
HAL Id: hal-03414354
https://polytechnique.hal.science/hal-03414354

Preprint submitted on 4 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Elementary formulae for social distancing scenarios:
Application to COVID-19 mitigation via feedback

control
Michel Fliess, Cédric Join

To cite this version:
Michel Fliess, Cédric Join. Elementary formulae for social distancing scenarios: Application to
COVID-19 mitigation via feedback control. 2021. �hal-03414354�

https://polytechnique.hal.science/hal-03414354
https://hal.archives-ouvertes.fr


Elementary formulae
for social distancing scenarios:

Application to COVID-19 mitigation
via feedback control

Michel Fliess1,3 and Cédric Join2,3

Abstract

Social distancing has been enacted in order to mitigate the spread of COVID-19. Like many authors, we adopt the classic
epidemic SIR model, where the infection rate is the control variable. Its differential flatness property yields elementary closed-
form formulae for open-loop social distancing scenarios, where, for instance, the increase of the number of uninfected people
may be taken into account. Those formulae might therefore be useful to decision makers. A feedback loop stemming from model-
free control leads to a remarkable robustness with respect to severe uncertainties of various kinds. Although an identification
procedure is presented, a good knowledge of the recovery rate is not necessary for our control strategy. Several convincing
computer experiments are displayed.
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I. INTRODUCTION

In less than two years an abundant mathematically oriented literature has been devoted to the worldwide COVID-19
pandemic. Some of the corresponding calculations had even a significant political impact (see, e.g., [1]). A novel control
technique for improving the social distancing is presented here. This fundamental topic has already been tackled by many
authors: see, e.g., [2], [3], [6], [7], [8], [10], [12], [13], [14], [15], [21], [25], [30], [28], [36], [37], [38], [41], [43], [44], [46],
[57]. Most of those papers are based on the famous SIR (Susceptible-Infected-Recovered/Removed) model, which goes back to
[27] in 1927, or on slight modifications. This communication is also using the SIR model:
• When, like in several papers, the infection rate is the control variable, the SIR model is (differentially) flat ([20]). Remember

that flatness-based control is one of the most popular model-based control setting, especially with respect to concrete
applications: see, e.g., [5], [9], [31], [32], [35], [45], [47], [49], [50], [51], [53], [54], [55], [63] for some recent publications.
Note that flatness has already been utilized in [23] for studying COVID-19 but with other purposes.

• There are severe uncertainties: model mismatch, poorly known initial conditions, . . . We therefore close the loop around
the reference trajectory via model-free control, or MFC, in the sense of [16], [17]. MFC, which is easy to implement, has
already been illustrated in a number of practical situations. Some new contributions are listed here: [22], [26], [29], [33],
[39], [40], [48], [52], [58], [59], [60], [61], [64], [65]. Let us single out here the excellent work by [56] on ventilators,
which are obviously related to COVID-19.

In order to be more specific consider a flat system with a single input u and a single output y. Assume that y is a flat output.
Our strategy may be summarized as follows:

1) To any output reference trajectory y? corresponds at once thanks to flatness an open-loop control u?.
2) Let z be some measured output. Write z? the corresponding reference trajectory. Set u = u? + ∆u, where ∆u is the

control of an ultra-local local model [16]. Its output ∆z = z−z? is the tracking error. Closing the loop via an intelligent
controller [16] permits to ensure local stability around z? in spite of severe mismatches and disturbances.

Our paper is organized as follows.
• Section II shows that

– the SIR model, where the infection rate is the control variable, is flat and the population of recovered/removed individuals
is a flat output;

– the recovery rate is identifiable in the sense of [19].
• Section III is devoted to a flatness-based control strategy, i.e., to a feedforward approach. Elementary closed-form of the

control and state variables are easily derived. Various scenarios, where for instance the number of uninfected persons is
increased, may thus be easily suggested to decision makers.

• Closing the loop via an intelligent proportional regulator, stemming from model-free control, is the subject of Section IV.
Computer simulations confirm an excellent robustness with respect to severe uncertainties.

• A time-varying recovery rate is estimated in Section V via algebraic estimation methods ([19]). Techniques from Section
IV show however good performances if this rate is wrongly assumed to be constant.

• Some concluding remarks may be found in Section VI.

II. MODELING ISSUES

A. The SIR model
The SIR model (see, e.g., [62] for a most pleasant introduction) reads:

Ṡ = −βIS
İ = βIS − γI
Ṙ = γI

(1)

S, I and R, which are non-negative quantities, correspond respectively to the fractions of susceptible, infected and recov-
ered/removed individuals in the population. We may set therefore

S + I +R = 1 (2)

β, 0 < β ≤ β ≤ β, which is here the control variable,1 and the constant parameter γ > 0 are the infection and recovery rates.

B. Flatness
Equations (1)-(2) show that System (1) is flat and that R is a flat output [20]. The other system variables may be expressed

as differential rational functions of R, i.e., as rational functions of R and its derivatives up to some finite order:

I =
Ṙ

γ
(3)

S = 1−R− Ṙ

γ
(4)

β = − Ṡ

IS
=

1

S

(
İ

I
+ γ

)
(5)

Remark 1: If γ is not constant, but a differentiable function of time, Equations (3)-(4)-(5) remain valid: System (1) is still
flat and R is still a flat output. Equation (5) shows however that γ̇ is needed.

1Softening social distancing implies increasing β(t).



C. Identifiability of the recovery rate
Equation (5) yields

γ = βS − İ

I

γ is a differential rational function .of R and β: It is thus rationally identifiable [19].
Remark 2: The above equation does not work for an identifiability purpose if γ is time-varying: γ̇ is sitting on its right

hand-side. If we assume that I and S are measured, Equation (4) yields

γ =
İ − βIS

I
(6)

γ is still rationally identifiable with respect to I , S, β. It will be useful in Section V.

III. FLATNESS-BASED CONTROL

A. Preparatory calculations
Set

Ireference(t) = I0e
−λt

where t ≥ 0, 0 ≤ I0 ≤ 1, and λ ≥ 0 is some constant parameter.
Remark 3: The reproduction number (see, e.g., [24], [62]) is thus set to exp(−λ) < 1.

If we set R(0) = 0, it yields

Rreference(t) =
γI0
λ

(1− e−λt)

Sreference(t) = 1− γI0
λ

(
1− e−λt

)
− I0e−λt

and the open-loop control

βflat(t) =
γ − λ

1− γI0
λ

(1− e−λt)− I0e−λt

Thus
lim

t→+∞
βflat(t) =

λ(γ − λ)

λ− γI0
(7)

The following inequalities are staightforward:
γI0 < λ < γ (8)

λ < γ follows from β > 0; γI0 < λ follows from

lim
t→+∞

S(t) = 1− γI0
λ

= S(∞) > 0 (9)

Introduce the more or less precise quantity βaccept, where β < βaccept < β. It stands for the “harshest” social distancing
protocols which are “acceptable” in the long run. Equation (7) yields therefore

λ(γ − λ)

λ− γI0
= βaccept

The positive root of the corresponding quadratic algebraic equation λ2 + (βaccept − γ)λ− γI0βaccept = 0 is

λaccept =
γ − βaccept +

√
∆accept

2

where ∆accept = (γ − βaccept)
2 + 4γI0βaccept ≥ 0. The fundamental inequality

γI0 < λaccept < γ

follows from
lim
λ↓γI0

λ(γ − λ)

λ− γI0
= +∞, lim

λ↑γ

λ(γ − λ)

λ− γI0
= 0

Equation (9) leads to the notation

Saccept(∞) = 1− γI0
λaccept

The inequality
S(∞) < Saccept(∞) if λ < λaccept

demonstrates that the proportion of uninfected people decreases if the social distancing obligations are relaxed.



B. Two computer experiments
Set γ = 0.1, βaccept = 0.22. Figure 1 displays the open-loop evolutions of β, I , S when λ = λaccept. Those behaviors

are quite satisfactory.

IV. MODEL-FREE CONTROL

A. Ultra-local model
Set ∆I(t) = I(t)−Ireference(t), β(t) = βflat(t)+∆β(t). In order to take into account the various uncertainties, introduce

the ultra-local model ([16])
d

dt
∆I = F + a∆β (10)

• The function F , which is data-driven, subsumes the poorly known structures and disturbances.
• The parameter a, which does not need to be precisely determined, is chosen such that the three terms in Equation (10)

are of the same magnitude.
• Fest = − 6

τ3

∫ t
t−τ ((t− 2σ)∆I(σ) + aσ(τ − σ)∆β(σ)) dσ, where τ > 0 is “small”, gives a real-time estimate, which in

practice is implemented via a digital filter.

B. Intelligent proportional controller
Introduce ([16]) the intelligent proportional controller, or iP,

∆β = −Fest +KP∆I

a
(11)

where KP is a tuning gain. Equations (10) and (11) yield

d

dt
∆I +KP∆I = F − Fest

Set KP > 0. Then lim
t→+∞

∆I(t) ≈ 0 if the estimate Fest is “good,” i.e., if F − Fest is “small.” Local stability is ensured.
Remark 4: When compared to classic PIs and PIDs (see, e.g., [4]), the gain tuning of the iP is straightforward.

C. Computer experiments
The sampling time interval is 2 hours. In Equations (10) and (11), a = 0.1, KP = 1. Figure 2 displays excellent results

in spite of
• errors on initial conditions;
• the fuzzy character of any measurement of the social distancing. It is expressed by an additive corrupting white Gaussian

noise N (0, 5.10−3) on β.

V. ON THE RECOVERY RATE γ

Assume now that γ is a differentiable time function. Equation (6) yields the algebraic estimator

γest =
[İ]est − βIS

I
(12)

where [İ]est is an estimate of İ obtained along the lines developed in [34], [42] for algebraic differentiators. Figure 3-c
displays excellent results. The flatness-based computer experiments is achieved as in Section III-B, i.e., γ = 0.1 is assumed to
be constant. Lack of space prevents us from displaying our convincing simulations in the more realistic situation with noise
corruption.

Closing the loop via model-free control yields as demonstrated in Figures 3-a-b a rather satisfactory behavior. Should we
deduce that the exact knowledge of the recovery rate is unimportant?

VI. CONCLUSION

The relevance and usefulness of such control-theoretic considerations for non-pharmaceutical mitigation policies against
COVID-19 are questioned in [11] . We certainly do not claim to set aside those objections in this preliminary short study. The
combination however of flatness-based and model-free controls, like in [18] for in silico cancer treatments, presents perhaps
some major advantages:
• Flatness-based control allows to present in a straightforward way a wealth of reference trajectories in order to take into

account various constraints.
• Closing the loop via model-free control permits a remarkable robustness with respect to many severe uncertainties.

Those features should of course be confirmed by further investigations.
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[20] Fliess M., Lévine J., Martin P., Rouchon P. (1995). Flatness and defect of non-linear systems: introductory theory and examples. Int. J.

Contr., 61, 1327-1361.
[21] Gevertz J.L., Greene J.M., Sanchez-Tapia C.H., Sontag E.D. (2021). A novel COVID-19 epidemiological model with explicit susceptible

and asymptomatic isolation compartments reveals unexpected consequences of timing social distancing. J. Theoret. Biol., 510, 110539.
[22] Gu J., Li H., Zhang H., Pan C., Luan Z. (2021). Cascaded model-free predictive control for single-phase boost power factor correction

converters. Int. J. Robust Nonlinear Contr., 31, 5016-5032.
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(a) β (b) I (c) S

Fig. 1: Open loop: I0 = 0.05 (–) and I0 = 0.1 (- -)

(a) β (b) I (c) S

Fig. 2: Error on initial conditions and fuzzy β – blue(- -): reference trajectory



(a) β – blue(- -): reference trajectory (b) I – blue(- -): reference trajectory (c) S – blue(- -): reference trajectory

(d) γ (- -) and γest (blue –)

Fig. 3: Variable recovery rate γ
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