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Abstract

Network load balancers are central components in data centers, that distributes
workloads across multiple servers and thereby contribute to offering scalable
services. However, when load balancers operate in dynamic environments with
limited monitoring of application server loads, they rely on heuristic algorithms
that require manual configurations for fairness and performance. To alleviate that,
this paper proposes a distributed asynchronous reinforcement learning mechanism
to — with no active load balancer state monitoring and limited network observations
— improve the fairness of the workload distribution achieved by a load balancer.
The performance of proposed mechanism is evaluated and compared with state-
of-the-art load balancing algorithms in a simulator, under configurations with
progressively increasing complexities. Preliminary results show promise in RL-
based load balancing algorithms, and identify additional challenges and future
research directions, including reward function design and model scalability.

1 Introduction

In data centers and distributed systems, application servers are deployed on infrastructures with
multiple servers, each with multiple processors to provide scalable services [1]. To optimize workload
distribution and reduce additional queuing delay, load balancers (LBs) play a significant role in such
systems, yet rely on heuristics for decisions on where to place each workload [2-35]. Reinforcement
learning (RL) approaches [6H9] have shown performance gains in various system and networking
problems. They help avoid error-prone manual configurations. This paper therefore studies the poten-
tial performance improvement when applying RL techniques on network load balancing problems in
distributed systems.

Applications of RL techniques on network load balancing problems are challenging for several
reasons. First, unlike traditional workload distribution problem [6}|7], network LBs have limited
observations on task size and actual server load states. Being unaware of task size, application servers
can be overloaded by collided “elephant tasks” and thus yield degraded quality of service. As network
LBs operate on the Transport Layer, obtaining task size information before allocating workloads
requires application-specific — and thus by definition non-universal — LB implementations [10,/11].
With services running on heterogeneous hardware or elastic data centers [[12] where server capacities
vary, “fairly” (uniformly) distributing workloads without considering actual server load-states may
overload servers with limited resources and underload powerful servers. On the other hand, probing
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actual server load states requires deploying agents on servers and incurs additional management
traffic [4,/5]. Second, the interactive training procedure of RL models produces periodically and
asynchronously updated actions in a slow pace (e.g., every hundreds of milliseconds [9]]) in the
control plane, while system dynamics can change rapidly (e.g., sub-millisecond in modern networked
systems [[13]]) in the data plane.

This paper proposes an RL-based network load balancing mechanism (RLB-SAC) that is able
to exploit asynchronous actions based only on local observations and inference. Performance is
evaluated on an event-based simulator and compared with benchmark load balancing mechanisms.

2 RL for Network Load Balancing

Network load balancing can be defined as allocating a Poisson sequence of tasks with different
workloads {wy} € V\/ﬂon a set of n servers, to achieve the maximal exploitation of the computational
capacity of the servers. The task workload w,(t) assigned on the j-th server at time ¢ usually follows
an exponential distribution in practical experiments [|14f]. The load balancing method is a function
m € II: W — [n]. The processing speed for each server is s;, j € [n], i.e., the amount of workloads
that can be processed per unit of time. The load on the j-th server (j € [n]) during a time interval
t € [to, ] is thus defined as:

_ Zte[to,tn) U}i (t)

L : : (1)
which represents the expected time to finish processing all the workloads on the j-th server.
The objective of load balancing can be defined as finding the optimal policy:

7 = minmax[; )

7ell g

This problem is multi-commodity flow problems and is NP-hard, which makes it hard to solve with
trivial algorithmic solution within micro-second level [15].

2.1 RL Methodology

To apply standard RL methods, the network load balancing problem can be formulated as a Markov
Decision Process (MDP), which can be represented as (S, A, R, T,~). S and A are the state space
and the action space, and R is a reward function R(s,a): S x A — R for current state s € S and
action a € A. The state-transition probability from current state and action to a next state s’ € S is
defined by 7 (s'|s,a): S x A xS — R,. v € (0,1) is a reward discount factor. The goal of an RL
algorithm is optimizing the policy to maximize the agent’s expected cumulative rewards: E[>, ']

Soft Actor-Critic (SAC) [16] follows the maximum entropy reinforcement learning framework,
which optimizes the objective E[>, v'r, + aH(mp)] to encourage the exploration H(-) of the
policy 7y during the learning process. More concretely, the critic () network is updated with
the gradient VyE; o[Q¢(s,a) — [R(s,a) + YEs [V3(s)]]], where V3(s') = Eo[Qz(s,a") —
alogmg(a'|s’)] and @ is the target @ network; the actor policy g is updated with the gradient
VioEs UEGNTFQ [a log 7T9(CL|S) - Q(b(sa a)]]

Other key elements of RL methods involve the observation, action and reward function, which are
detailed as following:

Observation. Based on the limited information that is visible to network LBs, i.e. task ID k, arrival
and finish time of each task, the number of ongoing tasks |w? (¢)| on the j-th server can be computed
and the following 3 observations are sampled, i.e., task inter-arrival time, task duration, and task
completion time (TCT). Each sampled time-related feature channel is reduced to 5 scalars, e.g.,
average, 90th-percentile, standard deviation, discounted average and weighted discounted averag

!"The unit of workload can be, e.g., amount of time to process.

Discounted average weights are computed as 0.9" ~*, where t is the sample timestamp and ¢ is the moment
of calculating the reduced scalar.
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Figure 1: Overview of the proposed RL framework for network LB. A distributed learning framework
with multiple LB agents is implemented to interact with the simulated LB and allocate tasks on
different servers according to a server assignment function. Each LB agent contains a replay buffer
and a SAC model with two pairs of actor and critic networks. Network architectures are shown on

the left block. Linear (n) indicates the number of hidden units is 7.

Task inter-arrival time is computed at LB level, while task duration and TCT are gathered at per-server

level.
Action. To bridge the difference between slow-paced action updates and high-speed network packets
arrivals, the RL agent assign the j-th server to newly arrived task using the ratio of two factors:

J 1
arg min M, 3)
J€[n] S

where the number of on-going tasks |w? ()] helps track dynamic system server occupation and 3; is
the periodically updated RL-inferred server processing speed given observations, as the direct outputs
of the LB agents. Eq. (3) is the server assignment function.
Reward. The reward is chosen as 1 — F'(W), where w is a list of discounted average of actual TCT
on each server, and F' is a fairness measurement. In this paper, 3 fairness indices are studied, namely,
=2
Jain’s, G’s, and Bossaer’s fairness index, which have the following forms respectively, F; (W) eoh
. g 59
Fo = Hje[n] Sln(iQr:a’iuc(W))’ Fp= Hje[n] 7ma1:}((v"(/)'
Model. The architecture of the proposed RL framework is depicted in figure[I] The SAC model
within each LB agent contains a pair of actor and critic networks, as well as a pair of guiding actor
and guiding critic networks, with the same network architectures as the former but updated in a
delayed and soft manner. As shown in the left block of figure[I] the actor and critic networks take
the batch-normalized features from LB-level states and per-server-level states and use the same
Linear-LayerNorm-Linear layers to process the data independently. The critic additionally takes the
actions as inputs to generate the estimated () values.

3 Implementation

In order to compare and contrast performance of different load balancing methods in various scenarios,
in particular those that are difficult to evaluate in testbeds, such as large-scale data center networks,

an event-driven simulator is implemented.
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Figure 2: Comparison of load balancing performance (during training) under different traffic rates
in a simplest setup where all tasks are the same. Figure(a) and (b) show Jain’s fairness index of
residual workloads /; between 2 servers over time. Figure(c) shows the reward over 20 episodes
under different traffic rates. Figure(d) compares the CDF of residual workloads /; on 2 servers in the
last episode.

3.1 Server Processing Model

Realistic network applications feature blocked processor sharing model [17,[18], in which the
instantaneous processing speed s, (¢) at time ¢ on the j-th server is:

1 |wj (t)l < pj,
s;j(t) { pj ’
min(p;,|w’ (t)])

; 4
W ()] > py, @
where |w? (¢)| denotes the number of on-going tasks, and p; denotes the number of processors on the
j-th server. At any given moment, the maximum number of tasks that can be processed is p;. Tasks
that arrive when w7 (¢)| > p; will be blocked in a queue (similar to the backlog in e.g., Apache), and
will not be processed until there is an available slot in the CPU processing queue.

3.2 Benchmark Load Balancing Methods

To quantify the performance of the proposed LB method (RLB-SAC), 4 baseline workload distribution
algorithms are implemented. Equal-cost multi-path (ECMP) randomly assigns servers to tasks with
a server assignment function P(j) = &, where P(j) denotes the probability of assigning the j-th
server [[19]]. Weighted-cost multi-path (WCMP) assigns servers based on their weights derived, and
has an assignment function as P(j) L || Local shortest queue (LSQ) assigns the server with

= st
the shortest queue, i.e., arg min ¢y |w? ()] || And finally, shortest expected delay (SED) assigns
the server the shortest queue normalized by the number of processors, i.e., arg min ¢y, W;ﬁ ,

and is expected to have the best performance among baseline LB methods.

4 Experimental Evaluation

This section investigates the impacts of several key components for our proposed RL framework,

including (i) the system dynamics properties like traffic rate and TCT (workload wj,(t)) distribution,
(ii) the reward function in RL and (iii) the scalability of the system. Hyperparameters for training see

Appendix.[A]

Traffic Rate. Following the approach in [21]}, a simplest scenario, i.e., all the tasks are identical
(each has 100ms TCT), is created to verify the learning ability of RLB-SAC. Different traffic rates



Table 1: Comparison under different traffic rates (60%, 70%, 80%, 90%, 100%) with the same TCT.
“FI” and “RW” are “Jain’s fairness index” and “average residual workloads” respectively in the last
episode.

Traffic Rate (%)
Method 60 70 80 90 100
FI RW FI RW FI RW FI RW FI RW
ECMP 0.646 | 0.130 | 0.512 | 1.225 | 0.512 | 1.504 | 0.515 | 1.553 | 0.517 | 1.568
WCMP 0.753 | 0.046 | 0.765 | 0.060 | 0.788 | 0.088 | 0.787 | 0.192 | 0.835 | 0.809
LSQ 0.768 | 0.046 | 0.791 | 0.062 | 0.789 | 0.090 | 0.806 | 0.137 | 0.864 | 0.607
SED 0.841 | 0.033 | 0.855 | 0.046 | 0.902 | 0.067 | 0.929 | 0.099 | 0.989 | 0.417
RLB-SAC | 0.782 | 0.033 | 0.807 | 0.040 | 0.874 | 0.064 | 0.904 | 0.100 | 0.969 | 0.520
—— Same Task (100ms) —— Exp. (u=200ms) —— RLB-SAC-) —— RLB-SAC-B
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Figure 3: Figure(a) shows Jain’s fairness index reward over 20 episodes using different TCT distribu-
tions under 90% traffic rate. Figure(b) shows different reward options under 100% traffic rate and
exponential TCT distributions (¢ = 200ms). Figure(c) and (d) shows CDF of residual workloads
using different LB mechanisms in the last episode, under 90% and 100% traffic of tasks with ex-
ponentially distributed TCT (1 = 200ms) respectively. All results are obtained during the training
process.

are applied on a system with 1 LB node and 2 servers, where one server has 4 CPUs and the other
has 2 CPUs. The traffic rates are normalized to [0, 1] by the processing capacity of configured server
clusters so that 100% traffic rate creates a stable system state (equal average arrival and departure
rate). Jain’s fairness index is used to compute reward and evaluate workload distribution performance.
The result of 20-episode training in simulatiorﬂis depicted in ﬁgureand listed in table After 5
episodes, the proposed SAC-based LB (RLB-SAC) improves its performance in terms of workload
distribution fairness. RLB-SAC learns to behave similar to SED and assigns similar workloads [;
across the two servers. Though unlike SED, RLB-SAC requires no manual configuration.

TCT Distribution. In a more realistic setup, tasks are different and follows long-tail distributions [14].
As is depicted in figure [3a] the additional variance induced by exponential distribution TCT increases
the difficulty of learning. Since the p of exponential distributions is equivalent to its standard
deviation, increasing the average TCT (from 100ms to 200ms) also increases the standard deviation
of TCT. The additional variance in the TCT observation thus further reduces rewards obtained using
RLB-SAC over time.

Reward Function. This section further compares different choices of the reward function in the
RL procedure, including the Jain’s (RLB-SAC-J), G’s (RLB-SAC-G), and Bossaer’s (RLB-SAC-B)
fairness index as introduced in section[2.1] Compared against the baseline LB methods, depicted in

3The first episode lasts 60s and each following episode has 5s incremental duration than the former one. The
time interval between two consecutive steps is 0.5s. The same configuration applies throughout the paper.



Table 2: Comparison of the last episode performance under different traffic rates
(60%, 70%, 80%, 90%, 100%) with the exponential TCT distribution (x = 200ms). “Max” and
“Avg” stand for the maximum and average residual workload in the last episode.

Traffic Rate (%)

Method 60 70 80 90 100
Avg Max Avg Max Avg Max Avg Max Avg Max
SED 0.127 | 0.776 | 0.183 | 1.055 | 0.238 | 0.951 | 0.463 | 2.058 | 1.571 | 4.762
LSQ 0.173 | 1.306 | 0.225 | 1.246 | 0.304 | 1.770 | 0.522 | 2.038 | 1.352 | 6.408
WCMP 0.159 | 1.013 | 0.214 | 1.360 | 0.346 | 2.999 | 0.739 | 3.531 | 2.705 | 7.896
ECMP 0.662 | 3.085 | 1.365 | 5.565 | 3.088 | 9.129 | 3.233 | 8.158 | 3.032 | 8.048
RLB-SAC-J | 0.145 | 0952 | 0.173 | 1.188 | 0.299 | 2.208 | 0.350 | 1.747 | 2.004 | 4.608
RLB-SAC-G | 0.162 | 0.994 | 0.162 | 0.766 | 0.245 | 1.573 | 0.301 | 1.451 | 1.846 | 6.072
RLB-SAC-B | 0.146 | 1.072 | 0.174 | 1.082 | 0.265 | 1.239 | 0.464 | 2.538 | 0.722 | 3.194

Table 3: Comparison of the last episode performance under 70% traffic rate with the exponential TCT
distribution (4 = 200ms). “Max” and “Avg” stand for the maximum and average residual workload
in the last episode.

Network Topology

Method 1LB-4S 2LB-4S 1LB-8S 2LB-8S
Avg Max Avg Max Avg Max Avg Max
SED 0.146 | 1.202 | 0.149 | 0.938 | 0.140 | 1.110 | 0.141 | 1.035
LSQ 0.184 | 1.661 | 0.193 | 1.302 | 0.187 | 1.518 | 0.194 | 1.300
WCMP 0.232 | 2.190 | 0.223 | 2.803 | 0.236 | 2.822 | 0.236 | 2.736
ECMP 2.195 | 8.520 | 2.256 | 8.604 | 2.085 | 9.483 | 2.192 | 8.863
RLB-SAC-J | 0.177 | 1.271 | 0.186 | 1.385 | 0.172 | 1.741 | 0.172 | 1.270
RLB-SAC-G | 0.167 | 1.426 | 0.188 | 1.725 | 0.162 | 1.334 | 0.182 | 1.700
RLB-SAC-B | 0.167 | 1.639 | 0.175 | 1.695 | 0.166 | 1.653 | 0.174 | 1.611

figure[3cJand 3d] the SAC method with these three types of reward is tested under different traffic rates
and exponential TCT distribution (¢ = 200ms). More complete results for the episodic maximum
and average residual workload are listed in table 4] It shows that, without any prior knowledge of
server processing capacities, the SAC methods work significantly better than other methods for cases
with high traffic rates (90% — 100%), with close performance to the best SED method for relatively
low traffic rates. Moreover, RLB-SAC-G and RLB-SAC-B fairness index have superior performance
over RLB-SAC-J for most cases. This can be explained by the fact that Jain’s fairness index provides
values that are close to 1 unless “severe” unfairness is present, which also makes the reward close to
0. Bossaer’s fairness index yields lower values and is more sensitive to unfairness (as in figure [3b),
which makes it better when evaluating system state than G’s fairness index especially when the traffic
rate is higher (e.g., 100% as in figure [3d).

Scalability. To study the scalability of the RLB-SAC model, 4 types of topology are applied where 1
or 2 LB agents distribute workloads across 4 or 8 servers, and half of all the servers have 4 CPUs
while the other half have 2 CPUs. As the action space grows, the task becomes more challenging and
RLB-SAC fails to surpass SED after 40 episodes of training. Though RLB-SAC achieves the second
place among all methods under moderate traffic rate (70%).

5 Conclusion and Future Work

Promising as RL techniques are, it is challenging to adapt them to realistic systems, where, in the
context of network load balancing, agents have limited observation over the environment and where
periodic action updates may not be able to catch up with system dynamics. This paper takes a first
step in studying the application of RL on network load balancing problems starting from the simplest
assumptions that tasks are identical, towards more sophisticated (and perhaps more realistic) setups.
The preliminary results of the proposed RLB-SAC LB show promise in the proposed RL-based
load balancing framework comparing with baseline LB approaches (ECMP, WCMP, LSQ, SED).
The design of the reward function requires further investigations so that RLB-SAC achieves better
performance and improves generalization ability even under more realistic configurations. In presence
of multiple LB agents and multiple application servers, the scalability of RLB-SAC is limited when
the action space and the number of agents grow, which makes it an interesting direction for further
research on adapting different RL models and algorithms.



Table 4: Comparison of the last episode performance under 90% traffic rate with the exponential TCT
distribution ( = 200ms). “Max” and “Avg” stand for the maximum and average residual workload
in the last episode.

Network Topology

Method 1LB-4S 2LB-4S 1LB-8S 2LB-8S
Avg Max Avg Max Avg Max Avg Max
SED 0.304 | 1.865 | 0.287 | 1.633 | 0.219 | 1.428 | 0.238 | 1.467
LSQ 0.362 | 2.261 | 0.384 | 2.059 | 0.293 | 1.666 | 0.326 | 1.549
WCMP 0.704 | 6.698 | 0.816 | 5.110 | 0.684 | 4.512 | 0.695 | 4.983
ECMP 3.048 | 8.832 | 3.086 | 9.219 | 3.096 | 9.337 | 3.085 | 9.074
RLB-SAC-J | 0.420 | 2.617 | 0.427 | 2.484 | 0.351 | 2.630 | 0.355 | 2.147
RLB-SAC-G | 0.382 | 2.684 | 0.396 | 2.534 | 0.340 | 2.748 | 0.322 | 2.136
RLB-SAC-B | 0.369 | 2.791 | 0.380 | 2.787 | 0.325 | 3.230 | 0.345 | 2.197
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A Hyperparameters

Table 5: Hyperparameters in RL-based LB.

Hyperparameter - EXP griments - B
yperp Traffic Rate TCT Distribution  Reward Option  Scalability
Learning rate 1x 1073 1x1073 1x1073 1x1073
Batch size 64 64 64 64
SAC Replay Buffer Size 3000 3000 3000 3000
Episodes 20 20 20 40
Step interval 0.5s 0.5s 0.5s 0.5s
Target entropy —JA] —[A] —[A] —JA]
TCT Distribution Identical Tasks Exponential Exponential Exponential
Average TCT 100ms {100ms,200ms} 200ms 200ms
LB System  First episode Duration 60s 60s 60s 60s
Incremental Duration s 5s 5s 5s
Last episode Duration 160s 160s 160s 260s
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