already noticed that
model-free control is well-suited for dealing with actuators



faults: see Fliess & Join (2013) for an academic example
and Lafont et al. (2015) for a concrete case-study. The loop
is therefore closed via model-free control. Let us emphasize
the following points:

• The computer implementation is easy.
• Only a low computing cost is necessary.
• Some scenarios, i.e., in silico experiments, lead to un-

expected results. They might attract cancerologists.

Our paper is organized as follows. Section 2 presents the
dynamical model of the virtual patient, Section 3 reviews
briefly flatness-based control, and model-free control. Nu-
merical simulations are presented in Section 4. Section 5
contains some suggestions for for future research on: 1)
the possible medical impact of our in silico experiments,
2) some aspects related to systems biology, 3) new control
paradigmes which might be derived from the methods
developed here.

See Fliess et al. (2021) for a first draft.

2. VIRTUAL PATIENT DYNAMICAL MODEL

We consider the model presented in d’Onofrio et al. (2012)

ẋ = −µCx ln

(
x

x∞

)
− γxy − xuηx (1)

ẏ = µI
(
x− βx2

)
y − δy + α+ yvηy (2)

x, y are, respectively, the number of tumor cells and the
immune cell density; the control variables u and v are the
cytotoxic and immune-stimulation drugs; the parameters
µC , µI , α, γ, δ, x∞ are positive. The terms ηx, ηy,
0 ≤ ηx ≤ 1, 0 ≤ ηy ≤ 1, are inspired by Sharifi et al.
(2020a): they represent the uncertain and fluctuating parts
of drugs which are delivered to the tumor. The definition
as well as the numerical values of these parameters can be
found in Table 1.

Parameter Definition Numerical Value

µC tumor growth rate 1.0078 · 107 cells/day
µI tumor stimulated proliferation rate .0029 day−1

α rate of immune cells influx .0827 day−1

β inverse threshold .00.31
γ interaction rate 1 · 107 cells/day
δ death rate .1873 day−1

ηX chemotherapeutic killing parameter 1 · 107 cells/day
ηY immunotherapy injection parameter 1 · 107 cells/day
x∞ fixed carrying capacity 780 · 106 cells

Table 1.

This system has three equilibria corresponding to ẋ = ẏ =
u = v = 0:

(1) a locally stable equilibrium x = 73, y = 1.32 which
corresponds to a benign case;

(2) an unstable saddle point x = 356.2, y = 0.439, which
separates the benign and malignant regions;

(3) a locally stable equilibrium x = 737.3, y = 0.032,
which is malignant.

The idea behind controlling such systems consists in driv-
ing the state trajectories from the region of attraction
of the malignant equilibrium (critical case) to the region
of attraction of the benign equilibrium. The simulations
that are presented in this paper will show that the state
trajectories are driven to the benign equilibrium under
control action (drug delivery) for different settings.

3. CONTROL METHODOLOGY

3.1 Flatness property

A control system with m independent control variables is
said to be (differentially) flat if, and only if, there exists
m system variables y1, . . . , ym, the flat outputs, such that
any system variable z, the control variables for instance,
may be expressed as a differential function of y1, . . . , ym,

i.e., z = Φ(y1, . . . , ym, . . . , y
(ν1)
1 , . . . , y

(νm)
m ), where the

derivation orders ν1, . . . , νm are finite. A linear system is
flat if, and only if, it is controllable. Thus flatness may be
viewed as another extension of Kalman’s controllability.

Equations (1)-(2) yield

u =
ẋ+ µCx ln

(
x
x∞

)
+ γxy

−xηx
= X(x, ẋ, y)

v =
ẏ − µI

(
x− βx2

)
y + δy − α

yηy
= Y (y, ẏ, x)

The above equations show immediately that System (1)-
(2) is flat; x, y are flat outputs.

3.2 Reference trajectory and nominal open-loop control

One of the main benefits of flatness is the possibility
of easily deriving a suitable reference trajectory and the
corresponding nominal open-loop control. For a given ref-
erence trajectory x?(t), y?(t), the corresponding nominal
control variables

u?(t) = X(x?(t), ẋ?(t), y?(t)) (3)

v?(t) = Y (y?(t), ẏ?(t), x?(t)) (4)

might exhibit unacceptable negative values. Define there-
fore the nominal open-loop control variables

uOL(t) = u?(t) if u?(t) ≥ 0, uOL(t) = 0 if u?(t) < 0

vOL(t) = v?(t) if v?(t) ≥ 0, vOL(t) = 0 if v?(t) < 0

3.3 Closing the loop via model-free control

From a control-engineering standpoint the terms ηx and ηy
should be related to actuators faults. Introduce therefore
the two “decoupled” ultra-local models (Fliess & Join
(2013); Lafont et al. (2015)):

żx = Fx + αxuMFC, ży = Fy + αyvMFC

where zx = x − x?, zy = y − y? are the tracking errors;
αx (resp. αy) is a constant parameter which is chosen by
the practitioner such that ẋ and αxu (resp. ẏ and αyv)
are of the same order of magnitude; Fx and Fy, which
are data-driven, subsume the poorly known structures and
disturbances. A real-time estimation (Fliess & Join (2013))
of Fx, Fy are given by

F est
x = −

6

τ3x

∫ t

t−τx

((t− 2σ)x(σ) + αxσ(τx − σ)uMFC(σ)) dσ

F est
y = −

6

τ3y

∫ t

t−τy

((t− 2σ)y(σ) + αyσ(τy − σ)vMFC(σ)) dσ



where τx, τy > 0 are “small.” Close the loop via an
intelligent Proportional controller, or iP,

uMFC = −F
est
x +Kx,P zx

αx
, vMFC = −

F est
y +Ky,P zy

αy
where Kx,P ,Ky,P > 0. From żx + Kx,P zx = 0, ży +
Ky,P zy = 0, it follows that those two gains ensure local
stability around the reference trajectory.

The close-loop controls uCL, vCL may now be defined:

• If uOL + uMFC ≥ 0, then uCL = uOL + uMFC; if
uOL + uMFC < 0, then uCL = 0.
• If vOL + vMFC ≥ 0, then vCL = vOL + vMFC; if
vOL + vMFC < 0, then vCL = 0.

4. NUMERICAL SIMULATIONS

4.1 Presentation

A shooting method A huge number in silico experiments
have been most easily performed via the flatness prop-
erty, i.e., via Formulae (3)-(4). It permits to select the
most suitable ones with respect to boundary conditions,
optimality criteria and constraints. Our approach might
appear therefore as an alternative to the shooting meth-
ods in optimal control and numerical analysis (see, e.g.,
Carraro et al. (2015); Pellegrini & Russell (2020)).

Time sampling and duration The duration of an experi-
ment is 60 days. The time sampling interval is equal to 30
minutes.

Remark 1. The total simulations duration is 60 days, even
though the figures are limited to 30 days for visibility
reasons, since all the variables reach a steady state at this
time.

4.2 Closed-loop and total amount of drugs

Set ηx = ηy = 0.5. This nominal value might be large
according to Sharifi et al. (2020a). Figures 1 and 2 display
two experiments with the same initial point x = 500,
y = 0.5, which lies in the attraction region of the malignant
equilibrium. The total amounts of injected drugs, which
are often considered as important constraints, are given

by the two integrals
∫ T
0
uCL(τ)dτ ,

∫ T
0
vCL(τ)dτ , where T

is the experiment duration. Figure 3 indicates that the
quantity of drugs injected during the slow scenario is lower
than in the fast one. This outcome ought to be discussed
in oncology.

4.3 Other scenarios

Same initial point. Here ηx = 0.31, ηy = 0.75 are sup-
posed to be unknown. Use the same nominal parameters
as in Section 4.2, and the feedback loop of Section 3.3,
with αx = −10000, αy = 1, Kx,P = 100, Ky,P = 10. The
results depicted in Figures 4 and 5 show that the benign
equilibrium is reached after a short period of time.

New initial point. The virtual patient is in a critical
state, i.e., the initial state x = 770, y = 0.1 is close to
the malignant equilibrium. The time variation of ηx and
ηy, which are displayed in Figure 8, are assumed to be

unknown. It is possible to cure the virtual patient without
the cytotoxic drug, i.e., uCL ≡ 0. Figure 6, which should
be of interest for concerologists, exhibits a convergence to
the benign equilibrium with some oscillations perhaps due
to the violent fluctuations of ηy. The quality of the open
loop behavior in Figure 7 is lower.

5. CONCLUSION

5.1 Main goal

Some results encountered with our computer experiments
might question oncologists:

• the quantity of injected drug might be lower in some
slow scenario than in the corresponding fast one;

• there are critical situations where only immunother-
apy matters: the cytotoxic drugs are useless.

Those startling calculations need of course to be further
analyzed.

5.2 Systems Biology

In the spirit of Systems Biology (see, e.g., Del Vecchio &
Murray (2015)), let us suggest the the following research
tracks:

• Examine parameter identification in Equation (1).
• Flatness-based control might be helpful elsewhere: 1)

Another model due to Hahnfeldt et al. (1999) has also
been investigated from a control-theoretic perspective
(see, e.g., Kovács et al. (2014), Schättler & Ledzewicz
(2015) and references therein, Cacace et al. (2018)).
It is easy to check that it is flat; 2) the unicycle in
Sharifi et al. (2020b), which is used as a nanorobot
for drug delivery, is well known to be flat.

5.3 New control paradigms?

The control strategy which has been developed here
for oncological in silico experiments might lead to new
paradigms:
(1) Assume that we have a flat nominal system

with some important uncertainties. Use open-
loop flatness-based techniques. Close the loop via
model-free control. What’s about flatness-based
control of partial differential equations (see, e.g.,
Rudolph (2003); Meurer (2013); and references
therein)?

(2) Investigate possible connections with Active Dis-
turbance Rejection Control, or ADRC, as pre-
sented by Sira-Ramı́rez et al. (2017).
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Figure 1. Fast trajectory
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Figure 3. Comparison between total drug injections

0 5 10 15 20 25 30

0

2

4

6

Time (Day)

(a) Control u (blue −) and Nominal

control u∗ (black −−)

0 5 10 15 20 25 30

0

2

4

6

8

Time (Day)

(b) Control v (blue −) and Nominal

control v∗ (black −−)

0 5 10 15 20 25 30
0

200

400

600

800

Time (Day)

(c) Output x (blue −), Reference tra-

jectories (black −−) and Stable

points (red and green −.)

0 5 10 15 20 25 30
0

0.5

1

1.5

Time (Day)

(d) Output y (blue −), Reference tra-

jectories (black −−) and Stable

points (red and green −.)

Figure 4. Unknown variation of ηx
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Figure 5. Unknown variation of ηy
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Figure 7. Open loop
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Figure 8. Fluctuation of the drug delivery


