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Elementary formulae
for social distancing scenarios:

Application to COVID-19 mitigation
via feedback control

Michel Fliess1,3 and Cédric Join2,3

Abstract

Social distancing has been enacted in order to mitigate the spread of COVID-19. Like many authors, we adopt the classic
epidemic SIR model, where the infection rate is the control variable. Its differential flatness property yields elementary closed-
form formulae for open-loop social distancing scenarios, where, for instance, the increase of the number of uninfected people
may be taken into account. Those formulae might therefore be useful to decision makers. A feedback loop stemming from model-
free control leads to a remarkable robustness with respect to severe uncertainties of various kinds. Although an identification
procedure is presented, a good knowledge of the recovery rate is not necessary for our control strategy. Several convincing
computer experiments are displayed.
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I. INTRODUCTION

In less than two years an abundant mathematically oriented literature has been devoted to the worldwide COVID-19
pandemic. Some of the corresponding calculations had even a significant political impact (see, e.g., [1]). A novel control
technique for improving the social distancing is presented here. This fundamental topic has already been tackled by many
authors: see, e.g., [2], [3], [6], [7], [8], [10], [12], [13], [14], [15], [21], [25], [30], [28], [36], [37], [38], [41], [43], [44], [46],
[57]. Most of those papers are based on the famous SIR (Susceptible-Infected-Recovered/Removed) model, which goes back to
[27] in 1927, or on slight modifications. This communication is also using the SIR model:
• When, like in several papers, the infection rate is the control variable, the SIR model is (differentially) flat ([20]). Remember

that flatness-based control is one of the most popular model-based control setting, especially with respect to concrete
applications: see, e.g., [5], [9], [31], [32], [35], [45], [47], [49], [50], [51], [53], [54], [55], [63] for some recent publications.
Note that flatness has already been utilized in [23] for studying COVID-19 but with other purposes.

• There are severe uncertainties: model mismatch, poorly known initial conditions, . . . We therefore close the loop around
the reference trajectory via model-free control, or MFC, in the sense of [16], [17]. MFC, which is easy to implement, has
already been illustrated in a number of practical situations. Some new contributions are listed here: [22], [26], [29], [33],
[39], [40], [48], [52], [58], [59], [60], [61], [64], [65]. Let us single out here the excellent work by [56] on ventilators,
which are obviously related to COVID-19.

In order to be more specific consider a flat system with a single input u and a single output y. Assume that y is a flat output.
Our strategy may be summarized as follows:

1) To any output reference trajectory y? corresponds at once thanks to flatness an open-loop control u?.
2) Let z be some measured output. Write z? the corresponding reference trajectory. Set u = u? + ∆u, where ∆u is the

control of an ultra-local local model [16]. Its output ∆z = z−z? is the tracking error. Closing the loop via an intelligent
controller [16] permits to ensure local stability around z? in spite of severe mismatches and disturbances.

Our paper is organized as follows.
• Section II shows that

– the SIR model, where the infection rate is the control variable, is flat and the population of recovered/removed individuals
is a flat output;

– the recovery rate is identifiable in the sense of [19].
• Section III is devoted to a flatness-based control strategy, i.e., to a feedforward approach. Elementary closed-form of the

control and state variables are easily derived. Various scenarios, where for instance the number of uninfected persons is
increased, may thus be easily suggested to decision makers.

• Closing the loop via an intelligent proportional regulator, stemming from model-free control, is the subject of Section IV.
Computer simulations confirm an excellent robustness with respect to severe uncertainties.

• A time-varying recovery rate is estimated in Section V via algebraic estimation methods ([19]). Techniques from Section
IV show however good performances if this rate is wrongly assumed to be constant.

• Some concluding remarks may be found in Section VI.

II. MODELING ISSUES

A. The SIR model
The SIR model (see, e.g., [62] for a most pleasant introduction) reads:

Ṡ = −βIS
İ = βIS − γI
Ṙ = γI

(1)

S, I and R, which are non-negative quantities, correspond respectively to the fractions of susceptible, infected and recov-
ered/removed individuals in the population. We may set therefore

S + I +R = 1 (2)

β, 0 < β ≤ β ≤ β, which is here the control variable,1 and the constant parameter γ > 0 are the infection and recovery rates.

B. Flatness
Equations (1)-(2) show that System (1) is flat and that R is a flat output [20]. The other system variables may be expressed

as differential rational functions of R, i.e., as rational functions of R and its derivatives up to some finite order:

I =
Ṙ

γ
(3)

S = 1−R− Ṙ

γ
(4)

β = − Ṡ

IS
=

1

S

(
İ

I
+ γ

)
(5)

Remark 1: If γ is not constant, but a differentiable function of time, Equations (3)-(4)-(5) remain valid: System (1) is still
flat and R is still a flat output. Equation (5) shows however that γ̇ is needed.

1Softening social distancing implies increasing β(t).



C. Identifiability of the recovery rate
Equation (5) yields

γ = βS − İ

I

γ is a differential rational function .of R and β: It is thus rationally identifiable [19].
Remark 2: The above equation does not work for an identifiability purpose if γ is time-varying: γ̇ is sitting on its right

hand-side. If we assume that I and S are measured, Equation (4) yields

γ =
İ − βIS

I
(6)

γ is still rationally identifiable with respect to I , S, β. It will be useful in Section V.

III. FLATNESS-BASED CONTROL

A. Preparatory calculations
Set

Ireference(t) = I0e
−λt

where t ≥ 0, 0 ≤ I0 ≤ 1, and λ ≥ 0 is some constant parameter.
Remark 3: The reproduction number (see, e.g., [24], [62]) is thus set to exp(−λ) < 1.

If we set R(0) = 0, it yields

Rreference(t) =
γI0
λ

(1− e−λt)

Sreference(t) = 1− γI0
λ

(
1− e−λt

)
− I0e−λt

and the open-loop control

βflat(t) =
γ − λ

1− γI0
λ

(1− e−λt)− I0e−λt

Thus
lim

t→+∞
βflat(t) =

λ(γ − λ)

λ− γI0
(7)

The following inequalities are staightforward:
γI0 < λ < γ (8)

λ < γ follows from β > 0; γI0 < λ follows from

lim
t→+∞

S(t) = 1− γI0
λ

= S(∞) > 0 (9)

Introduce the more or less precise quantity βaccept, where β < βaccept < β. It stands for the “harshest” social distancing
protocols which are “acceptable” in the long run. Equation (7) yields therefore

λ(γ − λ)

λ− γI0
= βaccept

The positive root of the corresponding quadratic algebraic equation λ2 + (βaccept − γ)λ− γI0βaccept = 0 is

λaccept =
γ − βaccept +

√
∆accept

2

where ∆accept = (γ − βaccept)
2 + 4γI0βaccept ≥ 0. The fundamental inequality

γI0 < λaccept < γ

follows from
lim
λ↓γI0

λ(γ − λ)

λ− γI0
= +∞, lim

λ↑γ

λ(γ − λ)

λ− γI0
= 0

Equation (9) leads to the notation

Saccept(∞) = 1− γI0
λaccept

The inequality
S(∞) < Saccept(∞) if λ < λaccept

demonstrates that the proportion of uninfected people decreases if the social distancing obligations are relaxed.



B. Two computer experiments
Set γ = 0.1, βaccept = 0.22. Figure 1 displays the open-loop evolutions of β, I , S when λ = λaccept. Those behaviors

are quite satisfactory.

IV. MODEL-FREE CONTROL

A. Ultra-local model
Set ∆I(t) = I(t)−Ireference(t), β(t) = βflat(t)+∆β(t). In order to take into account the various uncertainties, introduce

the ultra-local model ([16])
d

dt
∆I = F + a∆β (10)

• The function F , which is data-driven, subsumes the poorly known structures and disturbances.
• The parameter a, which does not need to be precisely determined, is chosen such that the three terms in Equation (10)

are of the same magnitude.
• Fest = − 6

τ3

∫ t
t−τ ((t− 2σ)∆I(σ) + aσ(τ − σ)∆β(σ)) dσ, where τ > 0 is “small”, gives a real-time estimate, which in

practice is implemented via a digital filter.

B. Intelligent proportional controller
Introduce ([16]) the intelligent proportional controller, or iP,

∆β = −Fest +KP∆I

a
(11)

where KP is a tuning gain. Equations (10) and (11) yield

d

dt
∆I +KP∆I = F − Fest

Set KP > 0. Then lim
t→+∞

∆I(t) ≈ 0 if the estimate Fest is “good,” i.e., if F − Fest is “small.” Local stability is ensured.
Remark 4: When compared to classic PIs and PIDs (see, e.g., [4]), the gain tuning of the iP is straightforward.

C. Computer experiments
The sampling time interval is 2 hours. In Equations (10) and (11), a = 0.1, KP = 1. Figure 2 displays excellent results

in spite of
• errors on initial conditions;
• the fuzzy character of any measurement of the social distancing. It is expressed by an additive corrupting white Gaussian

noise N (0, 5.10−3) on β.

V. ON THE RECOVERY RATE γ

Assume now that γ is a differentiable time function. Equation (6) yields the algebraic estimator

γest =
[İ]est − βIS

I
(12)

where [İ]est is an estimate of İ obtained along the lines developed in [34], [42] for algebraic differentiators. Figure 3-c
displays excellent results. The flatness-based computer experiments is achieved as in Section III-B, i.e., γ = 0.1 is assumed to
be constant. Lack of space prevents us from displaying our convincing simulations in the more realistic situation with noise
corruption.

Closing the loop via model-free control yields as demonstrated in Figures 3-a-b a rather satisfactory behavior. Should we
deduce that the exact knowledge of the recovery rate is unimportant?

VI. CONCLUSION

The relevance and usefulness of such control-theoretic considerations for non-pharmaceutical mitigation policies against
COVID-19 are questioned in [11] . We certainly do not claim to set aside those objections in this preliminary short study. The
combination however of flatness-based and model-free controls, like in [18] for in silico cancer treatments, presents perhaps
some major advantages:
• Flatness-based control allows to present in a straightforward way a wealth of reference trajectories in order to take into

account various constraints.
• Closing the loop via model-free control permits a remarkable robustness with respect to many severe uncertainties.

Those features should of course be confirmed by further investigations.
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(a) β (b) I (c) S

Fig. 1: Open loop: I0 = 0.05 (–) and I0 = 0.1 (- -)

(a) β (b) I (c) S

Fig. 2: Error on initial conditions and fuzzy β – blue(- -): reference trajectory



(a) β – blue(- -): reference trajectory (b) I – blue(- -): reference trajectory (c) S – blue(- -): reference trajectory

(d) γ (- -) and γest (blue –)

Fig. 3: Variable recovery rate γ
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