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LIX, École Polytechnique,

CNRS, IP Paris

Manuel J. Marı́n-Jiménez
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ABSTRACT
Multimodal systems for gait recognition have gained a lot of
attention. However, there is a clear gap in the study of missing
modalities, which represents real-life scenarios where sensors
fail or data get corrupted. Here, we investigate how to handle
missing modalities for gait recognition. We propose a single
and flexible framework that uses a variable number of input
modalities. For each modality, it consists of a branch and a
binary unit indicating whether the modality is available; these
are gated and merged together. Finally, it generates a single
and compact ‘multimodal’ gait signature that encodes biomet-
ric information of the input. Our framework outperforms the
state of the art on TUM-GAID and extensive experiments re-
veal its effectiveness for handling missing modalities even in
the multiview setup of CASIA-B. The code is available on-
line: https://github.com/avagait/gaitmiss.

1. INTRODUCTION

Like fingerprints or handwritten signatures, gait is a bio-
metric feature that allows for people identification. Its main
advantages are that it does not require the collaboration of the
subject and can be performed at certain distance. Therefore,
great effort has been put in its advancement [1, 2, 3]. Typical
approaches use a single modality or input data type [4, 5, 6].
However, this is a big limitation, as nowadays it is easy to
find devices (e.g. Kinect, mobiles) or techniques that produce
different kinds of data like depth [7] or optical flow [8]. Thus,
some works exploit multimodality and show that it leads to
better representations and improved results [2, 9, 10, 11, 12].
Nevertheless, their common limitation is their inability to
handle missing modalities. Specifically, they require all
modalities at the same time and, therefore, they cannot be
used in cases where one or more modalities are missing, such
as sensor failures or data corruption; hence, they cannot be
applied to several online real-life scenarios.

In contrast, we propose a single framework for gait recog-
nition using a variable number of modalities (Fig. 1). It han-
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dles and combines various input modalities and is robust to
missing ones at test time. Specifically, at training, it can fuse
gray, optical flow and depth with one branch per modality
(red, blue, green in Fig. 1), whereas at test time it can deal
with sequences from a single RGB camera (no depth). This
is essential for devices with computational or consumption
constrains (such as cellular phones), where complex real-time
computation is not feasible. In addition to the input data, each
branch takes as input a binary value indicating if the input is
available at test time (ellipses in Fig 1). The output of each
branch is its corresponding signature. Finally, our framework
combines the available signatures to produce a multimodal
one, used to predict the identities.

Our contributions can be summarized as: (i) a novel mul-
timodal gait recognition framework robust to missing modal-
ities; (ii) generation of robust view-independent gait signa-
tures; and, (iii) state-of-the-art results for TUM-GAID.

2. RELATED WORK

Gait recognition has been an active research topic for the past
decades due to various applications, e.g. surveillance, crime
prevention, forensic identification and social security.

Multimodal gait recognition. Most works use a single
modality [1, 5, 13] based on silhouettes [1, 4], skeletons [14]
or models [15, 16]. Common multimodal works rely on sil-
houettes [17, 18], optical flow [19], infrared [12], pose [2, 20]
or depth [10]. Their common limitation is that they require all
modalities both at training and test time, thus rending systems
incapable of functioning when a modality is missing.

Missing modalities. Several recent works address the miss-
ing modalities issue by reconstructing the missing ones by
using either AutoEncoders [21, 22] or GANs [23], while oth-
ers [24] just focus on the problem of learning with missing
modalities. In those cases, the sources are generally im-
ages/videos and text, applied to diverse problems. However,
none of them targets gait recognition, where generating the
missing gait input (a biometric source) is not an option.
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Fig. 1: Multimodal gait recognition network robust to missing modalities. (Left) Input: (OF?, Gray?, Depth? ellipses) binary input
units indicating whether the modality is available – here, depth is not available (dashed red cross); (volumes) sequences of L frames for the
different modalities. After fusing the single-modality signatures, a multimodal gait signature of d dimensions is further compressed by FC1.
The final FC2 contains C classes (used just for training). (Right) At training, the network learns multimodal signatures so that the distance
D between a pair of signatures of the same subject is lower than the distance between signatures of different subjects, independently of the
modalities used to generate the signatures. To imitate test situations, some modalities are disabled (i.e. missing) at training (empty shapes).

3. PROPOSED MODEL

We propose a multimodal framework for gait recognition ro-
bust to missing modalities at test time (Fig. 1). It learns multi-
modal gait signatures that are similar for the same subject, and
different for different subjects, regardless the combination of
input data. Although several works combine multiple modali-
ties [10, 2] and report improved results as the modalities offer
complementary information [2, 11], this is not always realistic
as in real life some modalities might be missing. However, to
the best of our knowledge, no existing approach tackles miss-
ing modalities for gait recognition, i.e. how to design a single
model resilient to a variable number of available modalities.

Overview. Our framework takes as input videos in various
modalities and outputs the predicted identity of the person
in the video (Fig. 1). It consists of three branches, one per
input modality trained in parallel (optical flow, gray, and
depth, Sec. 3.1). At test time, not all input modalities are
required. To achieve this flexibility, we provide an additional
input per branch indicating whether the modality is avail-
able or not (ellipses in Fig. 1). The output of each branch
is passed through a gate mechanism, and these gated inter-
mediate representations are merged to a single multimodal
signature (merge operation). These two mechanisms together
with the additional input allow the network to deal with miss-
ing modalities (Sec. 3.2). Finally, the multimodal signature is
fed to the classification layers that predict the identities. Note
that layer ‘FC2’ (Fig. 1) is used just for training, while ‘FC1’
is the gait signature directly used by any classifier (e.g. kNN).

3.1. Input Branches

Our framework consists of up to three branches, one per input
modality: optical flow, gray, and depth. Note that it can be
easily extended to any number of modalities.
Optical flow branch. We use an architecture similar to the
“temporal stream” of [25], i.e. 2D conv and pooling layers,
ending with fully-connected (FC). It is composed of four conv
layers (96:7x7; 192:5x5; 512:3x3; 512:2x2) with ReLU and
max-pooling (2x2) followed by two FC layers (2048; 1024).
Gray and depth branches. We define a fully-convolutional
branch based on 3D convolutions to capture local temporal
information. In particular, it consists of seven 3D conv layers
(64:3x5x5; 128:3x3x3; 256:3x3x3; 512:3x3x3; 512:3x2x2;
512:2x1x1; 1024:1x1x1) with ReLUs in all layers but the last.

3.2. Gate mechanism and merge operation

Here, we describe the gate and merge operations that allow
the network to deal with missing modalities.
Gate mechanism. Our framework takes as additional in-
puts k binary units u indicating whether one input modality is
available or not. Each binary unit ui acts as a gate, allowing
or not the information coming from its corresponding modal-
ity to flow within the network.
Notations. For simplicity, we assume two input modalities
m1 andm2; but extending to any number of inputs is straight-
forward. Let B1 and B2 be the backbone networks that ex-
tract features from m1 and m2, respectively. Let f1 and f2
of dimensionality d be the output vectors obtained from those
backbones, respectively.



Merge operation. It takes as input the outputs of the gate
mechanism. It is defined as an aggregation function ρ(·):

ρ(f1, u1, f2, u2, ..., fk, uk) = max(u1 · f1, u2 · f2, ..., uk · fk), (1)

resulting in a d-dimensional output multimodal vector z. The
intuition behind this choice for ρ(·) is the following. When uj
is 1, the components of fj will compete to be part of the out-
put multimodal vector z. In contrast, when uj is 0, regardless
the value of fj that information will not become part of the
output z, and the modalities will have to collaborate to pro-
duce multimodal signatures that are similar even though one
or more modalities are missing. In summary, a gait signature
z from two modalities is obtained as:

z = ρ (B1(m1, θ1), u1,B2(m2, θ2), u2) =

max(u1 · B1(m1, θ1), u2 · B2(m2, θ2)), (2)

where θ1 and θ2 are the parameters of the B1 and B2 net-
works, respectively, that are learned during training. The vec-
tor z is L2-normalized before further processing.

3.3. Loss function for training

To deal with missing modalities, we use the Triplet Loss [26]:
LT(A,P,N) = max

(
‖g(A)− g(P )‖2 − ‖g(A)− g(N)‖2 + α, 0

)
,

where g(·) is a deep neural network, A is an anchor sample,
P is a positive sample w.r.t. A, N is a negative sample w.r.t.
A, and α is a margin value to be cross-validated. This ensures
that gait signatures for samples of the same subject are similar
(i.e. minimum distance), whereas the ones from different sub-
jects are different (i.e. maximize their distance) regardless of
the viewpoint, clothing or available modalities. Additionally,
we use the Cross-Entropy loss LC to aid training the feature
extractor. Finally, the overall loss LM is: LM = LT+β · LC,
where β is a positive weight, experimentally chosen.

4. EXPERIMENTS

Here, we present the results of our framework. We use up to
three input modalities with complementary information [11]:
optical flow, gray and depth (when available). Unlike other
methods that fine-tune their models on the gallery of the test
partition [11, 14], we experiment without fine-tuning. We di-
rectly apply the pre-trained model on the test samples and
classify them using a simple kNN classifier, thus validating
the generalization of the feature extractor.
Pre-processing of input modalities. First, we spatially de-
tect the subjects using Faster-RCNN [27], pre-trained on MS-
COCO, and group them into tracks based on their feature dis-
tance. Then, following [5], we align the stacked subsequences
of 25 maps so that the body is x-located in the middle of the
central frame (i.e. #13) according to the obtained tracks. For
better generalization, we extract samples from the video se-
quences with an overlap of 80% with the previous ones. Fi-
nally, we scale down the input maps to 80 × 60 pixels, keep-
ing the original aspect ratio, and we remove any unnecessary
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Fig. 2: Gait recognition results on three subjects from TUM-GAID
using different modalities (a,d) gray, (b,e) optical flow, (c,f) depth.
(d,e,f) samples are correctly predicted by using only one modality.

background by cropping the maps to 60 × 60 (the full height
is kept). The optical flow is obtained with SpyNet [8] pre-
trained on MPI Sintel. The depth maps are represented as
gray-scale images, i.e. scaling depth values to [0, 255].
Implementation details. We implement our model using the
Keras version of TensorFlow. We use cross-validation and set
(α,β)= (1.0,0.1) in (LT,LM). The learning rate starts at 0.001
and is reduced by 0.2 when the validation loss plateaus. At
training, each minibatch contains balanced samples of differ-
ent covariate factors (e.g. normal, bag, shoes) and, for each
sample, we have different versions of it, i.e. with all modal-
ities, first modality missing, second modality missing, etc.
Data augmentation is applied. To obtain a gait descriptor at
video level, we average the descriptors obtained from samples
of 25 frames (i.e. subsequences).

4.1. Datasets and metrics

We experiment with two datasets that provide RGB videos:
TUM-GAID [9]: It contains 305 subjects performing two
walking trajectories indoors. Four situations are captured by a
Microsoft Kinect: normal walk (N), carrying a backpack (B),
wearing coating shoes (S) and, there is an elapsed time case
where 32 subjects were recorded wearing different clothes
(TN-TB-TS). We follow the train and test splits from [9]: 150
subjects for training and 155 subjects for testing.
CASIA-B [28]: It consists of 124 subjects that walk indoors.
Actions are captured from 11 viewpoints (from 0◦ to 180◦ in
steps of 18◦) with a resolution of 320× 240 pix. Three situa-
tions are considered: normal walk (NM), wearing a coat (CL),
and carrying a bag (BG). Following [3], we use the first 74
subjects at train and val and the last 50 at test; also, the target
camera is not included in the gallery: identical-view cases are
excluded for evaluating robustness to changes in viewpoint.
Metrics: We use Rank-1 (R1) accuracy, i.e. the percentage
of correctly classified videos: R1 = #correct/#total.

4.2. Ablation study

We report in Tab. 2 the results obtained on individual sam-
ples of TUM-GAID when: (i) CE: we use only Cross-Entropy
Loss in LM (no triplet); and (ii) SUM-Merge: the merge func-
tion is changed to the ‘SUM’ operator, i.e. sum of the gated
descriptors. We observe that the use of the Triplet Loss is im-
portant. Then, MAX-merge brings also a small improvement.



Input Size Method N B S TN TB TS Avg

640× 480
SiameseAE [14] 98.7 93.6 98.0 81.4 76.2 78.1 95.1
PFM [29] 99.7 99.0 99.0 78.1 62.0 54.9 96.0

60× 60

MTaskCNN [30] 99.7 97.4 99.7 59.4 62.5 68.8 95.6
3D-CNN+Fusion [11] 100 99.4 99.4 75 62.5 62.5 96.5
Ours (G+D & G+D+OF) 99.7 98.1 98.1 100 100 100 98.8

Table 1: State of the art on TUM-GAID. Rank-1 identification rate (%) at video level.
Each column corresponds to a different scenario. Row ‘G+D & G+D+OF’ indicates that
the same result is obtained with either all modalities or OF missing (G+D). Our results are
obtained with a 3NN classifier on 256D signature.

Cases N B S Avg

CE 57.0 63.0 59.0 59.7
SUM-Merge 97.4 92.4 95.4 95.1
Ours: Full 97.8 93.0 96.0 95.6

Table 2: Ablation study on TUM-GAID.
Rank-1 identification rate (%) at subsequence
level. CE: Only cross-entropy loss without
triplet loss in LM (Sec. 3.3); SUM-Merge:
merge function is changed to the ‘sum’ op-
erator. Columns: different scenarios.

Classifier-Modality† N B S Avg

(a) BL-single-G 98.9 95.1 96.0 96.7
(b) BL-single-OF 70.0 51.2 57.4 59.5
(c) BL-single-D 83.8 73.0 80.4 79.1

(d) BL-all-G+OF+D 95.8 91.4 91.2 92.8
(e) BL-late-G+OF+D 98.7 97.0 97.0 97.6
(f) Ours-G+OF+D 97.8 93.0 96.0 95.6
†G: Gray, OF: Optical Flow, D: Depth

Table 3: Baselines on TUM-GAID: no missing.
Rank-1 identification rate (%) at subsequence level.
Each row represents a different baseline approach.

Modalities: G: Gray, OF: Optical Flow, D: Depth
G D OF N B S Avg

– – X 78.5 64.8 71.8 71.7
– X – 87.5 77.5 80.9 82.0
X – – 94.3 87.1 90.7 90.7
– X X 87.6 77.7 80.9 82.1
X – X 94.4 87.2 90.7 90.8
X X – 97.6 92.6 95.6 95.3
X X X 97.8 93.0 96.0 95.6

Table 4: Missing modalities at test time on
TUM-GAID: Rank-1 identification rate (%) at
subsequence level with 3NN on 256D signatures.

Modalities†
G OF NM BG CL Avg

– X 89.4 60.7 39.9 63.3
X – 99.1 86.1 36.1 73.8
X X 99.6 89.5 45.5 78.2
†G: Gray, OF: Optical Flow

Table 5: Missing modali-
ties at test time on CASIA-B:
Rank-1 identification rate (%)
at video level with 3NN on
2048D gait signatures. Note,
CASIA-B contains only gray
and optical flow (no depth).

4.3. Baseline models

We compare our framework to five baselines on TUM-GAID
and report the results in Tab. 3. (a)-(c) BL-single: we train
one model per modality with the same backbone and test with
3NN on 256D signatures (FC1 in Fig. 1); (d) BL-all: multi-
modal model with the same architecture as our model, where
no modality is missing neither at train nor at test time, tested
with 3NN on 256D signatures (FC1); (e) BL-late: three-
branch multimodal model with no missing modality, where
the modalities are combined with late fusion (with input the
average of the softmax of each modality). We observe that
gray is the most discriminative cue (a), as gray alone obtains
high performance that cannot be beaten by either other modal-
ities (b and c) or early fusion (d). However, our approach (f)
improves BL-allas it uses samples with missing modalities
during training thus leading to better generalization. Finally,
the multimodal upper-bound BL-late (e) achieves the best
performance but it requires all modalities present at test time.

4.4. Missing modalities

Our goal is to address the missing modalities issue. To re-
veal the effectiveness of our model, we experiment on two
datasets: TUM-GAID and CASIA-B (multiview). For TUM-
GAID, we report results at ‘sample level’ (i.e. 25-frame input)
in Tab. 4. Gray brings the highest gain (third, seventh rows)
whereas OF the smallest (first, fourth rows), as the appear-
ance (captured by gray) is the most indicative cue for gait,

while motion (captured by OF) can be subtle and not always
discriminate. Nevertheless, in most cases our model results
in more than 80% accuracy, highlighting that even with the
absence of modalities, it successfully recognizes gait. Over-
all, using all modalities (last row) reaches the highest per-
formance. For the multiview setup of CASIA-B, we report
results at the video level in Tab. 5, after averaging on the 11
views. Gray achieves better accuracy than OF when the shape
of the subjects is not altered drastically (i.e. NM and BG), but
OF is more robust when clothes change (CL). Finally, the best
results are obtained when using both modalities (last row).

4.5. Comparison to the state of the art

Tab. 1 reports the results of our method compared to the state
of the art on TUM-GAID. Our methods outperforms all mod-
els on TUM-GAID. Specifically, on the elapsed-time scenar-
ios (TN, TB, TS) the improvement is remarkable, reaching a
mean accuracy of 98.8%. Fig. 2 depicts successful examples.

5. CONCLUSIONS

We introduced a novel framework that handles and combines
various types of input modalities for gait recognition: gray,
optical flow, and depth maps. Although it is trained with mul-
tiple modalities, at test time it is robust to missing ones. To
the best of our knowledge, this is the first framework that en-
ables gait recognition with missing modalities at test time.
Our model sets the new state of the art on TUM-GAID.
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