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Abstract

Network load balancers are important components in data centers to provide
scalable services. Workload distribution algorithms are based on heuristics, e.g.,
Equal-Cost Multi-Path (ECMP), Weighted-Cost Multi-Path (WCMP) or naive
machine learning (ML) algorithms, e.g., ridge regression. Advanced ML-based
approaches help achieve performance gain in different networking and system
problems. However, it is challenging to apply ML algorithms on networking
problems in real-life systems. It requires domain knowledge to collect features
from low-latency, high-throughput, and scalable networking systems, which are
dynamic and heterogenous. This paper proposes Aquarius to bridge the gap
between ML and networking systems and demonstrates its usage in the context
of network load balancers. This paper demonstrates its ability of conducting both
offline data analysis and online model deployment in realistic systems. The results
show that the ML model trained and deployed using Aquarius improves load
balancing performance yet they also reveals more challenges to be resolved to
apply ML for networking systems.

1 Introduction

In data centers, applictions are replicated on multiple instances running e.g., in containers or virtual
machines (VMs) to provide scalable services [1]. One of the main components in such data centers
for optimal resource utilization is network (load balancers), whose role is to distribute network traffic
fairly among application instances. As ML-based approaches achieve performance gains in different
networking problems [2,3], this paper investigates whether ML helps improve network load balancing
performance.

The challenges of applying ML on network load balancing problem, especially in real-world systems,
are 3-fold. First, feature collections require domain knowledge. Unlike task schedulers [4] or
application-level load balancers [5], network load balancers have limited observations and are not
aware of task size and duration before distributing workloads. They can only extract features from
packet headers below the transport layer. Second, networking systems favor low-latency, high-
throughput and scalability. Adding ML algorithms in the system incurs additional computational
overhead for collecting and processing features, making predictions, and online training, which
degrades data plane performance and scalability [6]. Third, networking environments are dynamic
and heterogenous [7, 8]. Asynchronous closed-loop design is required to bring ML algorithms online
so that the models can be adapted over time without blocking the system.

This paper proposes Aquarius to bridge the different requirements for networking system and ML.
Aquarius is an asynchronous and scalable data collection and exploitation mechanism that enables
ML-based decisions based on fine-grained observations. This paper implements Aquarius in Vector
Packet Processing (VPP) [9], which is easy to deploy in real-world systems. Using Aquarius, the
potential benefits and challenges of ML for network load balancing problem are investigated.
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Figure 1: Overview.
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Figure 2: Aquarius shm layout and data flow pipeline.

2 Related Work

ML techniques (e.g., graph neural networks [10], and convolutional neural networks [11]) help
optimize and classify network traffic in data centers. However, applying these techniques alongside
the data plane on the fly is computationally intractable [6, 12]. In [13], it is shown that asynchronous
design helps achieve performance gain without degrading networking performance on emulators.
This paper implements Aquarius on a platform compatible to commodity CPUs so that it can be
deployed in real-world system.

In [8], the challenges of applying ML algorithms on networking systems are studied using system
configurations as features. In the context of network load balancing [14], ridge regression [15] is
used to improve workload distribution fairness using actively probed server load information (CPU
and memory usage) as features. With Aquarius, the same problem can be investigated using a wide
range of runtime networking features extracted from packet headers, which makes load balancers no
longer necessary to maintain the active probing channel with all servers.

3 Overview

Aquarius has a 3-layer architecture (figure 1a). It extracts network features from the data plane (parser
layer) and makes the features available via shared memory (partitioner layer) for the control plane
(processor layer).

In the context of network load balancing problem, Aquarius is deployed on load balancers. As
depicted in figure 1b, cloud services provided in data centers are identified by virtual IPs (VIPs).
Each VIP corresponds to a cluster of virtualized application servers, each identified by a unique
direct IP (DIP). Within each VIP, Aquarius needs to track the state of each server to distinguish the
overloaded or malfunctioning ones and make more-informed load balancing decisions.

4 Design

In order to apply ML in an asynchronous close-loop load balancing framework with high scalability
and low latency, communication between the load balancer data plane and the ML application
is implemented via POSIX shared memory (shm). The design of Aquarius allows features to be
extracted from the data plane and conveyed to the ML application, and allows data-driven decisions
generated by the ML application to be updated asynchronously on the load balancer.

The pipeline of the data flow over the lifetime of a TCP connection is depicted in figure 2. On
receipt of different networking packets, networking features are gathered as counters or samples.
To avoid I/O conflicts, sampled features are collected using reservoir sampling over the latest time
window and counters are collected atomically and made available to the data processing agent using
multi-buffering. The bit-index binary header helps efficiently identify active application servers.
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Figure 3: Feature correlation obtained from Wikipedia replay traces applied on a 20-CPU Apache
server clusters where 2 groups of servers have different provisioned capacities (2-CPU and 4-CPU).

Gathered features are organized by the packets’ corresponding VIP and DIP in shm files identified
by VIP (e.g., shm_vip0). With no disruption in the data plane, these features are fetched by ML
application periodically to shm files identified by DIP (e.g., shm_dip0), which serve as a database
for the ML application. Only the features with the highest sequence ID are fetched and sequence
ID 0 is used as a writing “lock”. Using the same multi-buffering scheme, action buffes and registers
allow to effectuate policies generated by the ML application.

This design is asynchronous and has no blocking steps. This design also favors the discrete arrivals
of networking packets, and allows to gather 21 networking features1. This design separates gathered
networking features by VIP and DIP, and allows to aggregate the features at different levels and
make predictions for different purposes. Updating (adding or removing) services (VIPs) and their
associated servers (DIPs) can be achieved by managing different shm files in a scalable way using
this design, incurring no disruption on data planes.

5 Experiments

Using the same topology as in figure 1b, 3 different network traces2 are applied as network traffic
over 2 groups of (2-CPU and 4-CPU) servers with different processing capacities. Throughout the set
of experiments, network features (8 counters and 13 sampled features) are collected as input data
for ML models to predict 3 ground truth values, i.e., number of provisioned CPUs (#cpu), CPU
usage, and number of busy worker threads (#thread). Each sampled feature channel is reduced to 5
scalars, i.e., average, 90th-percentile, standard deviation, exponential moving average (decay) of
average and 90th-percentile. This section illustrates both offline (section 5.1) and online (section 5.2)
application of Aquarius for developing an ML-based load balancer.

5.1 Offline ML Applications

An ECMP load balancer is implemented with Aquarius. Features and ground truth values are collected
every 50ms along with the different types of input network traffic with different traffic rate.

Feature process pipeline: Collected dataset is preprocessed and converted to have zero mean and
unit standard deviation. They are subtracted by the mean and divided by the standard diviation across
the entire training set. Outlier data-points (any feature or ground truth value beyond 99th-percentile)
are dropped.

Data analysis: Correlation between networking features and the 3 ground truth values using Wiki
trace are plotted in figrue 3. It can be observed that under higher traffic rate, the flow completion time
(fct) and flow duration have higher positive correlation with the actual server load states (CPU usage
and #thread) and negative correlation with the provisioned processing capacities. This makes sense
since under heavy workloads, servers processing speed decreases and more powerful servers finish
tasks faster. Conducting principal component analysis (PCA) on the collected networking features

1The whole list of networking features are listed in figure 8 in appendix A.
2Wiki, Poisson for-loop and file traces. See appendix B for details.
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Figure 5: Aquarius overhead analysis.
Table 1: Accumulated score board for different models and different tasks executed w/ 1 CPU core.

Task Metrics Dense1 RNN2 LSTM2 GRU2 1DConv-
GRU1

Wavenet-
GRU1

Wavenet-
Reconst.

W
ik

i

MSE 253.203 2.557 1.553 1.660 1.878 1.923 2.421
RMSE 15.912 1.599 1.245 1.288 1.371 1.387 1.556
MAE 1.804 1.099 0.916 0.931 0.988 0.996 1.117

Delay (ms) 50.5± 1.0 52.1± 1.7 53.4± 3.0 53.7± 1.3 44.8± 2.8 54.9± 0.8 54.6± 0.5

Po
is

so
n MSE 1520.888 2.804 0.801 0.774 0.874 0.965 0.946

RMSE 38.999 1.675 0.895 0.880 0.935 0.982 0.973
MAE 3.176 1.162 0.602 0.600 0.635 0.648 0.649

Delay (ms) 55.4± 0.7 91.4± 6.4 69.3± 2.2 70.9± 1.3 61.5± 2.5 65.6± 1.7 70.2± 0.4

using 3 types of traffic gives clustering results as depicted in figure 4. Projected on two principal
components (PCs), which accounts for 41% and 30% of the overall variability, 3 clusters can be clearly
observed. This is a promising result for potential ML-based traffic classifiers, which distinguish
traffic types and allocate different computational resources to meet corresponding requirements of
quality of service (QoS).

Overhead analysis: The performance of Aquarius is compared with state-of-the-art Maglev load
balancer [14]. As depicted in figure 5a, Aquarius does not induce notable degradation of QoS.
Aquarius introduces an additional 1k per-packet processing CPU cycles (0.385µs on a 2.6GHz CPU)
on average (figure 5b), which is trivial comparing with the typical round trip time (higher than 200µs)
between network equipments [16].

Training: 8 ML models are trained to predict #thread as server load estimators to make load-aware
load balancing decisions. To adapt the dataset for sequential models, the sequence length is 64
and stride is 32, which give 160k datapoints in total. These sequential datapoints are randomly
splited 80 : 20 into training and testing datasets. Tensorflow [17] is used for model training. The
hyperparameters for different models are described in appendix D.

Results: As shown in table 1, recurrent models have better performance in general (i.e., LSTM and
RNN). Applying convolutional layers helps reduce inference delay (i.e., 1DConv-GRU1). More
complicated models do not necessarily improve model performance (i.e., Wavenet models).

5.2 Online ML Applications

Online performance: Aquarius enables open and closed-loop control. Based on the results from
previous section, LSTM2 model is brought online to make load balancing decisions (changing the
server weights and assigning more tasks to servers with higher weights) based on latest observation
every 250ms. Two Poisson for-loop traces are applied as input traffic. The average completion
times for each query are 140ms for query_len=4 and 160ms query_len=4). The load balancing
performance is compared with Maglev in figure 6 across a wide range of traffic rates. It is shown that
with trained ML models, load balancers allow the same server cluster to serve heavier workloads with
reduced page load time (fct), by optimizing resource utilization (improving workload distribution
fairness and reducing overprovision factor).

Generality: To study whether the trained ML models is able to generalize, model LSTM2 is trained
only using Poisson for-loop traffic and brought online to work with both for-loop and Wiki traces.
Figure 7 shows that the trained model generalizes poorly if the applied traffic is not seen by the model
before, which is consistent to [8].
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Figure 6: Online load balancing with trained LSTM2 model on Poisson for-loop trace.
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(a) Poisson for-loop traffic.
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(b) Wiki traffic.

Figure 7: Predicting 2 types of network traffic with LSTM2 model trained only with for-loop trace.

6 Conclusion and Future Work

ML algorithms show promising results on different problems yet it is challenging to apply on
realistic networking problems and in real-life systems. This paper proposes Aquarius to bridge
ML and distributed networking systems and takes a preliminary step to integrate ML approaches in
networking field. It allows to gather a wide range of networking features and feed them to offline
data analysis pipelines or online ML models to make decisions on the fly. The results demonstrates
the potential of Aquarius to conduct feature engineering, traffic classification, model selection, and
online model deployment. The models applied in this paper shows the ability to learn and infer
server load states with networking features. It also shows that networking problems are dynamic and
heterogenous, thus it is challenging to train a model that generalizes well. Reinforcement learning
will be studied in future work to improve model generality in the interactive real-world system. This
work has several limitations. ML models and their hyperparameters are not sufficiently explored.
The asynchronous decisions are delayed and impacts of delayed decisions along with action updating
frequencies are not fully investigated.
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Figure 8: Feature list.
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Figure 9: Processing time with TCP timestamp
option.

Figure 10: Flow size distribution.

A Feature Collection

The whole list of networking features coleected in Aquarius are shown in figure 8. They can
be categorized into counters and sampled features, which can be further divided into time- and
throughput-related features. Figure 9 depicts the computation process of server processing time
derived from TCP timestamp option. TCP traffic is used in this paper to illustrate the workflow
since it is the most widely used protocol in content delivery network [18]. The same workflow and
discussion apply to other network traffic (UDP and QUIC).

B Testbed Configuration

B.1 System Platform

Application servers are virtualized on 4 UCS B200 M4 servers, each with one Intel Xeon E5-2690
v3 processor (12 physical cores and 48 logical cores), interconnected by UCS 6332 16UP fab-
ric. Operating systems are Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-128-generic x86_64).
Compilers are gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1 18.04). Applications employed in
this paper are the following: Apache 2.4.29, VPP v20.05, MySQL 5.7.25-0ubuntu0.18.04.2,
and MediaWiki v1.30. The VMs are deployed on the same layer-2 link, with statically configured
routing tables. Apache HTTP servers share the same VIP address on one end of GRE tunnels with
the load balancer on the other end.

B.2 Apache HTTP Servers

The Apache servers use mpm_prefork module to boost performance. Each server has maximum 32
worker threads and TCP backlog is set to 128. In the Linux kernel, the tcp_abort_on_overflow
parameter is enabled, so that a TCP RST will be triggered when the queue capacity of TCP connection
backlog is exceeded, instead of silently dropping the packet and waiting for a SYN retransmit. With
this configuration, the FCT measures application response delays rather than potential TCP SYN
retransmit delays. Two metrics are gathered as ground truth server load state on the servers: CPU
utilization and instant number of Apache busy threads. CPU utilization is calculated as the ratio of
non-idle cpu time to total cpu time measured from the file /proc/stat and the number of Apache
busy threads is assessed via Apache’s scoreboard shared memory.
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Table 2: Three configurations with different traces.
Trace Wiki for-loop file

Group 0 servers 3 × 4-CPU 36 × 2-CPU 36 × 2-CPU
Group 1 servers 4 × 2-CPU 24 × 4-CPU 24 × 4-CPU

Queries/s [369, 518] [350, 500] [400, 1000]

B.3 24-Hour Wikipedia Replay Trace

To create Wikipedia server replicas, an instance of MediaWiki3 of version 1.30, a MySQL server and
the memcached cache daemon are installed on each of the application server instance. WikiLoader
tool [19] and a copy of the English version of Wikipedia database [20], are used to populate MySQL
databases. The 24-hour trace is obtained from the authors of [20] and for privacy reasons, the trace
does not contain any information that exposes user identities.

B.4 PHP for-Loop Trace

To study CPU-bound applications, a PHP for-loop script is used, whose requested number of
iterations #iter follows an exponential distribution. The sizes of the queries’ replies are proportional
to the number of iterations. This allows to generate a heavy-tail distribution of flow durations and
transmitted bytes as in [18].

B.5 PHP File Trace

To simulate IO-bound applications, PHP queries for static files of different sizes are used as in [15].
The sizes of files are 100KB, 200KB, 500KB, 750KB, 1MB, 2MB, and 5MB. 50 files are generated
for each size.

B.6 Configurations for 3 Traces

The corresponding configurations for the 3 types of network traffic are listed in table 2. The flow size
distributions of 2 types of Poisson for-loop traces are depicted in figure 10.

C Reproducibility

The proposed mechanism (Aquarius) and artifacts (including code and datasets) will be open-sourced
at https://github.com/ZhiyuanYaoJ/Aquarius. It allows to reproduce results in the submitted paper,
and to generating more benchmark datasets that potentially benefit interdisciplinary research on
computer networking and machine learning. A pipeline will be provided and documented to make
the best use of Aquarius for both offline and online applications. Examples are illustrated by way of
jupyter notebooks, which serve as step-by-step tutorials.

D ML Models

Dense1 is a benchmark model for sequential with 1 flatten layer and 1 fully connected layer
of neural network. RNN2 is a model 2 20-hidden-unit SimpleRNN layers (first layer with
return_sequence=True) and 2 fully connected layers (the first layer with 32 hidden units and the
second as output layer). LSTM2 replaces the SimpleRNN RNN2 model with LSTM layers and GRU2
with GRU layers. 1DConv-GRU1 applies 1-dimentional CNN (as in textCNN) before applying 1
layer of GRU networks and 1 fully connected layers (output layer). 1DConv-GRU1 is modified by
adding 1 GRU layer between the CNN and the GRU layer with return_sequence=True, which
gives limited improvement on sacrifying computational overhead. This variant model is omitted in
this paper. Wavenet-GRU1 stacks 3 dilated 1D convolutional layers with 1 layer of 20-hidden-unit
GRU and 1 fully connected layers (output layer). Wavenet-Reconst puts 1 16-hidden-unit embedding
layer before 4 stacked dilated 1D convolutional layers and 1 layer of 20-hidden-unit GRU layer,
together with 1 output layer.

3https://www.mediawiki.org/wiki/Download
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