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Ramp metering:
modeling, simulations and control issues

Cédric Join, Hassane Abouaïssa and Michel Fliess

AbstractThe aim of rampmetering is to improve the highway traffic conditions by an
appropriate regulation of the inflow from the on-ramps to the highway mainstream.
Our presentation rests on several improvements: 1) Our simulation techniques do
not need contrarily to other approaches any heuristic fundamental law. 2) There is
no need of crucial time-varying quantities, like the critical density, which is most
difficult to estimate correctly online. 3) Our feedback loop, which is stemming
from model-free control, is easy to implement and shows an excellent robustness
with respect to model mismatch. Several computer experiments are displayed and
discussed.
Key Words Ramp metering, Lighthill-Whitham-Richards partial differential equa-
tion, fundamental diagrams, fundamental laws, ALINEA, model-free control, intel-
ligent proportional controllers.
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1 Introduction

Ramp metering is about the use of traffic signals at highway on-ramps in order to
control the rate of vehicles entering the highway. The signals can be set for different
metering rates to optimize freeway flow and minimize congestion. The social and
ecological damages due to traffic jams justify the huge academic literature which
has been devoted to traffic flow dynamics and its regulation. See, e.g., [20, 21, 22,
23, 28, 29, 32, 39], and references therein. Lack of space prevents us from a careful
analysis of the various standpoints which are often antagonist.

Our contributions may be summarized like follows:

1. No fundamental diagram for simulation purposes. Before being implemented
in practice any ramp metering procedure ought to be tested via computers. The
similarities between highway traffic and hydrodynamics explain the importance
of the Lighthill-Whitham-Richards (LWR) first order partial differential equation
[26, 37]. Its numerical integration necessitates to know the relationship between
the traffic density and the traffic speed. Several empirical laws, called fundamental
diagrams, have been proposed. The calibration of those diagrams is far from being
obvious. That is why contrarily to other approaches (see, e.g., [8]) we ignore them.
Fundamental diagrams are replaced by traffic data which are collected during
various situations. Note moreover that our viewpoint, contrarily to other ones like
METANET [25], does not necessitate higher order partial differential equations.

2. Nodifficult estimation technique. Implementing any control law requires crucial
quantities like the critical density, which are time-varying and therefore almost
impossible to estimate in real time. They are replaced by ad hoc quantities which
are deduced at once from easily measurable data.

3. Model-free control. ALINEA1 [18, 19, 33, 34] is perhaps the most popular
feedback control algorithm for traffic regulation. After first trials in Paris it has
been quite often employed in many different places. Following [1], we are using
here model-free control in the sense of [12, 13] and, more precisely, intelligent
proportional controllers. This setting, which has been successfully tested in many
concrete situations, has already been illustrated via various questions about in-
telligent transportation systems (see, e.g., [4, 7, 17, 30, 31, 36, 40, 41, 42]).
Concrete experiments show today that model-free control not only yields better
traffic regulation than ALINEA but is also simpler to implement.2

Some remarks might be useful:

• Let us emphasize that the LWR partial differential equation is only related to
simulation purposes and not to traffic control. Such a control would necessitate a
real-time calibration, which seems today beyond all reasonable hope.

1 It is the acronym of Asservissement LINéaire d’Entrée Autoroutière.
2 There are many variants of ALINEA in the literature. We have selected for our computer com-
parisons the version [2].
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• Achieving an efficient traffic regulation is simpler than obtaining reliable computer
simulations. This ascertainment remains valid in most applications where model-
free control plays a key rôle.

Our paper is organized as follows. Section 2 reviews model-free control and the
corresponding intelligent proportional controller. Following [3], Section 2.3 inves-
tigates the relationship with proportional controllers, which should be considered as
the backbone of ALINEA. Modeling issues are discussed in Section 3: The partial
differential equation stemming from elementary hydrodynamic conservation laws,
some fundamental empirical laws, the space discretization and its use without any
fundamental empirical law, the ALINEA and model-free regulation without the
critical density. Computer simulations are displayed and commented in Section 4.
Section 4.2 in particular exhibits the superiority of model-free control in the presence
of sudden changes. Section 5 contains some concluding remarks.

2 Model-free control

2.1 A short review

2.1.1 Ultra-local model

Consider only, for simplicity’s sake, SISO (single-input single-output) systems. El-
ementary functional analysis and differential algebra as used in [12] show as well as
practical experiments that most, or at least many, concrete systems may be approxi-
mated by the ultra-local

ẏ = F + αu (1)

where
• the control and output variables are respectively u and y,
• the constant α ∈ R is chosen by the practitioner such that αu and ẏ are of the

same magnitude. Therefor α does not need to be precisely estimated.
The following comments might be useful:
• F is estimated via the knowledge of the control and output variables u and y,
• F subsumes not only the unknown structure of the system, but also any external

disturbance.

2.1.2 Intelligent controllers

Close the loop with the following intelligent proportional controller, or iP,

u = −
F − ẏ∗ + KPe

α
(2)
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where:

• y∗ is the reference trajectory,
• e = y − y∗ is the tracking error,
• KP is a tuning gain.

Combining Equations (1) and (2) yields:

ė + KPe = 0

where F does not appear anymore. Thus limt→+∞ e(t) = 0 iff KP > 0. This local
stability property proves that the tuning of KP is straightforward. This is a major
difference with the classic gain tuning for PIs and PIDs (see, e.g., [6] and the
references therein).

2.1.3 Estimation of F

Under a weak integrability condition, F in Equation (1) may be “well” approximated
by a piecewise constant function Fest (see, e.g., [10]). The estimation techniques
below are borrowed from [14, 15, 38].3 Let us summarize two types of computations:

1. Rewrite Equation (1) in the operational domain (see, e.g., [43]):

sY =
Φ

s
+ αU + y(0)

where Φ is a constant. We get rid of the initial condition y(0) by deriving both
sides with respect to s:

Y + s
dY
ds
= −
Φ

s2
+ α

dU
ds

Noise attenuation is achieved by multiplying both sides on the left by s−2, since
integration with respect to time is a lowpass filter (see [11] for further details). It
yields in the time domain the realtime estimate, thanks to the equivalence between
d
ds and the multiplication by −t,

Fest(t) = −
6
τ3

∫ t

t−τ

[
(τ − 2σ)y(σ) + ασ(τ − σ)u(σ)

]
dσ (3)

where τ > 0 might be quite small. This integral may of course be replaced in
practice by a classic digital filter.

2. Close the loop with the iP (2). It yields:

Fest(t) =
1
τ

[∫ t

t−τ

(
ẏ∗ − αu − KPe

)
dσ

]

3 They were often used in practice for parameter identification (see, e.g., [27]).
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2.2 PI and iP

Consider the classic proportional-integral controller, or PI,

u(t) = kpe(t) + ki

∫
e(τ)dτ (4)

where kp, ki ∈ R are constants. A crude sampling of the integral
∫

e(τ)dτ through
a Riemann sum I(t) leads to∫

e(τ)dτ ' I(t) = I(t − h) + he(t)

where h is the sampling interval. The corresponding discrete form of Equation (4)
reads:

u(t) = kpe(t) + kiI(t) = kpe(t) + kiI(t − h) + kihe(t)

Combining the above equation with

u(t − h) = kpe(t − h) + kiI(t − h)

yields
u(t) = u(t − h) + kp (e(t) − e(t − h)) + kihe(t) (5)

Replace in Equation (2) F by ẏ(t) − αu(t − h) and therefore by

y(t) − y(t − h)
h

− αu(t − h) (6)

It yields

u(t) = u(t − h) −
e(t) − e(t − h)

hα
−

KP

α
e(t) (7)

Equations (5) and (7) become identical if we set

kp = −
1
αh

, ki = −
KP

αh
(8)

Let us emphasize that this important result, which was first stated in [5, 12], is only
valid in discrete time: Formulae (8) become meaningless if h ↓ 0.

2.3 Application to integral controllers

Set in Equation (4) kp = 0. It yields the integral controller, or I,

u(t) = ki

∫
e(τ)dτ (9)
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Derive both sides in Equation (4):

u̇ = kp ė + kie

It shows that the PI and I controllers are “close” if ė remains “small.” It implies
of course that the initial condition y(0) is “close” to the initial point y∗(0) of the
reference trajectory. Let us try to explain why:

• the feedback loop is supposed to render y − y∗ quickly as small as possible,
• the derivative ė might therefore be large.

It follows from Equations (5) and (6) that the sampled versions of the iP (2) and the
I (9) are “close” (see [3] for more details) if

• the reference trajectory y∗ is “slowly” varying, and starts at the initial condition
y(0) or, at least, at a point which is quite close to it,

• the disturbances and the corrupting noises are rather mild.

3 Application to ramp metering

3.1 Traffic flow modeling

3.1.1 The LWR partial differential equation

The Lighthill-Whitham-Richards, or LWR, partial differential equation [26, 37],
which was derived 65 years ago, is mimicking hydrodynamic conservation laws. It
is the simplest model for a macroscopic traffic flow model

∂

∂t
ρ(t, x) +

∂

∂x
f (t, x) = 0 (10)

• ρ is the traffic density,
• the traffic flux f = ρ × v is the product of the traffic density and of the (mean)

traffic speed v.

3.1.2 Fundamental laws

There are many empirical laws relating ρ and v. The Greenshield model [16]

v(ρ) = v f

(
1 −

ρ

ρm

)
(11)

and the May formula [29]:
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v(ρ) = v f exp
(
−
1
a

(
ρ

ρc

)a)
(12)

for instance are quite popular. We will not try here to define the corresponding
parameters. Note however that they depend on t and x. Their estimation is therefore
rather cumbersome.

3.1.3 A space discretization for numerical simulations

Figure 1 displays a portion of a motorway in France, with 7 segments Sι, ι = 1, . . . , 7.
There are 3 lanes on Sι, ι = 1, . . . , 6, and 4 on S7. The lengths of the various segments
are respectively 4.7, 0.6, 1.4, 1.7, 3.7, 0.6, 0.9 ([km]). Write Q0 (resp. Q7) the inlet
(resp. output) flow. The traffic flow on Sι is defined by (Qι,Toι,Vι ), where Qι , Toι
and Vι are respectively the flow rate, the occupation rate and the speed. Our aim
is to regulate the flow rates Q11, Q12, Q13 on the 3 access ramps in order to ease
the traffic flow on the motorway. The control variables are the green light durations
GDκ , κ = 1, 2, 3, on the 3 on-ramps. The duration of a cycle of the ramp signals is
40s. Set 15s ≤ GDκ ≤ 29s.

Fig. 1 Segments and ramps of motorway portion

The vehicle conservation principle for each segment ι should be understood as a
space discretization of Equation (10). It reads

ρ̇ι =
1
Lι

(Qι−1 −Qι )

• ρι is the density ([Veh/km]),
• Lι is the length ([km]),
• Qι−1 is the inlet flow ([Veh/min]): it is the sum of the upstream flow and of the

ramp flow if any,
• Qι is the output flow ([Veh/min]).

Define the occupancy rate ([%]) by

Toι =
ρι

ρι,max
× 100

where ρι,max =
λι
size , λι is the number of lanes, size is the mean length ([km]) of a

vehicle (here 5.5.10−3).
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The fundamental diagrams in Figure 2 relate the (mean) speed ([km/h]) and the
occupancy, i.e., vi = Dι (Toι ). They are derived from real data which are, therefore,
confidential..

3.2 Feedback loops

3.2.1 ALINEA without calibration

Equation (9) yields ALINEA in ramp metering. For κ = 2 it reads4

GD2 = −KI,2

∫ t

0
(To4 − To∗4)dτ

where the gain KI,2 ∈ R is set equal to 1. A classic anti-windup setting (see, e.g., [6])
is mandatory. The critical occupancy rate To∗4 corresponds to the critical density ρc
in Formula (12). A “good” real-time calibration of To∗4 seems today out of reach.
We therefore set as in [2]




To∗4(t + 1) = To∗4(t) + δ+ if V4 > V4,threshold

To∗4(t + 1) = To∗4(t) − δ− if not

where

• V4 is the mean speed on the 4th segment,
• V4,threshold = V4, f − 10,
• V4, f is the free speed, i.e., the maximum speed when the traffic is light,
• δ+ = 0.15, δ− = 0.3.

3.2.2 iP

Equation (1) reads here

Ṫo1 = F1 + α1GD1

Ṫo4 = F2 + α2GD2

Ṫo7 = F3 + α3GD3

The analogous feedback loops of Equation (2) become

4 The cases κ = 1 and κ = 3 are similar.
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GD1 =
Ṫo∗1 − F1 − K1(To1 − To∗1)

α1

GD2 =
Ṫo∗4 − F2 − K2(To4 − To∗4)

α2

GD3 =
Ṫo∗7 − F3 − K3(To7 − To∗7)

α3

Set α j = 30, Kp, j = 0.5. To∗κ , κ = 1, 2, 3 is replaced as above.

4 Simulations

4.1 Generalities

Figures 3 - 13 display convincing results via the setting of Section 3.2.2:

• The reference trajectory is a decreasing time function when the traffic is dense
(see Figure 10). This property does not hold anymore if the traffic becomes fluid.

• Figure 11 shows that the green light duration is set to the whole cycle of 40s when
the queue on the ramp is large (see Figure 12).

• Figure 13 indicates that the output flow on the ramps are reduced when there is a
congestion.

Remark 1 Those results are only slightly better than those obtained via ALINEA
with the same calibration of the setpoint. Let us emphasize however that ALINEA
when implemented with the critical density ρc gives results which are disapointly
similar to those obtained without any control, i.e., without ramp metering.

4.2 What is happening with a sudden change?

Assume only 2 lanes, instead of 3, on Segment S2: it might be due to an accident or
to some work on the highway. Figures 14 shows that the iP, without any new tuning,
behave much better than ALINEA, especially outside the congestion hours when
ramp metering is more or less useless. Those results agree with Section 2.3.

5 Conclusion

Our approach has already been successfully employed on several French highways.
Its adaptative features explains its excellent robustness with respect to unexpected
events. Its implementation moreover is quite elementary. There are of course other
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ramp metering settings which ought to be compared with our viewpoint, especially
now those stemming from artificial intelligence. Le us notice that deep reinforcement
learning methods do not seem today to perform better than ALINEA (see, e.g., [9]).

The coordination of several ramp-metering actions on highway networks is being
investigated. Coordinated ALINEA techniques have been used in Australia some
time ago [35]. It should be clear that any such coordination ought to be connected
to a variable speed limit (see, e.g., [24]) in order to be more efficient.
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(a) v1 = D1(To1) (b) v2 = D2(To2) (c) v3 = D3(To3)

(d) v4 = D4(To4) (e) v5 = D5(To5) (f) v6 = D6(To6)

(g) v7 = D7(To7)

Fig. 2 Diagrams

(a) Flow in [Veh/min] (b) Occupancy rate in % (c) Speed in [km/h]

Fig. 3 Section 1

(a) Flow in [Veh/min] (b) Occupancy rate in % (c) Speed in [km/h]

Fig. 4 Section 2
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(a) Flow in [Veh/min] (b) Occupancy rate in % (c) Speed in [km/h]

Fig. 5 Section 3

(a) Flow in [Veh/min] (b) Occupancy rate in % (c) Speed in [km/h]

Fig. 6 Section 4

(a) Flow in [Veh/min] (b) Occupancy rate in % (c) Speed in [km/h]

Fig. 7 Section 5

(a) Flow in [Veh/min] (b) Occupancy rate in % (c) Speed in [km/h]

Fig. 8 Section 6
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(a) Flow in [Veh/min] (b) Occupancy rate in % (c) Speed in [km/h]

Fig. 9 Section 7

(a) Ramp 1 (b) Ramp 2 (c) Ramp 3

Fig. 10 Setpoint time evolution

(a) Ramp 1 (b) Ramp 2 (c) Ramp 3

Fig. 11 Time evolution of green lights according to the control inputs GD1, GD2, GD3

(a) Ramp 1 (b) Ramp 2 (c) Ramp 3

Fig. 12 Queue length in [m]
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(a) Ramp 1 (b) Ramp 2 (c) Ramp 3

Fig. 13 Demand D1, j (- -) and flow Q1, j (–) in [Veh/min]

(a) TTS (b) TTP (c) MS

Fig. 14 ALINEA and MFC
(TTS: Travel Time Spent, TTD: Total Travel Distance, MS: Mean Speed)


