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Abstract

The objective of this work is person-clustering in videos
– grouping characters according to their identity. Previous
methods focus on the narrower task of face-clustering, and
for the most part ignore other cues such as the person’s
voice, their overall appearance (hair, clothes, posture), and
the editing structure of the videos. Similarly, most current
datasets evaluate only the task of face-clustering, rather
than person-clustering. This limits their applicability to
downstream applications such as story understanding which
require person-level, rather than only face-level, reasoning.

In this paper we make contributions to address both
these deficiencies: first, we introduce a Multi-Modal High-
Precision Clustering algorithm for person-clustering in
videos using cues from several modalities (face, body, and
voice). Second, we introduce a Video Person-Clustering
dataset, for evaluating multi-modal person-clustering. It
contains body-tracks for each annotated character, face-
tracks when visible, and voice-tracks when speaking, with
their associated features. The dataset is by far the largest of
its kind, and covers films and TV-shows representing a wide
range of demographics. Finally, we show the e�ectiveness of
using multiple modalities for person-clustering, explore the
use of this new broad task for story understanding through
character co-occurrences, and achieve a new state of the art
on all available datasets for face and person-clustering.

1. Introduction
Clustering people by identity in videos is an appealing

and much-visited topic in computer vision [11, 18, 30, 32,
63, 64, 70]. It has several real-world applications, such
as enabling person-specific browsing, organisation of video
collections, character based fast-forwards, automatic cast
listing; and story understanding, all without requiring any
explicit identity labeling. A successful person-clustering
framework can therefore alleviate the tremendous annotation
cost that is otherwise necessary for such applications.

However, methods for clustering by identity are almost

Figure 1: Video Person-Clustering – an essential step towards story
understanding. Imagine trying to understand the story in the scenes above,
given only the non-greyed-out parts. Face-level understanding (left) omits
important information, such as characters with their backs turned. This
work addresses the new task of video person-clustering, which develops
person-level understanding (right) in a scene by clustering all people, re-
gardless of if their faces are showing or not. This is in contrast to the more
limited, established, task of face-clustering. Person-level understanding is
essential for downstream applications of grouping-by-identity such as story
understanding, and cannot be achieved by face-clustering alone.

always limited to only using information from faces. Such
methods have two significant drawbacks: First, they ignore
many available, informative cues that a human would use
to solve the task: (i) the person’s voice available from the
audio track; (ii) the person’s overall appearance (from their
hair, clothes, posture); and, (iii) the editing structure (in
edited material) – such as the co-occurrence of characters
in nearby shots and within a scene. Second, they limit
the utility of clustering for downstream applications such as
story understanding. Understanding the story-line in a scene
requires knowledge of all the characters present in a scene,
not just those whose faces are visible, i.e. person-level not
face-level reasoning. This is illustrated in Figure 1.

Our objective in this paper is to cluster people (or more
precisely person-tracks, which depict an entire body in any
pose) by identity in movies and TV-material, as a first step
towards story-level understanding. We cluster people, rather
than just faces, and use all cues (face, voice, body appear-
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ance, editing structure), including tracks of people from
behind without a visible face.

To see the value and necessity of this multi-modal ap-
proach, consider the problem of determining if two poor
resolution faces depict the same person or not – the voice
can discriminatively resolve this ambiguity. Similarly, con-
sider the problem of determining if a person seen speaking
to camera in one shot, is the same as the person seen from
behind in a following shot – the hair and clothes can provide
the link. In Figure 1, for example, how would the people
seen from behind be identified other than by clustering their
hair, clothes or voice with instances in neighboring shots?

More generally, modalities arising from the same person
are both redundant and complementary, and can be used
to address two fundamental problems in clustering: how
to obtain pure clusters (i.e. containing tracks from a single
person); and, how to merge clusters without violating their
purity (i.e. by contaminating them with tracks from another
person). They can be used to obtain very pure clusters
by requiring agreement (e.g. on both face and voice) in
order for tracks to be grouped together; and can be used
to merge clusters which could not otherwise be confidently
merged with a single modality, e.g. by using the common
voice to merge a frontal with a profile face cluster (where
the face descriptors of each cluster may be di�erent). In this
way, multiple modalities provide a bridge between otherwise
unmergeable clusters. Methods that merge clusters using a
single modality inevitably sacrifice purity.

In this paper, we introduce a new method for the task of
video person-clustering, Multi-Modal High-Precision Clus-
tering (MuHPC), that uses multiple modalities – face, voice,
and body appearance. It builds on recent methods that use
first nearest neighbour [29, 32, 54] clustering algorithms,
and is designed to take advantage of the redundancy and
complementarity of the modalities, as discussed above, and
to incorporate lessons from the face-clustering literature,
such as cannot-link constraints and using the video editing
structure [3, 11] (Section 3).

To evaluate the multi-modal person-clustering task, we
require a dataset with person-level annotations. However,
there are very few such datasets due to the previous empha-
sis on face-clustering and moreover, most face-clustering
and labelling datasets, such as Bu�y [16] and TBBT [53],
are based on TV material with limited diversity in skin
color. For these reasons, we introduce a new Video Person-
Clustering Dataset (VPCD) where we: (i) re-purpose mul-
tiple existing face datasets by adding person-level multi-
modal annotations (e.g. all person-tracks and voice utter-
ances); and (ii) include di�erent TV shows and films (hereby
referred to under the unified term program sets) to address
this lack of diversity. VPCD consists of visually disparate
program sets, and includes body-tracks, face-tracks when
visible; and voice utterances when speaking, for all anno-

tated characters. We provide features so that future cluster-
ing algorithms can be compared easily and fairly (Section 4).

We show the e�ectiveness of multi-modality and out-
perform strong baselines for person-clustering on VPCD
(Section 5.1), and explore this new expansive task for story
understanding (Section 5.4). Our method also significantly
outperforms the face-clustering state of the art on both TBBT
and Bu�y by over 10% NMI (Section 5.3). Note that our
goal is multi-modal clustering and not representation learn-
ing. Thus, we do not propose a new architecture or train a
network for better features. Instead, we use features from
pre-trained networks (for face and speaker recognition) and
only train a network where it is necessary for body Re-ID.
A broader impact statement is included in the appendix.

2. Related Work
In this work, we focus on multi-modal person-clustering in
videos. Similar works target the more limited task of face-
clustering or labelling, person Re-ID, or person search. We
describe them, and also discuss similar datasets to VPCD.
Face-Clustering. A well-studied task for both images [4,
24, 44, 52] and videos [32, 63, 64, 75], with di�culty arising
from the variation of pose, lighting, and emotion [23, 36]
in faces of the same identity. Most video approaches ex-
ploit the spatio-temporal continuity and find must-link and
cannot-link clustering constraints [3, 11, 14, 32, 55, 57, 64,
66, 70, 72], or additional constraints from the structure of
videos [64]. Most works approach face-clustering with met-
ric or representation learning [11, 18, 55, 56, 57, 63, 69, 70].
For instance, [63] map features from the same identity
to a fixed-radius sphere, while Sharma et al. use super-
vision from video constraints [55, 56] or weak clustering
labels [57]. These methods, however, are limited by the
relatively small training sets available from particular TV-
shows. For this reason, some recent approaches focus on
simply clustering pre-trained features that have been learnt
on very large-scale face datasets. [54] propose a simple
first nearest neighbour clustering method upon pre-trained
features, FINCH, and show impressive results. More re-
cently, [32] combines [54] with spatio-temporal constraints
and improves performance. All the above works focus on the
limited task of clustering faces (Figure 1 - left), whereas our
focus is multi-modal person-clustering i.e. clustering every
appearance of characters, regardless of whether their face is
visible (Figure 1 - right), and using multiple modalities.
Face-Labelling. The task of classifying faces by identity
- most works address this by using face-appearance with
supervision from transcripts aligned to subtitles [3, 5, 13, 16,
17, 46, 49, 58, 61], for example by using Multiple Instance
Learning [5, 21, 33, 68]. Some exploit cues other than faces
from videos: [48] use clothing to match faces in TV-shows
across shot boundaries, while [6, 43] use face and voice
to label faces. [47] use face and voice to retrieve a list of



shots containing a named person, by searching for their name
in subtitles and displayed text. These works focus only on
visible faces and although some are multi-modal (face, voice
and/or text supervision), the text is typically obtained from
external sources (i.e. transcripts). Our task is di�erent, as we
cluster rather than label, and thus do not require character-
classifiers or ID supervision or extra annotation, and we use
all available cues i.e. editing structure and multi-modality.
Person Re-ID. The task of re-identifying pedestrians in
CCTV - typically [35, 67, 76, 77], each body is fully visible
and walking, the clothing remains constant for each identity,
and the images are low resolution. This di�ers substantially
from person-clustering in TV and film material, where there
is large pose variation (e.g. sitting, standing, lying down),
occlusion, and the clothing frequently changes for each iden-
tity. A full literature review is out of scope. Closer to our task
are works on person-retrieval in photo albums [31, 59, 74] or
person-search from portraits in videos [27, 71]. [27, 59] use
face and body features, while [71] use audio. The TRECVID
Instance Search challenges [1] involved retrieving a list of
shots that contain an identity, given a query video for that
identify. In contrast, we cluster all characters at the track-
level in videos without requiring search queries.
Related Datasets. Various face-clustering datasets have
been proposed [12, 16, 19, 32, 45, 53]. These follow
some similar trends: (a) are limited in size, consisting of
a movie or some TV show episodes; (b) under-represent
most demographic groups; and (c) contain only face an-
notations, so cannot be used for the broader multi-modal
person-clustering task. Several story understanding [2, 28]
or person-search [27] datasets with face and/or body anno-
tations exist. These cannot be used for our task, as they lack
audio [27, 28] or contain only partial annotations such as
keyframes [28] or for a subset of tracks [2]. Furthermore
none contain labelled voice utterances. Instead, VPCD con-
tains 6 di�erent TV-shows and movies, representing a more
diverse range of characters, and containing multi-modal an-
notations for all annotated characters.
Story Understanding. This targets automatic understand-
ing of human-centred story-lines in videos. It has been
formulated in several ways, e.g. grouping scenes by story
threads [15, 50], learning character interactions [39, 62]
or relationships [34], creating movie graphs [65]; or text-
to-video retrieval from narrating captions [2], with several
datasets [2, 28] introduced. Many works [2, 34, 65] high-
light the importance of knowing who is present in a scene
for understanding the story. This is the focus of our work.

3. Method
Here, we describe the Multi-Modal High-Precision Clus-

tering (MuHPC) method for person-clustering in videos. It
is a single hierarchical agglomerative clustering [51] (HAC)
approach that groups person-tracks by identity using simi-

larities of modality features, together with constraints aris-
ing from the video structure. MuHPC uses pre-computed
features, and hence does not require any training outside
of simply learning optimal hyper-parameters, and can then
run out of the box for any video dataset. In this work, we
use three modalities (face, voice, and body appearance) but
MuHPC can easily scale to any number of modalities.
Overview. MuHPC consists of three stages (Figure 2).
Stage 1 creates high-precision clusters using a single modal-
ity, here face. We group person-tracks that share a first
nearest neighbour (NN) using multiple iterations of HAC, as
in [29, 32, 54]. We follow this trend subject to two additional
constraints: a cannot-link constraint for concurrent tracks
(as in [32] based on [3, 11]), and a conservative threshold
on the maximum NN distance. This results in  1 clusters
(Section 3.1). Stage 2 exploits multi-modality to bridge
clusters that were otherwise unmergeable by the single face
modality with a conservative threshold; in particular, by re-
quiring that di�erent modalities (i.e. face and voice) concur
on the merge (Section 3.2). Stage 3 clusters tracks without
visible faces, and hence that are not yet clustered by the first
two stages. Constraints from the editing structure (neigh-
boring shots) and a conservative threshold on body features
(so that they depict the same person with the same cloth-
ing) are used to link face-less person-tracks to clusters with
faces (Section 3.3). Here, we describe the stages, algorithm
design choices, and how the hyper-parameters are learnt.
Notation. Given a dataset with person-tracks and ⇠ charac-
ters, where G8 is a single person-track, the goal is to cluster all
G8 by identity into ⇠ clusters (⇠ is unknown). Each person-
track G8 is represented by one feature vector per available
modality, i.e. G={G 5 , GE , G1}, with G 5 , GE , G1 the face, voice
and body-track features, respectively. The availability of
each feature vector is dependant upon the part of the person
that is visible (face and/or body), and if they are speaking.
For each person, at least one of G 5 , G1 are available. Let
3 (G8 , G 9 ) be the distance between two track features of the
same modality, and 3 5 , 3E and 31 the distances between two
face, voice or body-tracks, respectively; the lower the value,
the more likely the tracks depict the same identity. NN is
nearest neighbor; =1

G8 is the first NN track of track G8 . The
set of video frames that G8 is present in is denoted by )8 .

3.1. Stage 1: High-Precision Clustering

Stage 1 creates high-precision clusters, each containing
tracks of the same identity. It uses only the face modality
as this is the most discriminant of the three (face, voice and
body), and thus is least likely to group di�erent identities in
the same cluster. Here, we use a NN clustering method [32,
54], subject to two clustering constraints.
Clustering Constraints. A NN is only considered valid if
the resulting merge satisfies: (1) A Spatio-Temporal Cannot-
link Constraint: Tracks that have (partial) temporal overlap



cannot be grouped together, since they must represent di�er-
ent characters as they appear together in at least in one frame
(introduced by [32]); and (2) A NN Distance Constraint: the
distance 3 5 (G8 , =1

G8 ) between a track G8 and its first NN =1
G8

is less than a strict threshold gtight
5 for Stage 1.

Clustering process. At every iteration (cluster partition �),
each cluster is grouped with its NN cluster, i.e. the closest.
Specifically, the first partition groups tracks into clusters
through first NN relations, while following partitions group
the clusters formed in the previous partition; each cluster is
represented by the average of the features it contains. Fol-
lowing the notation of [54], at each partition �, the method
forms  � clusters by merging tracks that are either first NN
(mutually or one is the first NN of the other) or have a
common NN =1

G8 , as described by the adjacency matrix:

�(G8 , G 9 ) =
8>>><
>>>:

1
if

⇣
G 9 = =1

G8 or =1
G 9

= G8 or =1
G8 = =1

G 9

⌘
and )8 \)9 = ;, 3 5 (G8 , =1

G8 )  gtight
5

0 otherwise.

(1)

Discussion. In standard HAC the clustering continues until
all clusters merge to one. Including the constraints intro-
duces strict stopping criteria, and therefore the clustering
stops when either the clusters are all more than a distance
gtight
5 apart, or they are separated by a cannot-link constraint.

This results in  1 high-precision clusters, where we expect
 1 � ⇠. The very simple addition of a distance thresh-
old leads to a significant improvement in clustering results
over [32, 54, 63] (Section 5.3). Without this constraint, little
prevents an incorrect merging of clusters of di�erent identi-
ties and the subsequent creation of low-precision clusters.

3.2. Stage 2: Multi-modal Cluster Bridging

Combining a discriminative modality with the constraints
results in high-precision clusters. However, a single modal-
ity alone cannot continue making confident merges without
sacrificing purity. Thus, Stage 2 merges these clusters by
exploiting multiple modalities i.e. face and voice.
Modality-pair merges. To further merge clusters, we de-
mand that two modalities agree that the clusters contain the
same identity. Therefore, we require that the distances for the
face and voice are both below new thresholds, i.e. 3 5 <gloose

5

and 3E<gloose
E . Note, here we use features taken from tracks

within clusters, rather than averaged cluster features. gtight
5

is raised by just a small margin, X, i.e. gloose
5 =gtight

5 + X, due
to the concurrent agreement from the voice.
Discussion. This stage results in  2 clusters with high-
precision, where  2   1. Here, we use face and voice as
they have been shown to be coupled [41, 42] and to contain
redundant, identity discriminating information. An alterna-
tive is to require that the voice modality alone provides a
confident (i.e. tight threshold) match, e.g. two person-tracks

Figure 2: The clustering process of MuHPC. (Left) Example person-
tracks at each stage of MuHPC. Two high-precision clusters from Stage 1
depicting the same character. One contains near-frontal faces (below) and
one profiles (top), hence the single face modality cannot confidently merge
the two. Stage 2 uses a talking person-track from each cluster to form a
bridge, by demanding the agreement of both face and voice modalities that
these contain the same identity. Stage 3 merges face-less bodies into the
formed cluster. (right) The NMI and number of clusters at each partition,
�, of stages 1 and 2 on an example video from VPCD. At each partition
the number of clusters decreases, while the normalised mutual information
increases. At �4 Stage 1 clustering stops. Stage 2 progresses to �5 by
bridging clusters. Stage 3 does not a�ect the number of clusters.

with the same voice. We find however that voice alone
cannot reliably join clusters of the same identity. This can
be because two identities with the same emotion in their
voice (e.g. shouting, crying) can appear similar to the less
discriminative voice embedding (more in the appendix).

3.3. Stage 3: Clustering backs

Stages 1 and 2 result in high-precision clusters. Never-
theless, they do not account for person-tracks with no visible
face, for instance when viewed from behind, i.e. a face-less
person. The goal of Stage 3 is to add the face-less person-
tracks into their respective high-precision clusters using the
modality of body-appearance. Here, we use the editing
structure of the videos, given that the appearance of the
same character can change dramatically between scenes. As
discussed above, body features may not be discriminative for
identifying if characters are wearing very similar clothing.
We determine such body-tracks using the simple ratio-test
introduced in [37]. Specifically, for each body-track we
compute the first and second NN distances, 31

1,G8
and 32

1,G8
.

If the ratio, 31
1,G8

/32
1,G8

is higher than a threshold d then the
body-track is classified as non-distinctive and is ignored.

For assigning face-less people to clusters, we find the NN
body-track (that has a face and hence is already clustered)
that does not violate the ratio-test in a neighbouring shot,
and assign the face-less person to this cluster. Given that
the same person is most likely wearing the same outfit in
the same or neighbouring shots, we only examine the dis-
tance between body-tracks from these shots. At this stage,
some backs cannot be clustered with high confidence, either
because they are not similar to any nearby body or because



they fail the ratio test for being a non-distinctive feature.
Our design choice is to ignore these backs, i.e., we ignore
any back for which the NN distance is more than a threshold
gback
1 . Note, this stage keeps the number of clusters to  2.

Required Number of Clusters. Suppose we know the num-
ber of characters ⇠, and hence the number of clusters. Our
goal is to reduce  2 to the desired ⇠ (typically  2 � ⇠).
Previous methods [63] employ HAC; however, this su�ers
from reliance on features that can no longer confidently dis-
criminate between clusters of the same person. Instead, we
employ a cluster prior: there is no identity overlap amongst
the largest clusters i.e. they contain unique identities, and
conversely there is likely an identity overlap between a small
and large cluster. Our intuition is that big clusters contain
ample information about an identity, and consequently if
two large clusters contained the same identity, then they
would have been merged. Therefore, we iteratively merge
the smallest with the largest cluster until there are ⇠ clus-
ters. In practice, we observe that small clusters contain
blurry or low-resolution tracks, and so could not confidently
be merged at earlier stages.
Discussion. Most methods [55, 57, 63] fine-tune character
features on a video dataset. Instead, MuHPC operates on
pre-trained features, thus reducing the computational burden
and leading to increased generalisation capabilities. An
extension would be to replace the constraints with a cost
function optimisation approach, allowing a cannot-link to
be correctly broken for a person’s reflection in a mirror.

3.4. Learning Hyper-Parameters

The hyper-parameters for MuHPC are learnt on the val-
idation partition of VPCD. The visually disparate program
sets in the test partition are disjoint from those in the val-
idation, yet these parameters are kept constant. For the
hyper-parameter associated with the face modality (gloose

5 )
this is possible as the face features are trained on millions of
faces [8], and therefore are highly discriminative and univer-
sal (generalise well across di�erent program sets). However,
voice identity features are less universal than face features,
and hence there is not a single good choice for gloose

E that
would generalise across the audibly disparate program sets.
Instead, we learn a unique value automatically for each. Our
goal is to choose gloose

E to be lower than the minimum dis-
tance between voices from di�erent people. The cannot-link
constraints automatically provide face-track pairs of di�er-
ent identities. We measure the distances between di�erent
people’s voices. In practice, there are too few constraints be-
tween speaking faces to provide an accurate representation
of the negative distances, as rarely two face-tracks speak in
the same shot. We combine the cannot-link speaking face-
tracks with clusters from Stage 1 to provide more examples.
This leads to many negative distances and an accurate repre-
sentation of their distribution. We select gloose

E as the lower

Dataset #eps length #IDs Gender #Tracks
F/M body face voice

TBBT [53] 6 2h 6m 103 53/50 4,276 3,908 1,047
Bu�y [16] 6 4h 9m 109 37/70 7,561 5,832 1,835
Sherlock [43] 3 4h 30m 31 16/15 6,232 6,247 1,615
Friends [32] 25 9h 22m 49 23/26 18,360 17,333 3,961
ALN [60] 1 1h 40m 10 4/6 1,932 1,614 404
HF [60] 1 2h 7m 24 11/13 1,416 1,463 303

VPCD 23h 54m 326 39,777 35,396 9,165

Table 1: Video Person-Clustering Dataset statistics. For each program
set in VPCD we detail video and annotation statistics. #eps: number of
episodes; #IDs: number of unique characters; TBBT: The Big Bang Theory;
(movies) ALN: About Last Night; HF: Hidden Figures. We cite the first
published work that used each respective program set for face-clustering,
but we provide additional full multi-modal annotations for each.

99.9 percentile of these distances. This provides a robust
automatic threshold measure. For program sets with simi-
lar sounding characters, this process gives a low gloose

E (e.g.
Bu�y – many similar sounding teenagers).

4. Video Person-Clustering Dataset

(b) (c)(a)

Figure 3: VPCD dataset. It consists of di�erent and diverse TV shows
and movies; here, we display a subset of them: (a) Friends, (b) Sherlock,
(c) Hidden Figures. VPCD contains face, body and voice tracks annotated
for many characters. Here, we display such examples. Each face-body pair
is displayed with a unique color. A more representative range of characters
are captured in a variety of scenes (e.g. dark (b)), viewpoints (e.g. (c)); and
poses, including backs of bodies (magenta, cyan). When speaking, we also
include a voice-track (blue signal below body-tracks).

In this section, we describe the dataset (Section 4.1), the
annotation (Section 4.2), and the feature extraction pro-
cesses (Section 4.3). The dataset is built on top of exist-
ing video datasets that have face-level annotations (labeled
face-tracks) by adding and annotating body-tracks, and an-
notating voice utterances. This is for three reasons: first, it
enriches the existing dataset by raising them to have person-
level annotations; second, it enables comparisons on face-
level clustering with prior work on these datasets; and third,
it means that the video material is already publicly available
and we need only release the new annotations (and features).

4.1. VPCD content

VPCD contains full multi-modal annotations for primary
and secondary characters for a range of diverse and visually
disparate TV-shows and movies (statistics in Table 1, exam-
ples in Figure 3). VPCD contains annotations for 39,777
body-tracks, 35,396 face-tracks for whenever the face is vis-
ible, and 9,165 manually annotated voice-tracks for when-



ever each of them are speaking. Identity discriminating fea-
tures (embeddings from deep networks) are provided for all
modalities. A total of 23 hours of video cover a range of gen-
res and styles such as Hollywood Drama (Hidden Figures,
2016), Romance (About Last Night, 2014), fast-paced Ac-
tion/Mystery (Sherlock, Bu�y) and live studio-audience sit-
coms (Friends, TBBT). A large variety of characters are an-
notated, ranging from small casts shown over many episodes
(e.g. Friends) to program sets with a long-tailed distribution
with many secondary/background characters (e.g. Bu�y).
VPCD is by far the largest dataset of its kind. The program
sets were chosen such that VPCD is representative of the
diversity of people’s appearance in the real world. There
is a validation set and a test set - these are disjoint. The
validation set is the first five episodes of Friends.

4.2. Annotation Process

Here, we describe the annotation process for the face,
body, and voice tracks in VPCD. For all component pro-
gram sets, the face annotations already exist, and define the
characters of interest for that video. Our goal is to annotate
their body and voice-tracks. Very often in videos, a charac-
ter is seen facing from behind (Figure 3). This means that
the existing face-tracks cannot be used to trivially annotate
the body-tracks by spatial overlap (since there will be no
face-track). We therefore combine automatic and manual
annotation methods (more details in the appendix).
Face. We use the same face bounding-box/track annotations
and ID labels as were provided with the original datasets so
that we can compare to previous works on face-clustering.
Body. We detect bodies with a Cascade R-CNN [7] trained
on MovieNet [28] and form tracks with an IOU tracker.
When a body-track clearly corresponds to a face-track (i.e.
no significant IOU with any other face-track), the body-track
is automatically annotated with the character name of that
face-track. We manually annotate the remainder as well as
the body-tracks corresponding to characters from behind.
Voice. We manually segment the audio-track into the speak-
ing parts for all annotated characters. To ensure the correct-
ness of the segmentation, the audio track was first segmented
by one human annotator, and then verified by di�erent ones.

4.3. Feature Extraction

Face. We use L2-normalised 256D features, extracted from
an SENet-50 [26] pre-trained on MS-Celeb-1M [20], and
fine-tuned on VGGFace2 [8] (same as [16, 32, 43, 53]).
Body. For all body detections, we extract 256D features with
ResNet50 [22] trained on CSM [27]. We average the features
across each body-track, and then L2-normalise them.
Voice. Following [9], we extract a single, L2-normalised
512D speaker embedding from each voice segment using a
thin-ResNet-34 [22, 73] trained on VoxCeleb2 [10].

5. Experiments
Here, we evaluate MuHPC. We first give experimen-

tal details, followed by person-clustering results on VPCD
and provide ablations. We compare to previous face-
clustering works and finally examine the advantages of
person-clustering for story understanding. Further ablations
and experiments on clustering all characters in all videos
simultaneously are included in the appendix.
Implementation details. We use the face, body and
voice track annotations and features from VPCD (Sec-
tions 4.1,4.3). For all modalities, feature distances 3 5 ,31 ,3E
are computed using (1 - cosine similarity). As described in
Section 3.4, parameters are learnt on the VPCD val. set.
The values are: gtight

5 =0.48, X=0.025, d=0.9 and gback
1 =0.4.

These parameters are fixed for all experiments, and only
have to be re-learnt if the features change. Details on the
automatically selected gtight

E values are in the appendix.
Metrics. For each dataset in VPCD, we measure each metric
at the episode level and average over all episodes. Follow-
ing [32, 63], we use Weighted Cluster Purity (WCP) and
Normalized Mutual Information (NMI). WCP weights the
purity of a cluster by the number of tracks belonging in it.
NMI [38] measures the trade-o� between clustering quality
and number of resulting clusters. Character Precision and
Recall (CP, CR) are computed using the number of ground
truth identities. Each identity is uniquely assigned to a clus-
ter. CP is the proportion of tracks in a cluster that belong
to its assigned character, while CR is the proportion of that
character’s total tracks that appear in the cluster. They are
averaged across all characters, thus weighting each equally.
Test protocol. We evaluate: (i) automatic termination (AT),
i.e. unknown number of clusters, and (ii) oracle cluster (OC),
when known. AT is realistic for applications, while OC
o�ers a fair comparison to the state of the art.

5.1. Person-Clustering

Baselines. To evaluate person-clustering, we compare to
two strong baselines stemming from the best existing face-
clustering algorithm, C1C [32]. The first, B-ReID, is in-
spired by person Re-ID [35, 76, 77] and uses C1C to cluster
body rather than face features. It ignores person-tracks with-
out bodies (<2% of person-tracks). For the second, B-C1C,
we use regular C1C to cluster faces, with the addition of
Stage 3 of MuHPC for clustering face-less bodies.
Results and analysis. Table 2 reports person-clustering re-
sults when testing on VPCD. For all metrics, MuHPC (full
method) significantly outperforms the strongest baseline by
on average 6.1% in WCP and 11.8% in NMI. B-ReID is poor
due to frequent clothing changes. MuHPC outperforms B-
C1C thanks to (1) the NN distance threshold that prevents
incorrect merges and subsequent low-precision clusters, and
(2) the multi-modal bridges that merge clusters which face



# Modality
#⇠B= #⇠B= #⇠B= #⇠B= #⇠B= #⇠B= #⇠B=TBBT
130

Bu�y
165

Sherlock
50

Friends
239

Hidden Figures
10

About Last Night
24

Average
618

F B V WCP NMI CP CR WCP NMI CP CR WCP NMI CP CR WCP NMI CP CR WCP NMI CP CR WCP NMI CP CR WCP NMI CP CR
B-ReID X 80.5 69.7 49.6 55.0 65.0 60.9 52.7 46.8 61.2 28.9 43.6 44.3 70.9 60.4 71.0 56.3 32.6 23.4 36.8 19.6 41.0 14.1 37.4 32.6 58.5 42.9 48.5 42.4
B-C1C X X 87.7 69.2 39.4 50.6 73.6 58.2 34.6 41.6 77.7 41.6 29.3 43.6 85.3 77.1 69.5 70.8 76.2 69.8 55.2 50.3 94.4 85.8 68.0 76.8 82.5 67.0 49.3 55.6

MuHPC– X 93.5 84.6 76.4 77.6 80.0 66.7 63.8 65.2 83.8 52.3 51.2 58.4 85.7 73.7 81.3 79.0 77.6 70.4 59.1 52.1 95.7 89.7 98.2 86.3 86.1 72.9 71.7 69.8
MuHPCE X X 93.5 84.6 76.4 77.6 80.1 67.2 64.2 64.7 84.5 59.3 54.9 57.3 86.9 75.3 84.0 82.8 77.6 70.4 59.1 52.1 96.0 90.5 98.3 86.4 86.4 73.5 72.3 69.7
MuHPC1 X X 96.9 92.8 80.4 79.6 85.7 75.6 68.1 67.9 84.1 52.9 51.7 54.3 89.5 81.3 84.6 82.4 77.6 70.3 59.0 52.0 95.7 89.4 98.2 86.3 88.2 77.1 74.0 70.0
MuHPC X X X 96.9 92.8 80.4 79.6 85.8 76.4 68.4 67.2 84.8 60.0 55.2 57.2 90.8 83.1 87.7 86.6 77.6 70.3 59.0 52.0 96.0 90.2 98.3 86.4 88.6 78.8 74.8 71.5

Table 2: Person-Clustering Results on VPCD. For each program set, each metric is averaged across all episodes. AT protocol. The ‘Average’ column
reports averaged metrics across all six program sets. #⇠B is the sum of ground truth clusters across each episode in each program set. We report two strong
baselines (B-ReID, B-C1C, Section 5.1) and an ablation on the modalities used. Keys: F-face, B-body, V-voice. Modality: used modalities.

alone cannot. This validates that using all available video
cues, such as multi-modality and editing structure aids video
person-clustering substantially. The clustering process for a
character in VPCD is visualised qualitatively and quantita-
tively in Figure 2. MuHPC improves most upon the base-
lines on the more unconstrained program sets with many
secondary characters and long-tailed character distributions
(e.g. TBBT, Bu�y, Friends, Sherlock). Here, MuHPC uses
the NN distance threshold to keep the clusters of the many
characters separated, and then merges any repeated clusters
of main-characters via talking person-tracks. The MuHPC
clustering process is visualised in Figure 2.

5.2. Ablation

Here, we perform ablations on the di�erent modalities
in MuHPC. Detailed results and parameter sweeps can be
found in the appendix. Table 2 includes an ablation of the
multi-modality, i.e. using voice (MuHPCE – Stage 2) or
body (MuHPC1 – Stage 3) modalities or both (MuHPC).
Experiments without the body modality do not use Stage 3,
and instead cluster each face-less body to the temporally-
closest (Temporal-NN) body with a face in a nearby shot.
Due to the threading structure [25] of edited videos, there is
a strong prior that the Temporal-NN is correct.

Adding either the voice or body o�ers a benefit over
MuHPC–, due to the increased discriminative capabili-
ties from an additional modality. MuHPC1 outperforms
MuHPCE , as there are many face-less bodies in VPCD, and
the body modality allows for these to be clustered correctly.
Using the voice in conjunction with the body (MuHPC) per-
forms best, as their benefits are compounded, and the multi-
modal bridges connect clusters with higher purity. The voice
gives a higher boost when used alongside the body modality,
as otherwise the multi-modal bridges are merging lower pre-
cision clusters. The voice adds significant benefit in NMI
on multiple program-sets. This is impressive as the tight
voice thresholds were found automatically. Sometimes the
voice does not lead to an improvement, due to the absence of
speaking person-tracks in merge-able clusters (e.g. TBBT).
Additionally, the body o�ers little improvement in the two

movies (Hidden Figures, About Last Night) that have many
dark scenes and non-distinctive clothing. Here temporal-NN
is able to assign face-less bodies to clusters well. Note, NMI
increases more than WCP when adding the voice modality,
because bridging two high-precision clusters will not greatly
e�ect the purity; however, it leads to increased NMI as there
is less identity overlap between the resulting clusters.

MuHPC requires manually diarised speech segments.
Preliminary results show that automatic diarisation meth-
ods lead to smaller improvements from the voice modality
than when manually diarised voice is used, but we leave this
to future work. We highlight that with 24 hours of manually
diarised audio, VPCD provides a unique test bed for future
research on moving beyond requiring manual diarisation.

5.3. Face-Clustering

Here, we compare to previous works by experiment-
ing only on face-tracks, excluding person-tracks without
faces. We compare to FINCH [54] (evaluated at the required
number of clusters, from [32]), BCL [63] and C1C [32].
For TBBT and Bu�y, the face annotations are the same
as [32, 63]. Here, we do not compare to works that use the
less challenging [32] subset of the annotations [52, 57]. For
our method, we present: (i) MuHPC– uses only face-tracks,
i.e. exactly the same information and features as other meth-
ods, hence results are directly comparable; and (ii) MuHPCE

uses face-tracks with multi-modal bridges (i.e. voice). Fol-
lowing [32, 63], performance is evaluated at frame level.

Table 3 reports face-clustering results. For both AT and
OC protocols, MuHPC– significantly outperforms the state
of the art in all metrics, as it avoids incorrect merges, hence
maintaining cluster purity. For instance, NMI, CP and CR
boost by +10-14% for Bu�y and TBBT for OC, and by over
10% for WCP averaged across all datasets for AT. MuHPCE

also leads to a boost over MuHPC– in most datasets. We
observe that the more challenging the dataset, the higher the
boosts by multi-modality, e.g. +3.8% in CR for Friends and
+7.4% in NMI for Sherlock. We note that on NMI, WCP,
the performance on TBBT is now almost saturated. A full
discussion of results is given in the appendix.



(a) (b) (c) (d) (e)

Figure 4: Character co-occurrences for story understanding between the 5 main characters in the 6 episodes of The Big Bang Theory in VPCD. (a)
The ground truth co-occurrences as a proportion of the combined temporal length of the 6 videos. It is generated from VPCD which annotates each character
whenever they are visible. Higher indicates more co-occurrence. (b,c): MuHPC and face-level clustering co-occurrences, as a proportion of the 6 videos;
(d,e): MuHPC and face-level co-occurrences, relative to the ground truth (a). (d,e) are obtained by dividing (b,c) by (a), respectively. 1.0 indicates that the
prediction is the same as the ground truth. Key: P: Penny, H: Howard, R: Raj, S: Sheldon, L:Leonard.

Method protocol
TBBT #⇠B = 130 Bu�y #⇠B = 165

WCP NMI CP CR #⇠? WCP NMI CP CR #⇠?

BCL [63] AT 90.8 85.7 - - 83 85.0 78.8 - - 121
C1C [32] AT 89.2 87.4 29.1 40.9 41 66.3 68.8 14.9 27.1 40

MuHPC– AT 99.4 97.8 87.8 88.6 168 96.1 92.8 85.6 85.5 223
MuHPCE AT 99.4 97.8 87.8 88.6 168 96.1 93.7 85.9 84.8 221

Finch [54] OC 90.8 80.5 46.1 44.2 82.9 75.3 49.6 41.0
BCL [63] OC 94.0 85.0 - - 86.5 77.6 - -
C1C [32] OC 95.3 84.5 54.9 57.3 88.1 79.1 58.1 55.4

MuHPC– OC 99.1 97.4 79.3 83.0 95.6 92.2 72.3 73.8
MuHPCE OC 99.1 97.4 79.3 83.0 95.6 93.1 71.5 73.2

Friends #⇠B = 239 Sherlock #⇠B = 50
C1C [32] AT 88.2 89.8 62.4 73.2 185 76.3 50.3 20.2 41.0 25

MuHPC– AT 98.7 94.9 98.1 94.0 543 86.7 60.3 79.1 71.2 96
MuHPCE AT 98.4 95.9 97.7 95.3 522 86.3 66.0 78.4 74.5 86

Finch [54] OC 92.2 89.9 85.2 85.6 81.6 58.6 59.8 56.8
C1C [32] OC 94.3 93.2 79.1 85.5 81.6 53.8 40.5 51.7

MuHPC– OC 96.3 92.7 89.0 88.8 84.0 56.5 55.4 59.9
MuHPCE OC 97.1 94.6 92.3 92.6 85.1 63.9 59.6 62.9

Table 3: Face-Clustering Results. Comparisons to previous state of
the art on four program sets using only face-tracks with unknown (AT),
and known (OC) number of clusters. We report metrics averaged over each
episode in each program set, and the number of predicted clusters, summed
over each episode (#⇠?). MuHPC– uses only face; MuHPCE uses the
multi-modal bridges from voice and face. Where not reported in respective
publications, numbers are computed using o�cial implementations. Finch
has no stopping criterion so results for AT are not reported.

5.4. Enabling Story Understanding

Here, we explore how close we have come to enabling
story understanding. Clustering people (rather than faces)
indicates who is present in a scene (Figure 1) – an essential
and necessary step for predicting character co-occurrences,
and hence their interactions [34, 40] that make up a story.
Specifically, we ask two questions: (1) Can clustering on
the face-level predict the co-occurrence of two characters
correctly? (2) How close is MuHPC to correctly predict-
ing co-occurrences? To answer these, we experiment with
the five main characters from the six episodes of TBBT in
VPCD. Figure 4a shows the ground truth (Pers. Lev. GT)
co-occurrence of character pairs as a proportion of all frames
in the show, and hence is a measure of their interaction, e.g.
Sheldon and Leonard co-occur for 24% of all frames.

For the first question, we visualise the co-occurrences
of characters according to the face-track annotations (Face
Lev. GT) in VPCD (shown in absolute terms in Figure 4c,
and relative to the GT in Figure 4e). The face-level co-

occurrences are poor – with an average error from GT of
48%. For instance, Penny and Leonard, whose romance is
a main story-line, are shown to co-occur in only 3% of the
videos vs the GT 9%. Furthermore, the GT shows that this
is the second most commonly occurring pair; nevertheless,
the face-level annotations fail to pick up that it is significant
relative to other pairs. This is expected as often one or more
characters do not show their face when appearing together
(Figure 1). Hence, any co-occurrences predicted from the
face-level are a limited foundation for story understanding.

For the second question, we cluster with MuHPC and
assign each cluster to the character that appears most within
it (Figures 4b, 4d). We observe that these predictions are
very close to the GT, with an average error of just 3% (Fig-
ure 4d). This impressive result shows that the presence of
each character, their co-occurrence and hence their possible
interactions can be found completely automatically and ac-
curately using our proposed method. This provides a rich
and informative foundation for story understanding.

The assignment of character names to clusters can be
automated by combining MuHPC with methods that focus
on the automated labelling of face-tracks with names [6, 16].

6. Conclusions
In this work we propose MuHPC, a novel method for

multi-modal person-clustering in videos. For evaluation we
introduced VPCD, the largest and most diverse dataset of its
kind. We showed that using all available video cues is es-
sential for person-clustering, leading to significant improve-
ments on VPCD, and to state-of-the-art performance for
face-clustering. Importantly, we demonstrated that MuHPC
allows each character appearance and co-occurrence to be
predicted completely automatically and accurately. We hope
this can support downstream story understanding tasks such
as the learning of relationships [34]. MuHPC has intriguing
benefits for creative video editing/understanding, such as the
automated collation of character-based “highlight reels” i.e.
scenes containing a certain two character’s interactions, or
one character’s story-line. MuHPC can also serve as an es-
sential foundation for methods of video story understanding.
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1. Broader Impact

Video Person-Clustering is an appealing topic in Com-
puter Vision, with many downstream applications such as
story understanding, video navigation, and video organisa-
tion. A successful person-clustering framework (such as
that presented in this work) takes a significant step towards
realising these applications by alleviating the tremendous
annotation cost that would otherwise be necessary.

For all potential impacts and applications of video person-
clustering, it is essential that the datasets that methods
are evaluated on are representative of the real-world in
which they (or their downstream applications) may be de-
ployed [13]. This is essential if the research is to be acces-
sible by di�erent communities around the world. A repre-
sentative dataset can accurately foreshadow and ultimately
prevent any algorithmic discrimination on specific demo-
graphic groups. Previous person-clustering datasets (which
focused on the narrower task of face-clustering) were non-
representative of most demographic groups. To this end, in
this work we presented VPCD, which represents a wide and
diverse range of characters, and so is more representative of
the diversity in the real-world.

The person-clustering task aims at recognising and clus-
tering identities. Re-identifying people in the real-world
generally poses a threat to their privacy, and could carry
risks if used inappropriately. In VPCD however, the iden-
tities are all actors playing the part of characters. This is
not private data, and none of the videos have been obtained
from social media or search engines. All videos in VPCD
are in fact from public films and television material.

2. Supplementary Video Contents

Three videos are included with this supplementary ma-
terial. Here, we explain what is contained in each of them.

The first is titled, “Story_Understanding”. This video
highlights the advantages of the new task of multi-modal
video person-clustering, over the established, more limited
task of face-clustering. The video visualises the amount of
information that is used by these two tasks. For the face-
clustering task, only information from visible faces is used.
This omits important information such as characters viewed
from behind, or from the audio track. This limits the utility
of the resulting clusters for downstream applications such
as story understanding. The multi-modal person-clustering
task on the other hand uses all available cues (i.e. face, body
and voice). Clearly, a person-level understanding is essential

https://www.robots.ox.ac.uk/~vgg/data/Video_Person_Clustering/


for downstream applications of grouping-by-identity such as
story understanding.

The second is titled “VPCD_Contents”. This video visu-
alises the di�erent annotations provided in VPCD, namely
the face-tracks, body-tracks (from front and behind), and
voice-tracks. The video shows clips containing example an-
notations from all 6 program sets in VPCD. Every face-body
pair belonging to the same person-track is drawn with the
same color. Note, VPCD covers a diverse set of characters in
a variety of scenes (e.g. including dark scenes in Sherlock,
Hidden Figures), various viewpoints and over-the-shoulder
shots.

The third video, titled “MuHPC_Results” shows a selec-
tion of MuHPC person-clustering results from VPCD. In
each clip, tracks are marked with a unique cluster ID num-
ber and colour, which signify which cluster they belong to.
Particularly of note are the multiple backs of people that are
clustered correctly i.e. Ross (cluster 2) in the first clip from
Friends, Penny (cluster 3) in the second clip from TBBT,
and the multiple backs in the dark scene from Bu�y. Im-
pressively, the very small Chandler, Joey and Ross tracks
(clusters 1,0,2, respectively) at the back of the shot at the
end of the Friends clip, are correctly clustered with other
tracks of the same character.

3. VPCD Details

Here, we give additional details on the annotation (Sec-
tion 3.1) and feature extraction (Section 3.2) process for the
body-tracks in VPCD. These sections are complementary to
Sections 4.2 & 4.3 in the main manuscript. We then give
further statistics and details of the voice-tracks in VPCD
(Section 3.3).

3.1. Annotation Process
Here, we provide additional details for the body-track

annotation in VPCD. To set the scene, we have body-tracks
computed for all program sets in VPCD. The task at this
stage is to annotate the body-tracks with the names of the
characters that are annotated in the face-tracks.

The body-tracks fall into two categories, which are an-
notated separately. (1) The body-track shows the person
from the front and contains a visible, annotated face. For
these cases we automatically label the body-tracks by mak-
ing assignments to labelled face-tracks. Within each shot,
the assignment is done using the Hungarian Algorithm [8]
with a cost function of the spatial intersection over union
(IOU) between face and body-tracks in the frames that they
co-occur. If there are more body-tracks than face-tracks,
then a body-track can not be assigned, and vice-versa. In
95% of cases this association is trivial and the assignment
proceeds automatically. Where multiple assignment costs
for the same face-track are below a threshold, indicating
that the assignment was non-trivial, we instead make the

assignments manually. (2) The body-track does not contain
a visible face, i.e. the back is turned to the camera. We
manually annotate all of these cases throughout each video.
On average, 10-15% of body-tracks correspond to manually
labelled bodies from behind.

3.2. Feature Extraction
Here, we describe in more detail the feature extraction

process for the body-tracks.
Features are extracted from each of the body-tracks us-

ing a ResNet50 architecture [5]. Our goal is to train the
body features to discriminate identity based on the highly
discriminative clothing that people are wearing. We train a
ResNet50 on the CSM dataset [6], which contains identity-
labelled body detections from movies. This dataset contains
the same label for all body detections of each identity, regard-
less of their clothing. Instead, we decompose the samples for
each class (identity) in CSM into sub-classes containing im-
ages of the same identity in the same outfit. Our assumption
is that if two detections occur close-by temporally within
the same movie, then the person is likely to be wearing the
same clothing. Each body detection is annotated with the
shot that the detection is found in. We cluster the body de-
tections in each class according to their temporal location,
resulting in several sub-classes for each identity, where they
are wearing the same clothing. We train the model in a
contrastive manner using the Smooth-AP loss from [2]. For
the network to be variant to both identity and clothing, we
sample positives from the same identity wearing the same
outfit, and negatives from di�erent identities.

3.3. VPCD Voice-Track Statistics
Here, we give further details and statistics for the voice-

tracks in VPCD. In total, there are 27,163 voice-tracks in
VPCD (Table 1). This includes annotations for the ‘laughter’
track from the live studio audience in TBBT and Friends,
and additionally laughter from each character in all pro-
gram sets. Features, and the associated annotations for
all of these voice-tracks are provided for future research
use with VPCD. The distribution of lengths of these voice-
tracks is shown in Figure 1. These figures for the number
of voice-tracks are di�erent to those provided in Table 1 in
the main manuscript. MuHPC implements a pre-processing
step on the voice-tracks, such that only the most identity-
discriminating voice-tracks are used in the clustering pro-
cess (explained in Section 4).

4. Implementation Details

In this section, we give details on a pre-processing step
for MuHPC, which aims to remove voice-tracks that might
not be identity-discriminating from the clustering process.
Some of the voice-tracks in MuHPC are not used, due to
overlap between multiple voice-tracks, or due to them being



Figure 1: Voice-track lengths in VPCD. The distribution of all voice-
track lengths in VPCD.

TBBT Bu�y Sherlock Friends HF ALN Total

All Annotations 2,035 4,339 4,025 11,321 2,060 2,036 27,163

Filtered 1,047 1,835 1,615 3,961 404 303 9,165

Table 1: Voice-Track statistics in VPCD. The number of voice-
tracks for each program set in VPCD both before and after a fil-
tering step (Section 3.1). All Annotations – the total voice-track
annotations provided with VPCD. Filtered – the total voice-track
annotations used by our person-clustering method, after ignoring
short and overlapping tracks (same as Table 1 in main manuscript).
Total – the summation over all six program sets.

too short. Here, we explain this process, and provide statis-
tics on how many voice-tracks are ignored at this stage (Ta-
ble 1). First, the temporal overlap between multiple voice-
tracks. Our goal here is to use the voice-track features as
a discriminative signal for identity. If multiple voice-tracks
from di�erent identities have large temporal overlap, then
the resulting features will be very similar, and they will not
provide a good identity-discriminating signal. We choose
to ignore any voice-tracks that have 20% overlap with a
di�erent voice-track. Second, the temporal length of the
voice-tracks. As shown in [16], there is a strong positive
correlation between the discriminative capabilities of voice-
track features and the length of the voice-track. In order to
maximise the discriminativeness of the voice-track features,
we ignore those that are less than 1 second in length. Table 1
shows the total number of voice-track annotations in VPCD
before (“All Annotations”) and after these steps (“Filtered”).

5. Metrics

As mentioned in Section 5 in the main manuscript, for
each dataset in VPCD, we use Weighted Cluster Purity
(WCP) and Normalized Mutual Information (NMI). Fur-
thermore, we introduce the metrics of Character Precision
and Recall. Here, we describe in more detail the WCP and

NMI metrics and give some motivation behind the proposed
Character Precision and Recall (CP, CR).

Weighted Clustering Purity (WCP). WCP weights the
purity of a cluster by the number of samples belonging in it;
to compute purity, each cluster 2 containing =2 elements is
assigned to the class which is most frequent in the cluster.
WCP is highest at 1 when within each cluster, all samples
are from the same class. For a given clustering, C, with N
total tracks in the video: ,⇠% = 1

#

Õ
22⇠ =2 · ?DA8CH2 .

Normalized Mutual Information (NMI) [9]. NMI mea-
sures the trade-o� between clustering quality and number of
resulting clusters. Given class labels . and cluster labels ⇠,
NMI(. ,⇠) = 2 � (. ;⇠)

� (. )+� (⇠) , where � (.) is the entropy and
� (. ;⇠) = � (. ) � � (.\⇠) the mutual information.

Character Precision and Recall (CP, CR). We introduce
Character Precision (CP) and Recall (CR), two metrics com-
puted using the ground truth number of clusters. CP is the
proportion of tracks in a cluster that belong to its assigned
character, while CR is the proportion of that character’s
total tracks that appear in the cluster. The assignment is
done using the Hungarian algorithm [8] by using CR as
the cost function. Note that this assignment is unique, i.e.
two characters cannot be assigned to the same cluster. We
measure CP and CR and report results averaged across all
characters. Our motivation is that the standard metrics are
weighted according the number of samples in each clus-
ter, thus disproportionately favouring frequently appearing
characters and disregarding tail distributions. Instead, sim-
ilar to character AP [10], CP and CR weight all characters
equally. Similar to the Hungarian matching accuracy used
in [1, 15], CP and CR are computed using the ground truth
number of clusters. Thus, they measure complementary in-
formation to WCP and NMI, which do not have access to
this information.

6. Qualitative Results

Further qualitative examples of the clustering process for
characters in two of the program sets in VPCD are shown
in Figure 2. In both cases, Stage 1 is shown to produce
high-precision clusters of the character. The face alone
cannot confidently merge these clusters, due to each cluster
containing di�erent views of the same character (e.g. frontal
and profile). These clusters are merged via speaking person-
tracks, using the multi-modal bridges of Stage 2. Back views
of the same character are then merged into the clusters in
Stage 3. The resulting clusters contain di�ering views of the
same character, with varying pose, lighting conditions, and
camera viewpoints, all while maintaining high precision.



Stage 1

Stage 2

Stage 3

Cluster #1 Cluster #2

(a) Clustering Process of MuHPC for a character in Bu�y. Stage 1 produces high-precision clusters. Cluster #1 contains
mainly profile and downwards-facing views of the character, while Cluster #2 contains frontal facing views. Both clusters
contain very di�erent clothing and body poses. The face modality alone can no longer confidently merge these clusters. Stage
2 merges the two clusters using multi-modal bridges between a speaking person-track from each cluster. Stage 3 then merges
back views into these clusters via body features. Back views of the character are merged via frontal appearances in nearby
shots where the character is wearing the same clothing.

Stage 1

Stage 2

Stage 3

Cluster #1 Cluster #2

(b) Clustering Process of MuHPC for a character in Sherlock. Stage 1 produces high-precision clusters. Cluster #1
contains mainly frontal face views, while Cluster #2 contains profile face views. Both clusters contain very di�erent lighting
conditions, body poses; and camera-views of the same character. Stage 2 merges the two clusters where the face alone could
not, by using multi-modal bridges between a speaking person-track from each cluster. Stage 3 then merges back views into
these clusters via body features. Back views of the character (both full-body, and over-the-shoulder views) are merged via
frontal appearances in nearby shots where the character is wearing the same clothing.

Figure 2: Clustering Process of MuHPC. For two program sets from VPCD, (a)-Bu�y, and (b)-Sherlock, we show the clustering process for one of the
principal characters.



Modality Protocol Average

F B V WCP NMI CP CR
MuHPC1>3H X AT 60.6 46.9 63.4 48.1
MuHPCE>824 X AT 71.0 67.9 54.6 50.3
MuHPC 5 024 X AT 93.4 89.4 93.0 90.2

MuHPC1>3H X OC 58.1 43.7 50.6 44.8
MuHPCE>824 X OC 77.5 70.4 58.1 55.2
MuHPC 5 024 X OC 91.7 87.2 84.7 81.9

Table 2: Person-Clustering Results on VPCD after Stage 1 – Cluster-

ing only speaking person-tracks. We report the averaged metrics for both
AT and OC protocol, averaged across all program sets. Every experiment
shown is clustering only a subset of the person-tracks that contain all three
modalities (face, body and voice) in order to isolate the clustering perfor-
mance when each modality is used alone. The three reported methods,
MuHPC1>3H , MuHPCE>824 , MuHPC 5 024 , use a di�erent modality as
the single modality in Stage 1 (body, voice and face, respectively). The
numbers reported are taken after Stage 1.

7. Modality Analysis

In this section, we provide further analysis into the dis-
criminative capabilities of each of the three modalities used
in MuHPC (face, body and voice). In Stage 1 of MuHPC,
high-precision clusters are created using just the face modal-
ity, as it is the most discriminative of the three. Here, we
justify this by instead using the other modalities in Stage 1.
Table 2 shows results averaged across all program sets in
VPCD for both AT and OC protocol, when each of the avail-
able modalities are used in Stage 1 (termed MuHPC1>3H ,
MuHPCE>824; and MuHPC 5 024). Next, we explain some
experimental details, and then analyse these results.

For fair comparison between MuHPC1>3H ,
MuHPCE>824; and MuHPC 5 024, we cluster the same
person-tracks in each of the experiments. This limits
the experiments to person-tracks with all three available
modalities i.e. talking person-tracks with a visible face.
To isolate the role of each of the modalities, we report
clustering performance after Stage 1. Similarly to g

tight
5

in
MuHPC, for these experiments we learn nearest neighbour
distance thresholds for each modality on the VPCD val. set.

As shown in Table 2, only the face modality can be reli-
ably used in Stage 1 to produce high-precision clusters, as
reflected by the high values for WCP in both protocol. This
justifies the use of the face modality in Stage 1 of MuHPC.
This is understandable, as di�erent identities can sound the
same when expressing similar emotions (e.g. anger, sad-
ness), and bodies from di�erent identities can look very
similar when wearing similar clothing. According to WCP
and NMI, MuHPCE>824 produces better clustering perfor-
mance than MuHPC1>3H , indicating that the voice modality
is better at discriminating identity than the body modality.

8. Person-Clustering Results

In this section, we provide extensive analysis of the
person-clustering results obtained by MuHPC as well as
results for an additional experiment. First, we explore the
impact of Stages 1 and 2 of MuHPC on some episodes from
the Friends program set in VPCD (Section 8.1). Second, we
provide further person-clustering results from MuHPC on
VPCD using the OC protocol. Third, we examine the results
when clustering tracks from all program sets in VPCD, con-
catenated by their research order of broadcast (Section 8.3).
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Figure 3: Stage 1 and Stage 2 Person-Clustering results from the program set, Friends. %WCP and %NMI for episodes of Friends
from VPCD, for the Automatic Termination protocol (AT). The blue line illustrates the results after Stage 1, while the orange one illustrates
the results after Stage 2, i.e. bridging clusters by exploiting the voice modality. #⇠ is the ground truth number of clusters for each episode.

8.1. Per-Stage Analysis
We examine the e�ects of Stages 1 and 2 (Section 3

in the main manuscript) on the performance of MuHPC on
episodes from the Friends program set in VPCD. To this end,
we plot in Figure 3 the %WCP and %NMI results over the
number of clusters after each partition of the method for four
episodes. Each circle in the plot displays the partition (i.e.
showing the number of clusters of the resulting partition and
the corresponding metric value). The blue lines and circles
represent the clustering process at Stage 1 of MuHPC, while
the orange ones display the Stage 2 results.

We observe that in most cases after the first partition
(first blue dot) the WCP maintains high values (above 99%).
While Stage 1 progresses, the WCP drops only by a small
margin (i.e. less than 1% in most cases), whereas the NMI
increases significantly (i.e. up to +50%). This validates that
Stage 1 indeed results in high-precision clusters, as the purity
(indicated by WCP) is not compromised, and also the NMI
increases.

The orange dots signify the additional partition from
Stage 2. Stage 2 consistently and significantly increases
the NMI of the resulting clusters (i.e. by up to 5%), without
sacrificing their purity (WCP remains constant). This indi-
cates that Stage 2 bridges high-precision clusters of the same
identity, thus retaining the high WCP, while decreasing the
identity overlap between clusters.

8.2. Oracle Clusters Results

Table 3 gives person-clustering results for the OC pro-
tocol. The experiments, ablation studies and baselines are
the same as those used for the AT protocol, and explained
in Section 5.1 of the main manuscript. Similarly to the AT
protocol, MuHPC– significantly outperforms both baselines
across all metrics and program sets. MuHPC gives a further
boost when averaged across all program sets. The voice
modality provides comparably less of a performance boost
in the OC protocol (here) relative to the AT protocol (Table
2 in the main manuscript). This is due to the Oracle Cluster
protocol (OC), which forces the clusters to merge beyond the
automatic termination point until the ground truth number
of clusters is reached. Next, we explain this in further detail.

MuHPC automatically stops clustering when the features
within each cluster can no longer confidently be used to
discriminate between clusters of the same identity. To reach
the oracle number of clusters, the clusters are merged in
a non-discriminative way. In this case, this reverses the
positive impact of the voice modality (seen in Table 2 in the
main manuscript) by merging the new clusters incorrectly
until the oracle number of clusters is reached. This opens
possibilities for future research into more e�ective ways
of reducing to the ground truth number of clusters. The
Automatic Termination protocol is the more realistic setting
for real-world deployment of person-clustering algorithms
on videos with unknown numbers of characters.



# Modality
#⇠B= #⇠B= #⇠B= #⇠B= #⇠B= #⇠B= #⇠B=

TBBT
130

Bu�y
165

Sherlock
50

Friends
239

Hidden Figures
10

About Last Night
24

Average
618

F B V WCP NMI CP CR WCP NMI CP CR WCP NMI CP CR WCP NMI CP CR WCP NMI CP CR WCP NMI CP CR WCP NMI CP CR
B-ReID X 66.2 54.9 11.4 33.0 52.0 48.8 40.6 24.6 60.3 24.0 10.7 36.0 62.8 56.0 49.8 56.4 33.7 10.5 17.6 31.7 27.3 17.9 19.9 19.3 50.4 35.4 25.0 33.5
B-C1C X X 91.7 79.1 54.4 55.9 74.5 62.7 46.8 44.7 77.1 44.4 33.2 43.3 88.0 82.4 74.5 78.9 69.5 51.8 29.7 46.4 73.1 64.8 55.7 53.8 79.0 64.2 49.1 53.8

MuHPC- X 94.3 85.8 84.1 81.8 81.1 68.0 76.2 76.3 86.79 56.87 74.8 69.3 90.0 76.6 90.8 82.8 85.7 77.3 76.7 56.7 97.9 91.4 98.9 86.9 89.3 76.0 83.6 75.6
MuHPCE X X 94.3 85.8 84.1 81.8 81.1 68.5 76.2 75.8 86.1 62.3 72.8 68.8 89.8 77.3 89.6 84.6 85.7 77.3 76.7 56.7 97.8 91.9 98.9 87.0 89.3 76.4 83.4 75.5
MuHPC1 X X 97.7 93.9 86.9 83.8 86.9 76.9 80.0 79.1 87.1 57.5 74.9 66.8 94.2 84.6 95.7 86.0 85.6 77.1 76.6 56.7 97.8 91.2 98.9 86.9 91.5 80.2 86.0 77.0
MuHPC X X X 97.7 93.9 86.9 83.8 86.9 77.6 79.8 78.5 86.4 63.0 73.1 68.7 94.0 85.5 94.6 88.1 85.6 77.1 76.6 56.7 97.8 91.6 98.9 87.0 91.4 81.5 85.0 77.1

Table 3: Person-Clustering Results on VPCD. For each program set, each metric is averaged across all episodes. OC protocol. The ‘Average’ column
reports averaged metrics across all six program sets. #⇠B is the sum of ground truth clusters across each episode. We report two strong baselines (B-ReID,
B-C1C, Section 5.1 in main manuscript) and an ablation on the modalities used. Keys: F-face, B-body, V-voice. Modality: used modalities.

Program Sets

Program Sets

Figure 4: Person-Clustering Results when clustering multiple program sets simultaneously. Incrementally, more and more tracks are considered by
adding di�erent program sets together. There are discrete data points for each time the tracks from an additional episode or movie are added. Each data point
considers the total cumulative number of tracks up to that point. All experiments are for the Automatic Termination (AT) protocol for person-clustering for
MuHPC. Top: The WCP and NMI measurements. Bottom: The total predicted number of clusters (cluster pred), measured against the ground truth number
of clusters (cluster GT). Note that “cluster GT” is di�erent to #⇠B in the main manuscript. #⇠B is the summed number of ground truth clusters (number of
characters) across multiple episodes. For example, episodes 1 and 2 of Sherlock have 13 and 22 ground truth clusters, respectively. In this case, #⇠B = 35.
However, some characters appear in both episodes, such as “John” or “Sherlock”. Instead, “cluster GT” is the total number of unique ground truth characters
and therefore clusters across multiple episodes. For the same example of episodes 1 and 2 of Sherlock, “cluster GT” is equal to 31, as 4 characters feature in
both episodes.

8.3. Clustering on Multiple Program Sets Simulta-
neously

In this section, we present results for the person-clustering
task when clustering tracks from multiple program sets si-
multaneously. In the main manuscript, all experiments are
conducted on individual program sets from VPCD. Here, we
cluster tracks from multiple program sets at the same time.
In detail we incrementally consider additional episodes and
movies from each of the program sets. Results for the WCP,
NMI and the number of predicted clusters against the ground
truth number of characters for the AT protocol for person-
clustering are shown in Figure 4. The order with which
program sets are added to the clustering experiment is in
line with the timing of their first use in Computer Vision re-
search (i.e. first Bu�y [3], followed by TBBT [11], then Sher-

lock [10] and so on). Episodes within each of the TV-shows
are added chronologically (starting with the first episode in
the program set).

Impressively, Figure 4 shows that when clustering all
tracks from VPCD simultaneously, the WCP and NMI re-
main high at 80.6% and 79.3%, respectively. This indicates
that most clusters have high purity, even with 323 di�erent
characters and over 30,000 tracks, over the visually disparate
TV-shows and movies. As expected, these metrics drop as
the total number of tracks increases, as the task becomes
much more di�cult. Until the introduction of tracks from
episodes from Friends (14,642 tracks), the predicted num-
ber of clusters lies very close to the ground truth number of
clusters. This indicates that VPCD is accurately predicting
the number of di�erent characters in the tracks. As the total



number of tracks increases, the predicted number of clus-
ters diverges from the ground truth number, and MuHPC
predicts more clusters than there are characters. This is
in line with and partially explained by the combination of
cannot-link constraints and decreasing WCP. As the purity
of clusters decreases, the cannot-link constraints start pre-
venting clusters containing tracks of the same identity from
merging. This results in MuHPC automatically terminating
the clustering when there are more clusters than characters.
We observe similar results when adding datasets in di�erent
orders. Similar experiments for combining the TBBT and
Bu�y datasets for face-clustering are presented in [14].

9. Face-Clustering Results

Here, we give further analysis of the face-clustering re-
sults shown in Table 3 of the main manuscript (and repeated
in Table 4). This is an extension of Section 5.3 in the
main manuscript. In detail, the extra analysis concerns the
automated termination (AT) criterion, and the relation of
MuHPC to previous methods. To summarise Section 5.3
of the main manuscript, MuHPC significantly surpasses the
performance of previous methods across all program sets,
all metrics and both AT and OC protocol.

First, we analyse the AT protocol results. The goal of
the AT protocol is to automatically terminate clustering and
assess the quality of the resulting clusters. This is a realistic
protocol for videos in-the-wild where the number of char-
acters is unknown. Here, the number of predicted clusters,
#⇠? , can be measured relative to the ground truth number
of clusters, #⇠B . In all program sets, MuHPC predicts more
clusters than the ground truth. This is because MuHPC pri-
oritises high-precision. For TBBT, #⇠? is very close to #⇠B

(168 vs. 130), and is in fact closer than the predictions of all
previous methods. This is impressive seeing as the goal of
BCL [14] is to predict the ground truth number of clusters.
For the other program sets, #⇠? is slightly further from #⇠B

than previous methods (e.g. a di�erence from #⇠B of 36 for
Sherlock vs. 25 for C1C [7]). We now give two reasons why
despite this, the clusters from MuHPC are far more desirable
than those from previous methods.

First, the clusters from MuHPC are far higher quality. It
would be expected that when predicting more clusters than
there are ground truth clusters, any method would achieve
higher WCP. However, NMI is also significantly higher for
MuHPC than previous methods (e.g. on average 9.8% higher
than the best prior work across all program sets). Second, for
downstream applications, it is far more useful to have many
high-precision clusters, than few very low-precision clusters.
The latter in this case requires a large amount of human
labelling in order to correctly label the person-tracks from
the clusters (a cluster property reflected by the Operator
Clicks Index (OCI-k) [4] metric). Furthermore, a good way
of measuring the utility of clusters for a downstream task

Method protocol
TBBT #⇠B = 130 Bu�y #⇠B = 165

WCP NMI CP CR #⇠? WCP NMI CP CR #⇠?

BCL [14] AT 90.8 85.7 - - 83 85.0 78.8 - - 121
C1C [7] AT 89.2 87.4 29.1 40.9 41 66.3 68.8 14.9 27.1 40

MuHPC– AT 99.4 97.8 87.8 88.6 168 96.1 92.8 85.6 85.5 223
MuHPCE AT 99.4 97.8 87.8 88.6 168 96.1 93.7 85.9 84.8 221

Finch [12] OC 90.8 80.5 46.1 44.2 82.9 75.3 49.6 41.0
BCL [14] OC 94.0 85.0 - - 86.5 77.6 - -
C1C [7] OC 95.3 84.5 54.9 57.3 88.1 79.1 58.1 55.4

MuHPC– OC 99.1 97.4 79.3 83.0 95.6 92.2 72.3 73.8

MuHPCE OC 99.1 97.4 79.3 83.0 95.6 93.1 71.5 73.2

Friends #⇠B = 239 Sherlock #⇠B = 50

C1C [7] AT 88.2 89.8 62.4 73.2 185 76.3 50.3 20.2 41.0 25

MuHPC– AT 98.7 94.9 98.1 94.0 543 86.7 60.3 79.1 71.2 96
MuHPCE AT 98.4 95.9 97.7 95.3 522 86.3 66.0 78.4 74.5 86

Finch [12] OC 92.2 89.9 85.2 85.6 81.6 58.6 59.8 56.8
C1C [7] OC 94.3 93.2 79.1 85.5 81.6 53.8 40.5 51.7

MuHPC– OC 96.3 92.7 89.0 88.8 84.0 56.5 55.4 59.9
MuHPCE OC 97.1 94.6 92.3 92.6 85.1 63.9 59.6 62.9

Table 4: Face-Clustering Results. Comparisons to previous state of
the art on four program sets using only face-tracks with unknown (AT),
and known (OC) number of clusters. We report metrics averaged over each
episode in each program set, and the number of predicted clusters, summed
over each episode (#⇠?). MuHPC– uses only face; MuHPCE uses the
multi-modal bridges from voice and face. Where not reported in respective
publications, numbers are computed using o�cial implementations. Finch
has no stopping criterion so results for AT are not reported.

is the character precision and recall metrics. These metrics
assign each character uniquely to a cluster, and measure
the resulting precision and recall of these pseudo-labels.
MuHPC significantly achieves a CP and CR of 56.0% and
39.3% higher, respectively, than C1C across all program
sets. This indicates that although prior work may predict a
number of clusters closer to the ground truth than MuHPC,
these clusters however are of almost no use for downstream
applications, unlike the clusters from MuHPC.

Next, we discuss MuHPC in relation to previous meth-
ods. C1C continues using face to cluster even when there are
large distances between clusters, and therefore degenerates
in the later partitions, leading to lower WCP and NMI. Un-
like BCL, MuHPC uses pre-trained features, thus alleviating
the computational burden of training, allowing for greater
generalisation, and as we demonstrate leading to better re-
sults. BCL uses the assumption that each identity occupies
the same hyper-spherical volume in their learnt latent space.
We argue that complex similarity structures and variation
between faces of the same identity mean that they cannot
be constrained to within fixed-radius hyper-spheres (BCL),
even when training with this objective. Instead, MuHPC
does not enforce such a constraint, and uses a nearest neigh-
bour constraint with multi-modality to connect highly dis-
similar tracks.

10. Parameter Selection & Sweeps

In this section, we give a parameter sweep for the near-
est neighbour distance threshold g

tight
5

(Section 3.1 in main
manuscript), and give further description and analysis on
the automatic parameter selection method for gloose

E
(Section

3.2 in main manuscript).



(a) TBBT (b) Bu�y (c) Sherlock

(d) Friends (e) Hidden Figures (f) About Last Night

Figure 5: Parameter sweep for g
tight

5
on the six program sets in VPCD. For each program set, the NMI, WCP and number of clusters are plotted, for the

Automatic Termination criterion, for varying values of gtight
5

. We additionally show for each program set, the ground truth number of clusters, #C, marked
on the Number of Clusters axis of each plot. For the numerical values of #C, we refer the reader to Table 2 in the main manuscript.

10.1. Nearest Neighbor Distance Threshold

Here, we give metrics across all program sets in VPCD for
parameter sweeps on the nearest neighbour distance thresh-
old, gtight

5
. These are displayed in Figure 5. As detailed in

the main manuscript, the value was chosen on the validation
partition of VPCD. To isolate the role of gtight

5
, all metrics

are evaluated at the Automated Termination criterion, af-
ter Stage 1, and using only the face-track annotations. The
metrics at the chosen value of g

tight
5

= 0.48, are therefore
equivalent to MuHPC– at AT protocol in Table 3 in the
main manuscript. We notify the reader that in the main
manuscript, it reads that gtight

5
= 0.52. This is incorrect, the

value is gtight
5

= 0.48.

Across most program sets, the same relationship between
the metrics and g

tight
5

is seen. Namely, as g
tight
5

increases,
NMI increases, while WCP and the total number of clusters
decreases. In more detail, as gtight

5
increases, the maximum

distance at which clusters can merge increases. This leads
to more cluster merges before the automatic termination of
Stage 1. This is reflected by the decreasing number of clus-
ters at the termination point. Firstly, there is an increased
likelihood of incorrect merges, where clusters depicting dif-
ferent identities merge together, leading to lower precision
clusters, as shown by decreasing WCP. Increasing g

tight
5

also
leads to more correct merges. This is reflected by the rising
NMI, which shows that the identity overlap between clusters
is decreasing. An increasing NMI can be interpreted as there

being more correct merges than incorrect merges. In some
program sets (e.g. Bu�y, Sherlock), NMI starts to decrease
as gtight

5
increases, indicating that more incorrect merges are

being made than correct merges.

In a window surrounding the learnt value of 0.48, the
NMI and WCP are roughly stable at very high values across
all program sets (high relative to the respective prior work on
those program sets - see Table 3 in main manuscript). This
demonstrates that this learnt parameter generalises well to
the di�erent program sets, that the face features are indeed
universal; and that MuHPC is not particularly sensitive to
this choice of parameter. The program sets in VPCD are
highly visually disparate. These results therefore indicate
that MuHPC could be simply and e�ectively used on any
number of di�erent program sets not in VPCD.

At the chosen value of gtight
5

= 0.48, often more clusters
are predicted than the ground truth number (marked as #C
in Figure 5). In some program sets, this is by just a small
number (168 vs #⇠ = 130 for TBBT, 223 vs #⇠ = 165 for
Bu�y). There is a trade-o� between obtaining a number of
clusters similar to #C, and the precision of these clusters.
Our design choice at Stage 1 is to produce clusters with
very high-precision. Stage 2 leads to a further reduction of
these clusters by using multiple modalities to merge clusters.
A discussion in Section 9 explains why over-predicting the
number of clusters is beneficial for downstream uses of the
clusters.



(a) TBBT (b) Sherlock

Figure 6: Voice similarities in two program sets from VPCD. Here
we show similarities between voices of the same identity (positives) and
di�erent identities (negatives). These are found via the cannot-link con-
straints (negatives) and the clusters from Stage 1 (positives and negatives).
Similarities are computed via (1 minus cosine similarity). This process
finds less positives than negatives, hence the frequency of the positives is
scaled to match that of the negatives.

TBBT Bu�y Sherlock Friends HF ALN

g
loose
E

0.36 0.17 0.19 0.31 0.19 0.33

Table 5: The automatically learnt values for g
loose
E

for the

di�erent program sets in VPCD.

10.2. Automatically Learnt Hyper-Parameters

The values for the threshold on the voice similarities
that are used in the multi-modal bridges, gloose

E
, are learnt

automatically for each of the audibly disparate program
sets in VPCD (this is detailed in Section 3.4 in the main
manuscript). Here, we give the values that are learnt for
each program set, provide some analysis, and visualise the
voice distances that the hyper-parameters were learnt from.

The values of g
loose
E

learnt automatically for the di�er-
ent program sets are given in Table 5. The voice distances
between di�erent identities are found via a combination of
cannot-link constraints and the clusters from Stage 1. We
observe that for some program sets these voice distances are
quite high. This in turn leads to a relatively high value of
g

loose
E

(e.g. TBBT, Friends). We additionally show the simi-
larities between voices for the same identity (positives) and
di�erent identities (negatives) in Figure 6 for two program
sets from VPCD.

A high value of g
loose
E

indicates that the characters all
sounded di�erent to the voice embedding network, and in
turn the respective features from di�erent speakers were able
to be separated in the embedding space (Figure 6 - left). For
the multi-modal bridges, this means that the voices from
two speaking person-tracks can sound quite di�erent and a
bridge can still confidently be formed.

For other program sets, the voice distances between the
di�erent identities are quite low, and therefore g

loose
E

is also
low (e.g. Bu�y, Sherlock). In these cases, there are many
similar sounding characters; hence, the voice embedding
network cannot separate the embeddings from di�erent iden-

tities well (Figure 6 - right). For the multi-modal bridges,
this means that the voices from two speaking person-tracks
must sound very similar for a bridge to still confidently be
formed, as only then can the voice modality (together with
the concurrent agreement from the face modality) be sure
that it is the same person.
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