
How to (legally) keep secrets from mobile operators

Ghada Arfaoui1, Olivier Blazy2, Xavier Bultel3, Pierre-Alain Fouque4, Thibaut Jacques4, Adina Nedelcu1,4 and
Cristina Onete2

1 Orange Labs, 2 XLIM, University of Limoges, 3 INSA Centre Val-de-Loire, 4 IRISA, University of Rennes 1

Abstract. Secure-channel establishment allows two endpoints to communicate confidentially and authentically.
Since they hide all data sent across them, good or bad, secure channels are often subject to mass surveillance in
the name of (inter)national security. Some protocols are constructed to allow easy data interception . Others are
designed to preserve data privacy and are either subverted or prohibited to use without trapdoors.
We introduce LIKE, a primitive that provides secure-channel establishment with an exceptional, session-specific
opening mechanism. Designed for mobile communications, where an operator forwards messages between the
endpoints, it can also be used in other settings. LIKE allows Alice and Bob to establish a secure channel with
respect to n authorities. If the authorities all agree on the need for interception, they can ensure that the session key
is retrieved. As long as at least one honest authority prohibits interception, the key remains secure; moreover LIKE
is versatile with respect to who learns the key. Furthermore, we guarantee non-frameability: nobody can falsely
incriminate a user of taking part in a conversation; and honest-operator: if the operator accepts a transcript as valid,
then the key retrieved by the authorities is the key that Alice and Bob should compute. Experimental results show
that our protocol can be efficiently implemented.

1 Introduction

For almost a decade mass surveillance has caused controversy, widespread protests, and scandals; and yet, it is on the
rise. The NSA, for instance, illegally collected phone-call data from all Verizon customers, and the data of all calls
occurring in the Bahamas and Afghanistan [27]. During the present COVID-19 pandemic, Germany used contact-
tracing data to pursue criminal investigations [25]. The need for privacy-enhancing solutions that provide transparency
and limit mass surveillance has never been greater.

User privacy is a human right acknowledged by Article 12 of the Universal Declaration for Human Rights [42]:
“No one shall be subjected to arbitrary interference with his privacy [...] or correspondence [...]. Everyone has the
right to the protection of the law against such [...] attacks.” The European General Data Protection Regulation (GDPR)
and e-Privacy both aim to protect privacy in digital environments, requiring minimal, transparent, secure, and user-
controlled storage of data. Increasingly aware of mass surveillance, users now choose more frequently to secure
their communications by using, e.g., WhatsApp and Viber. In mobile networks, data is encrypted by mobile network
operators, which have an incentive to improve the privacy they offer their users.

Unfortunately, mobile data remains at risk, especially when exceptional access to it lies with a single entity. In
2016, only the integrity of Tim Cook (Apple CEO) and his awareness of the danger of such a precedent prevented
encrypted phone data to be given to the FBI [30]. His refusal was not a deterrent, and risks to privacy and encryption
grow every day [24].

Law-enforcement agencies argue that mobile data can be pivotal to investigations, which are undermined by indi-
viduals “going dark” [20]. Even strong privacy advocates, such as Abelson et al. [6] agree that targeted investigations,
limited in scope and motivation, can be legitimate and useful (see the corruption-scandal regarding Nicolas Sarkozy’s
campaign funds). It is this type of limited Lawful Interception (LI) that emerging EU legislation advocates [23].

Recent research [45] has tried to find a middle ground between privacy and lawful interception, enabling the latter
at high cost. Unfortunately, that approach sacrifices a crucial real-world requirement: timely (exceptional) decryp-
tion [2]. In this paper we define and instantiate Lawful-Interception Key-Exchange (LIKE), a novel primitive allowing
mobile users to E2E encrypt their conversation, but providing exceptional lawful interception. This would remove the
“[...] need to choose between compliance and strong encryption” (cf. Joel Wallenstrom).

LIKE combats mass surveillance in multiple ways. It fine-grains the window of interception to a single session,
such that one exceptional opening will not affect past or future conversations. Moreover, the freshness used in the

protocol is user- not authority-generated, thus removing the need for a centralized, secure party storing all the keys.
We also divide the responsibility of exceptional opening between multiple authorities that must agree to lawfully
intercept communications. Finally, we make the primitive versatile, allowing only one, or only several authorities to
ultimately retrieve the session key. This makes our solution more privacy-preserving than mobile protocols today,
while at the same time remaining compatible to the strictest LI-supporting 3GPP texts [2].

Lawful interception. Regardless of one’s stand on it, Lawful Interception (LI) is part of our world, regulated by
laws and standards. Ignoring it can lead to privacy threats (subversion or mass surveillance). Solutions that provide
privacy but no LI are discarded as unlawful, regardless of their merits. We take the alternative approach: we analyze
LI requirements and technically provide for them, while still maximizing data privacy.

LI requirements in mobile communications are authored by 3GPP and standardized by organizations, e.g., ETSI.
LI is the procedure through which a law enforcement agency, holding a legal warrant, can obtain information about
phone calls: either metadata (time of calls, identity of callers) or contents (of conversations happening in real time). By
law, a mobile operator must provide the data requested and specified by a warrant. Three main types of requirements
regulate LI: user-privacy requirements, LI-security requirements, and requirements on encryption.
R1 User Privacy: the interception is limited in time (as dictated by the warrant) and to a targeted user. The law

enforcement agency should not get data packages or conversations outside the warrant, from the same or other
users.

R2 LI Security: LI must be undetectable by either users (whose quality of service should stay the same) or non-
authorized third parties (including other law-enforcement agencies). Intercepted data must be provided promptly,
with no undue delay.

R3 Special case: if it implements encryption, the operator must provide either decrypted content, or a means to
decrypt it (e.g., a decryption key). However, if the users employ other means of encryption, not provided by the
operator, the latter is not obliged to provide decrypted (or decryptable) conversations.

1.1 Our contributions

LIKE. Based on these requirements, we define a novel cryptographic primitive called Lawful-Interception Key Ex-
change (LIKE, in short). This protocol allows (only) the end users to compute session keys in the presence of a variable
number n of authorities (e.g., a court of justice, a law enforcement agency, operators), which all parties must agree on;
the operators output a public session state. Given the session state, authorities may each extract a trapdoor. The use
of all n trapdoors can yield a session key. Importantly, unless they are an authority, operators cannot recover the end
users’ key; instead they forward and verify the compliance of exchanged messages (else the operator aborts).

We also formalize the following strong properties:
C Correctness: Under normal conditions, Alice and Bob obtain the same key. Moreover, this will be the key retrieved

by the collaboration of all the authorities by means of lawful interception (requirement R2)
KS Key-security: If at least one authority and both users are honest for a given session, that session’s key remains

indistinguishable from a random key of the same length with respect to an adversary that can control all the
remaining parties (including the other authorities and the operator); (requirements R1 and R2)

NF Non-Frameability: The collusion of malicious users, the authorities, and the operator cannot frame an honest
user of participating to a session she has not been a party to (requirement R2);

HO Honest Operator: If an honest operator forwards the so-called session state (see below) of a session it deems
correct, then the key recovered by the authorities is the one that the session transcript should have yielded (re-
quirement R3). Thus operators can prove that this protocol is compliant with LI specifications.

Our protocol & Implementation. As our second contribution, we describe an instantiation of LIKE using standard
building blocks (signatures, zero knowledge proofs and signatures of knowledge) which we prove secure, provided
the Bilinear Decisional Diffie-Hellman problem is intractable, the signature scheme is unforgeable, and our zero-
knowledge proofs/signatures are secure.

Mindful of practical requirements, we place most of the burden during AKE on the operator (not on the endpoints).
Our proofs and signatures of knowledge can be simply implemented based on Schnorr and respectively Chaum and
Pedersen proofs (with Fiat-Shamir). The two endpoints do have to compute a pairing operation –however, we explain

2

that the actual computation can actually be delegated to the mobile phone, leaving a single exponentiation (in the target
group) to be performed on the USIM card.

The complexity of the opening procedure is reduced. Some steps are parallelizable and run in constant time (trap-
door generation), but others are linear (combining the trapdoors). Even so the computational burden remains minimal
and in line with requirements R2 (constant quality of service, since only authorities run LI, not the operator) and R3 (no
undue delay would be incurred by the operator, and only minimal delays occur at the authorities). A proof-of-concept
implementation given in Section 7 illustrates this point.

1.2 Related work

Existing encryption in mobile networks is not E2E secure, only providing privacy with respect to non-authorized third
parties. This solution is compliant to LI requirements [3–5] because the secure channel it provides is between the user
and the operator (rather than user-to-user); thus the operator has unrestricted access to all user communications. Our
LIKE protocol provides much stronger privacy in that respect.

LIKE also provides much stronger guarantees than key-escrow [37, 21, 7, 44, 40, 10, 18, 34, 32, 33, 26, 35, 41, 38,
19]: we can handle malicious authority input; we fine-grain exceptional opening so that it only holds for one session
at a time; we allow authorities to remain offline at all times except for exceptional opening; we minimize storage and
computational costs for users and authorities; we have no central key-generation authority which knows all secret keys;
and we guarantee the new properties of non-frameability and honest operator, which are tailored to the LI requirements
analyzed above. In return, our use-case is narrower than typically considered in key-escrow: by considering the case
of mobile communications, we can safely assume that parties always use the operator as a proxy, unlike in generic
key-escrow settings.

Our work is motivated by the same problem handled by [11, 45], but we take a different approach: rather than make
LI computationally costly, we limit its scope, divide exceptional opening between several authorities, and fine-grain
access. Our setup also resembles that of reverse firewalls [36] – which builds on related work pioneered by Young
and Yung [46, 22, 31]. Although apparently similar, the setup of these works is complementary to ours. Kleptography
describes ways for users to abuse protocols such that the latter appear to be running normally, while subliminal infor-
mation is allowed to leak. For instance in key-exchange, a government agency could substitute the implementation of
the protocol by one with a backdoor, to make the key recoverable even without formal LI. We also consider the case
that Alice and Bob might be malicious (the HO property). However, rather than wanting to exfiltrate information –
which is the adversarial goal in typical reverse-firewalls– in our case, Alice and Bob aim to cheat by choosing protocol
contributions that might make LI malfunction. To be provably-secure, LIKE protocols must prevent this.

2 Preliminaries

Notations. By x Ð y we mean that variable x takes a value y, while x $
ÐÝ X indicates x is chosen from the uniform

distribution on X . The notation J1, nK is short for t1, 2, � � � , nu. Let Apxq Ñ a express that algorithm A, running on
input x, outputs a, and PxApxq,Bpyqypzq Ñ pa, bq to express that protocol P implements the interactions of Apxq Ñ a
and Bpyq Ñ b, where z is an additional public input of A and B. Let λ be a security parameter.

Building blocks.

Definition 1 (Digital signatures). A digital signature scheme DS is defined by three algorithms pSGen,SSig,SVerq.
– SGenpppq Ñ pPK,SKq: Takes as input the public parameters of the system pp and outputs a key pair called

respectively public and private key.
– SSigpSK,mq Ñ σ: Takes as input a private key SK and a message m and outputs a signature σ.
– SVerpm,σ,PKq Ñ 0, 1: Takes as input a message m, a signature sigma and a public key PK, and outputs 1 if σ

is a valid signature of m and 0 otherwise.

Definition 2 (EUF-CMA [28]). A security property expected from a digital signature scheme DS is the Existential
Unforgeability under Chosen Message Attack (EUF-CMA). Let Sig be an oracle that, on input a message m, returns
SSigpSK,mq. Let A be PPT adversary. We define the following experiment.

3

ExpEUF-CMA
DS pAq:

pPK,SKq Ð SGenpppq

pm,σq Ð ASigp�qpPKq;
Return 1 if pm,σq was not output by Sigp�q and SVerpm,σ,PKq � 1
Return 0

We denote by AdvEUF-CMA
DS pλq the maximum advantage over all PPT adversaries. A digital signature scheme DS is

EUF-CMA if, for all PPT adversaries A, AdvEUF-CMA
DS,A pλq � P

�
ExpEUF-CMA

DS,A pλq � 1
�

is negligible.

Definition 3 (BDDH assumption [14]). Let G1 � xg1y, G2 � xg2y, and GT be groups of prime order p of length λ.
Let e : G1�G2 Ñ GT be a type 3 bilinear map. The Bilinear decisional Diffie-Hellman problem (BDDH) assumption
holds in pG1,G2,GT , eq if, given pa, b, c, d1q

$
ÐÝ pZ�

p q
4, d0 Ð abc, and β $

ÐÝ t0, 1u, no PPT adversary A can guess
β from pga1 , g

a
2 , g

b
1, g

b
2, g

c
1, g

c
2, epg1, g2q

dβ q with non-negligible advantage. We denote by AdvBDDHpλq the maximum
advantage over all PPT adversaries.

Signature of Knowledge. Let R be a binary relation and let L be a language such that s P L ô pDw, ps, wq P Rq.
A Non-Interactive Proof of Knowledge (NIPoK) [9] allows a prover to convince a verifier that he knows a witness
w such that ps, wq P R. Here, we follow [15] and write NIPoK tw : pw, sq P Ru for the proof of knowledge of w
for the statement s and the relation R. A signature of knowledge essentially allows one to sign a message and prove
in zero-knowledge that a particular statement holds for the key [16]. In this paradigm, w is a secret key and s is the
corresponding public key.

Definition 4 (Signature of Knowledge). Let R be a binary relation and L be a language such that s P L ô
pDw, ps, wq P Rq. A Signature of Knowledge for L is a pair of algorithms pSoK,SoKverqwith SoKm tw : ps, wq P Ru Ñ
π and SoKverpm, s, πq Ñ b, such that:

– Perfect Zero Knowledge: There exists a polynomial time algorithm Sim, the simulator, such that Simpm, sq and
SoKm tw : ps, wq P Ru follow the same probability distribution.

– Knowledge Extractor: There exists a PPT knowledge extractor Ext and a negligible function εSoK such that for
any algorithm ASimp�,�qpλq having access to a simulator that forges signatures for chosen instance/message tuples
and that outputs a fresh tuple ps, π,mq with SoKverpm, s, πq � 1, the extractor ExtApλq outputs w such that
ps, wq P R having access to Apλq with probability at least 1� εSoKpλq.

We omit the definition of NIPoK which is the same as SoK without the messages.

3 LIKE protocols

Lawful-interception (authenticated) key-exchange (LIKE) consists of two mechanisms: a multiparty AKE protocol
between 2 mobile subscribers (users) and a (number of) mobile network operators (performing the same actions), and
an Extract-and-Open mechanism for LI between a number of authorities.

Intuition. Our AKE component allows user Alice, subscribing to operator OA, and Bob, subscribing to OB, to compute
a session key in the presence of OA and OB. The operators do not compute the session key, just some auxiliary session
state, which allows for session authentication and ulterior key-recovery.

In the Extract-and-Open component, each authority uses its secret key to extract a trapdoor from the session state.
The trapdoors are then used together to open the session key.

Formalization. Let USERS be a set of mobile users and OPS be a set of operators, such that each user is affiliated to
precisely one operator. We also consider a set of authorities AUTH of cardinality |AUTH|, with elements indexed as
Λ1, . . . , Λ|AUTH|.

Let PARTIES be the set of all participants: USERSY OPSY AUTH. Mobile users have no super-role: USERSX
AUTH � H � USERS X OPS. Syntactically, OPS X AUTH � H; however, operators can act as authorities by
registering a second set of (authority) credentials and using those for opening. This is described in Section 8.

4

Parties, attributes, and oracles are formally introduced in the next section. We use a dot notation to refer to at-
tributes of a party P: A.PKis Alice’s public key and Λi.SK is the secret key of the i-th authority. We write OA to
indicate Alice’s operator even though we have no user registration and can run the protocol with any two operators
chosen by the users. The operators are assumed to transit all communication (as is the case today). The parties can
agree on a variable number n of (distinct) authorities, with 1 ¤ n ¤ |AUTH|.

Definition 5. A lawful interception key exchange (LIKE) protocol is defined by the following algorithms:
– Setupp1λq Ñ pp: Takes as input a security parameter and outputs public system parameters pp, known to all

parties.
– UKeyGenpppq Ñ pU.PK,U.SKq: Takes as input the public parameters pp and outputs a user key pair.
– OKeyGenpppq Ñ pO.PK,O.SKq: Takes as input the public parameters pp and outputs an operator key pair.
– AKeyGenpppq Ñ pΛ.PK, Λ.SKq: Takes as input the public parameters pp and outputs an authority key pair.
– AKExApA.SKq,OApOA.SKq,OBpOB.SKq,BpB.SKqypPKAÑBq Ñ pkA, sstA, sstB, kBq: An authenticated key-exchange

protocol between users pA,Bq P USERS2 and their operators pOA,OBq P OPS2, the latter providing active mid-
dleware at all times. The parties each take as input a secret key, and they all have access to the same set of
public values PKAÑB containing: parameters pp, public keys pA.PK,B.PKq, and a vector of authority public keys
APK � pΛi.PKq

n
i�1 with (distinct) Λi P AUTH for all i. At the end of the protocol, A (resp. B) returns a session

secret key kA (resp. kB) and the operator OA (resp. OB) returns a (public) session state sstA (resp. sstB). In case
of failure, the parties output a special symbol K instead.

– Verifyppp, sst,A.PK,B.PK,O.PK,APKq Ñ b: Takes as input session state sst, user public keys A.PK and B.PK,
an operator public key O.PK, a set of authority public keysAPK � pΛi.PKq

n
i�1, outputting a bit b � 1 if sst was

correctly generated and authenticated by O, and b � 0 otherwise.
– TDGenppp, Λ.SK, sstq Ñ Λ.t: Takes as input authority secret key Λ.SK and session state sst, and outputs trap-

door Λ.t.
– Openppp, sst,APK, T q Ñ k: Takes as input session state sst, two vectors APK � pΛi.PKq

n
i�1 with n distinct

public keys, and T � pΛi.tq
n
i�1 (authority public keys and corresponding trapdoors), and outputs either a session

key k, or a symbol K.

We defer the full correctness definition to Appendix A. It essentially states that if parameters are normally gener-
ated, for an honestly-run protocol session: both operators approve it, both users accept computing the same key, and
that same key is extracted from either of the operators’ session states.

To use a LIKE scheme, keys are generated based on the parties’ role: UKeyGen for users, OKeyGen for operators,
and AKeyGen for authorities. Then, Alice, Bob, and the operators run AKE as described above. At the end, Alice and
Bob share a session key (unknown to the operator), and each operator returns a public session state sst. The values
included in sst are protocol-dependent, and they must allow the authorities to verify that the session was run correctly
and recover the session key. The verification is not exclusively meant for authorities: the algorithm Verify checks the
validity of the session and authenticates its participants.

The authorities may later retrieve session keys. Each authority verifies the soundness of a given sst, then extracts
a trapdoor to the session key, using its secret key. Given all the trapdoors, the algorithm Open retrieves the session
key. Depending on the LI scenario, the Open algorithm may be run by one or multiple parties (thus, whoever has all
the trapdoors extracts the key). Our protocol is versatile and can adapt to many cases, some of which are shown in
Section 8.

4 Security Model

This section formalizes LIKE security: an essential contribution to the paper, which provides much stronger guarantees
than regular authenticated key exchange or key-escrow. We begin by giving the adversarial model, then list the oracles
which adversaries can use to manipulate honest parties, and formalize security games for each property.

The adversarial model. We assume all parties (users, operators, authorities) have unique and unchanging roles. Parties
may still play multiple roles if the same physical entity registers as multiple users in our scheme (an authority and an
operator, for instance). Each party P is associated with these attributes:

5

– (SK, PK): long-term private (resp. public) keys SK (resp. PK). Such keys are output by UKeyGen, OKeyGen, or
AKeyGen.

– γ: a corruption flag, indicating whether that party has been corrupted (1) or not (0). The flag starts out as 0, and if
it changes to 1, it can never flipped back to 0.
Alice, Bob, and their operators run AKE in sessions. At each new session, a new instance of each party is created

(yielding four instances per session). We denote by πiP the i-th instance generated during the experiment, where P
denotes the corresponding party. In addition to the long-term keys and corruption bits of the party, instances keep
track of the following attributes:

– sid: a session identifier consisting of a tuple of session-specific values, like public parameters or randomness.
This attribute stores only state pertinent to that session, does not include secret values, and is computable by the
instances running the session. The value of sid is initially set to K and changes during the protocol run.

– PID: partner identifiers. If P P USERS, then PID P USERS such that P � PID, else P P OPS and PID P USERS2

including two distinct parties.
– OID: operator identifiers. If P P USERS then OID P OPS2. Else OID P OPS.
– AID: distinct authority identifiers such that AID P AUTHn.
– α: an accept flag, undefined (α � K) until the instance terminates, either in an abort (setting α � 0) or without

error (α � 1).
– k: the session key, initialized to K, and modified if the protocol terminates without error. Operator instances do

not have this attribute.
– sst: a set of values pertaining to the instance’s view of the session, initialized to K and modified if the protocol

terminates without error. User instances do not have this attribute.
– ρ: a reveal bit, initialized to 0 and set to 1 if the adversary reveals a session key k � K. Operator instances do not

have this attribute.
– b: a bit chosen uniformly at random upon the creation of the instance.
– τ : the transcript of the session, initialized as K, turning to the ordered list of messages sent and received by that

instance in the same order.
An auxiliary function IdentifySession(sst, π) is defined, taking as input session state sst and a party instance π ,
outputting 1 if π took part in the session where sst was created, and 0 otherwise. We need this at opening, when
authorities must extract and verify the session identifier for themselves.

Notice that, unlike in typical AKE, we have two types of parties running each session (users and operators), and
three attributes that describe partners: mobile user partners in PID, operator partners in OID, and authorities partnering
it in AID. Moreover, IdentifySession and sst are protocol dependent, i.e., , they will have a different instantiation
depending on the protocol we analyse.

We define matching conversation defined as follows:

Definition 6 (Matching instances). For any pi, jq P N2 and pA,Bq P USERS2 such that A � B, we say that πiA
and πjB have matching conversation if all the following conditions hold: πiA.sid � K, πiA.sid � πjB.sid, and πiA.AID �

πjB.AID. If two instances πiA and πjB have matching conversation, we sometimes say, by abuse of language, that πiA
matches πjB.

Oracles. We define LIKE security in terms of games played by an adversary plays against a challenger. In each game,
the adversary A may query some or all of the oracles below. Intuitively, A may register honest or malicious participants
(using Register), initiate new sessions (using NewSession), interact in the AKE protocol (using Send), corrupt parties
(using Corrupt), reveal session keys (using Reveal), or reveal LI trapdoors (using RevealTD). Finally, the adversary
has to query a testing oracle (Test) and tell whether the output was the real session key or a random one. Each oracle
aborts if queried with ill-formatted input, or if insufficient information exists for the response.

– RegisterpP, role,PKq Ñ KYP.PK: On input party P R USERSYOPSYAUTH, role role P tuser, operator, authorityu,
and public key PK:
 If role � user (resp. operator, authority), add P to the set USERS (resp. OPS, AUTH).
 If role � user (resp. operator and authority) and PK � K, run UKeyGenpppq Ñ pP.PK,P.SKq

(resp. OKeyGen and AKeyGen).

6

 If PK � K, set the P.γ � 1, P.PK � PK, and P.SK � K.
Finally, return P.PK.

– NewSessionpP,PID,OID,AIDq Ñ πiP: On input party P P USERSYOPS, if P P USERS then PID,OID and AID
must be such that: PID P USERS with P � PID; OID P OPS2; and AID P AUTH� with |AID| � 0. If P P OPS,
then PID,OID, and AID are such that PID P USERS2; OID P OPS; and AID P AUTH� such that |AID| � 0. On
the i-th call to this oracle, return new instance πiP with already-set values for PID, OID, and AID.

– Send(πiP, m)Ñ m1: Send message m to instance πiP and return message m1 according to protocol (potentially K
for inexistent, aborted, or terminated instance, for ill-formed m, or if P.SK � K).

– Reveal(πiP)Ñ k: For accepting user instance πiP, return the session key πiP.k and set πiP.ρ � 1. For accepting
operator instance πiP return the session state πiP.sst and set πiP.ρ � 1. If πiP is not an accepting instance (α � 1),
return K.

– Corrupt(P)Ñ P.SK: Return P.SK of input party P (all roles) and set P.γ � 1 for all instances of this party.
– TestpπiPq Ñ

rk: Return K if input instance πiP is not an accepting user instance or if this oracle has been queried
before, outputting a value that is non-K. Else, if πiP.b � 0, return πiP.k, and otherwise return randomly-sampled r
from the same domain as πiP.k. This oracle can only be called once during an experiment, which means that only
one instance bit b is actually used.

– RevealTDpsst,A,B,O, pΛiq
n
i�1, lq Ñ Λl.t: If Verifyppp, sst,A.PK,B.PK,O.PK, pΛi.PKqni�1q � 1, run Λl.t Ð

TDGenppp, Λl.SK, sstq, return Λl.t; else return K.
Notice that the operators do not contribute in a traditional sense to the security of the key; instead they verify the

soundness of the exchanges and produce a session state sst, which proves the operator’s honesty to the authorities.
The two operators need not agree on sst, and only one sst is required for the opening procedure (as is the case in most
applications). However, if during AKE one operator validates, but not the other, then ultimately the session is aborted.

We define LIKE security in terms of three properties: key-security (KS), non-frameability (NF), and honest op-
erator (HO). For the reader’s convenience, some useful notations from the model may also be found summarized in
Appendix A.

Key-security. Our KS game extends AKE security [12]. The adversary may query all the oracles above (subject to
key-freshness as defined below) and must distinguish a real session key from one randomly chosen from the same
domain.

The KS notion is much stronger than traditional 2-party AKE. The attacker can adaptively corrupt all but the
users targeted in the challenge, all but one out of the n selected authorities, and all the operators; A may also register
malicious users, retroactively corrupt users (thus ensuring forward secrecy), and learn all but one trapdoor in the
challenge session. Thus, the session key is only known by the endpoints, and by the collusion of all the n authorities
(LI); all other (collusions of) parties fail to distinguish it from a random key. More formally, the tested target instance
must be key-fresh with respect to Definition 7. The full game ExpKSLIKE,Apλq is given in Table 1.

Definition 7 (Key freshness). Let πjP be the j-th created instance, associated to party P P USERS. Let A be a
PPT adversary against LIKE. Parse πjP.PID as P1 and πjP.AID as pΛiqni�1. The key πjP.k is fresh if all the following
conditions hold:

– πjP.α � 1, P.γ � 0 when πjP.α became 1, and πjP.ρ � 0.
– if πjP matches πkP1 for k P N, then: πkP1 .α � 1, P1.γ � 0 when πkP1 .α became 1, and πkP1 .ρ � 0.
– if no πkP1 matches πjP, P1.γ � 0.
– D l P J1, nK such that for any O P πjP.OID, A has never queried RevealTDpsst,A,B,O, pΛ1

iq
n1

i�1, l
1q and:

 Λl.γ � 0 and Λl � Λ1
l1 ;

 IdentifySessionpsst, πjPq � 1.

Definition 8. For an an adversary A the value:

AdvKSLIKE,Apλq :�
���P �ExpKSLIKE,Apλq � 1

�
�

1

2

���
7

ExpKSLIKE,Apλq: ExpNF
LIKE,Apλq:

pp Ð Setupp1λq; pp Ð Setupp1λq

OKS Ð

$''&
''%

Registerp�, �, �q,Sendp�, �q,
NewSessionp�, �, �q,
Revealp�q,RevealTDp�, �q,
Corruptp�, �q,Testp�q

,//.
//-

; ONF Ð

"
Registerp�, �, �q,Sendp�, �q,Revealp�q,
NewSessionp�, �, �q,RevealTDp�, �q,Corruptp�, �q

*
;

pi,P, dq Ð AOKSpλ, ppq; psst,Pq Ð AONFpλ, ppq;
If πiP.k is fresh and πiP.b � d, return 1; If D pA,Bq P USERS2, n P N, O P OPS, pΛiqni�1 P AUTHn s.t.:

Else b1 $
ÐÝ t0, 1u, return b1. Verifyppp, sst,A.PK,B.PK,O.PK, pΛi.PKq

n
i�1q � 1;

P P tA,Bu;
P.γ � 0;
@i, if πiP �� K: IdentifySessionpsst, πiPq � 0 or πiP.α � 0,

Then return 1,
Else return 0.

Table 1: Games for key-security (KS, left) and non-frameability (NF, right).

ExpHOLIKE,Apλq:
pp Ð Setupp1λq;

OHO Ð

"
Registerp�, �, �q,NewSessionp�, �, �q, Sendp�, �q,
Revealp�q,RevealTDp�, �q,Corruptp�, �q

*
;

pj, sst,A,B,O, pΛi, Λi.tq
n
i�1q Ð AOHOpλ, ppq;

If O.γ = 1 then return K;
If Verifyppp, sst,A.PK,B.PK,O.PK, pΛi.PKqni�1q � 0 then return K;
If IdentifySessionpsst, πjO.sidq � 0 then return K;
k� Ð Openppp, sst, pΛi.PKq

n
i�1, pΛi.tq

n
i�1q;

Return pk�, πjO, tPi.PKu
qr
i�1q.

Table 2: The honest-operator HO game, where qr is the number of queries to Register, and Pi is the party input as the
i-th such query.

denotes its advantage against ExpKSLIKE,Apλq. A lawful-interception authenticated key-exchange scheme LIKE is key-
secure if for all PPT A, AdvKSLIKE,Apλq is a negligible function of the security parameter λ.

Non-Frameability. In this game, A attempts to frame a user P� for running an AKE session (with session state sst)
which P� rejected or did not take part in. The adversary may corrupt all parties apart from P�, as formalized in Table 1.

Definition 9. The advantage of an adversary A in the non-frameability experiment ExpNFLIKE,Apλq in Table 1 is defined
as:

AdvNFLIKE,Apλq � P
�
ExpNFLIKE,Apλq � 1

�
.

A lawful interception authenticated key-exchange scheme LIKE is non-frameable if all PPT adversaries A, have neg-
ligible AdvNFLIKE,Apλq as a function of λ.

Honest Operator. The HO game captures the fact that honest operators will abort if they detect ill-formed or non-
authentic messages. The adversary must create a valid session state sst, accepted by the operators, for which the
authorities Open to an incorrect session key. The attacker can provide some trapdoors and corrupt all the parties
except the operator that approves sst.

Ideally, LIKE schemes should guarantee that if the (honest) operator approves a session, then the extracted key
(output in ExpHOLIKE,Apλq, see Table 2) will be the one used by Alice and Bob. However, malicious endpoints could
run a protocol perfectly, then use a different key (e.g., , exchanged out of band) to encrypt messages. This flaw is
universal to secure-channel establishment featuring malicious endpoints. The best a LIKE protocol can guarantee is
that the extracted key is the one that would have resulted from an honest protocol run yielding sst. We express this in
terms of a key extractor, which, given an operator instance and a set of public keys, outputs the key k associated with
the session in which the instance took part.

8

Definition 10 (Key extractor). For any LIKE, a key extractor Extractp�, �q is a deterministic unbounded algorithm
such that, for any users A and B, operators OA and OB, and set of n authorities pΛiqni�1, any set tpp, A.PK,
A.SK,B.PK, B.SK, OA.PK, OA.SK, OB.PK, OB.SK, k, sst, APK � pΛi.PKq

n
i�1, pΛi.SKq

n
i�1, τA, τB,PPKu gen-

erated as follows:
ppÐ Setuppλq; pA.PK,A.SKq Ð UKeyGenpppq; pB.PK,B.SKq Ð UKeyGenpppq;
pOA.PK,OA.SKq Ð OKeyGenpppq; pOB.PK,OB.SKq Ð OKeyGenpppq;
@i P J1, nK, pΛi.PK, Λi.SKq Ð AKeyGenpppq;
pk, sstA, sstB, kq Ð AKExApA.SKq,OApOA.SKq,
OBpOB.SKq,BpB.SKqyppp,A.PK,B.PK,APKq;
τA is the transcript of the execution yielding sstA from OA’s point of view;
τB is the transcript of the execution yielding sstB from OB’s point of view;
PPKÐ tOA.PK,OB.PK,A.PK,B.PKu Y tΛi.PKu

n
i�1;

it holds that @pU,P q P tA,Bu2 such that U � P and any instance πOU such that πOU .τ � τU , πOU .PID� P ,
πOU .AID � pΛiq

n
i�1, and πOU .sst � sst, then: PrrExtractpπOU ,PPKq � ks � 1

Notice that our extractor is unbounded, as it must be in order to preserve key security (otherwise the extractor
would allow the operator to find the session key).

Definition 11. For any lawful interception key-exchange scheme LIKE that admits a key extractor Extract the advan-
tage of an adversary A in the honest-operator game ExpHOLIKE,Apλq in Table 2 is defined as: AdvHOLIKE,Apλq �

P
�
pk�, πO,PPKq Ð ExpHOLIKE,Apλq;
k Ð ExtractpπO,PPKq

:
k �� K ^ k� �� K
^ k �� k�

�
.

A LIKE scheme is honest-operator secure if, for all adversaries running in time polynomial in λ, AdvHOLIKE,Apλq is
negligible as a function of λ.

5 Our protocol

Our LIKE schemerequires a signature scheme DS � pSGen,SSig,SVerq; a signature of knowledge scheme pSoK,
SoKverq allowing to prove knowledge of a discrete logarithm in group G2 � xg2y; and two NIZK proofs of knowledge
– one denoted NIPoK tx : y � gx1 u that allows to prove knowledge of the discrete logarithm of y � gx1 in a cyclic
group G1 � xg1y for private witness x; and another denoted NIPoK tx : y1 � gx1 ^ yT � gxT u that allows to prove
knowledge of the discrete logarithm of values y1 � gx1 and yT � gxT in same-size groups G1 � xg1y and GT � xgT y
for private witness x.

The proof and the signature of knowledge of a discrete logarithm can be instantiated by using Fiat-Shamir on
Schnorr’s protocol [39]. For the proof, we use the hash of the statement and the commitment as a challenge; for the
signature of knowledge, we add the message into the hash [16]. The proof of the discrete logarithm equality can be
instantiated by using Fiat-Shamir on the Chaum and Pedersen protocol [17].

Our scheme follows the syntax in Section 3. We divide its presentation into four components: (a) setup and key
generation, (b) authenticated key-exchange, (c) public verification, and (d) lawful interception.

Setup and key generation. This part instantiates the four following algorithms of the LIKE syntax presented in
Section 3.

– Setupp1λq: Based on λ, chooses G1 � xg1y, G2 � xg2y, and GT , three groups of prime order p of length λ,
e : G1 �G2 Ñ GT a type 3 bilinear mapping, and outputs pp � p1λ,G1,G2,GT , e, p, g1, g2q.

– UKeyGenpppq: Runs pU.PK,U.SKq Ð SGenpppq and returns pU.PK,U.SKq.
– OKeyGenpppq: Runs pO.PK,O.SKq Ð SGenpppq and returns pO.PK,O.SKq.

– AKeyGenpppq: Picks Λ.SK $
ÐÝ Z�

p , sets Λ.pk Ð gΛ.SK1 and Λ.ni Ð NIPoKtΛ.SK : Λ.pk � gΛ.SK1 u, lets
Λ.PKÐ pΛ.pk, Λ.niq, and returns pΛ.PK, Λ.SKq.

9

Alice: ApA.SKq Operator: OPpOP.SKq where P P tA,Bu Bob: BpB.SKq

precomputation: all parties parse APK as pΛi.pk, Λi.niqni�1; check all Λi.ni; ω Ð A}B}pΛiq
n
i�1; Λ.pk Ð

n±

i�1
Λi.pk

x
$
ÐÝ Z�p ;X1 Ð gx1 ;X2 Ð gx2 ; y

$
ÐÝ Z�p ;Y Ð gy2 ;

niX Ð SoKω tx : X2 � gx2 u; niY Ð SoKω ty : Y � gy2 u;

mX Ð pX1}X2}niXq;
mXÝÝÝÝÝÝÑ Verify niX ; mY Ð pY }niY q;

Check epX1, g2q � epg1, X2q;
mXÝÝÝÝÝÝÑ Verify niX ;

Check epX1, g2q � epg1, X2q;

Verify σ1
Y , niY ; Verify σ1

Y , niY ;
mY ,σ

1
YÐÝÝÝÝÝÝσ1

Y Ð SSigpB.SK, ω}mX}mY q;

M Ð ω}mX}mY }σ
1
Y

mY ,σ
1
YÐÝÝÝÝÝÝ Verify σX ;

σXÝÝÝÝÝÝÑ Verify σX ;

σX Ð SSigpA.SK,Mq;
σXÝÝÝÝÝÝÑ If P � OB send σ2

Y to OA

σ2YÐÝÝÝÝÝÝ M̂ Ð ω}mX}mY }σ
1
Y }σX

Verify σ2
Y ; σ2

Y Ð SSigpB.SK, M̂q;
mÐ pω}mX}mY }

σ1
Y }σX}σ2

Y q;
Return k Ð e pΛ.pk, Y qx; σpO,Pq Ð SSigpOP.SK,mq; Return k1 Ð e pΛ.pk, X2q

y ;
Return sstP Ð pm}σpO,Pqq;

Fig. 1: The AKE component of LIKE, with operators OA and OB under a single heading. Operators run protocol steps
in turn, forwarding messages to the next participant. If some verification fails, we assume operators instantly abort.
The only message not forwarded by OA to Alice is marked in the dashed box. Note that X1 is not used during this
protocol; we will see later that this element is required to generate the trapdoors.

The setup algorithm is run only once; key-generation is run once per party. The users and operators generate
signature keys required in the authenticated key-exchange step. Authorities generate private/public keys, then prove
(in zero-knowledge) that they know the private key. This prevents attacks in which authorities choose keys that cancel
out other authority keys, breaking key security.

Authenticated key exchange. Whenever two users communicate, they run the AKE component of our LIKE syntax,
AKExApA.SKq,OApOA.SKq,OBpOB.SKq,BpB.SKqy ppp,A.PK,B.PK,APKq. Our protocol is described in Fig. 1. For
readability we “merge” OA and OB since they act almost identically. Neither OA, nor OB computes session keys.

In Figure 1, Alice, Bob, and the operators first verify the public keys of the n authorities, aborting if their NIZK
proofs are incorrect. Notice that in the figure we omit to state that any failed verification leads to an abort. If a user has
already performed these verifications, future sessions with those authority keys can proceed directly.

The heart of the protocol is the exchange between Alice and Bob. Alice generates a secret x and sends X1 �
gx1 , X2 � gx2 , with an associated signature of knowledge linking this key share to ω. Bob proceeds similarly, sampling
y and sending Y � gy2 and a signature of knowledge. The endpoints also send a signature over the transcript, thus
authenticating each other and their conversation.

The two operators verify the messages they receive, aborting in case of failure, and otherwise forwarding the
messages. An exception is Bob’s last message, verified by both operators, but not forwarded to Alice. The operators
check the signatures and signatures of knowledge and the equality of the exponents in Alice’s DH elements.

Given Bob’s public value Y , all the authority public keys, and her private exponent x, Alice computes her session
key as a pairing of the product of all authority public keys and Y , all raised to her secret x: k � ep

±n
i�1 Λi.pk, Y q

x.
Due to bilinearity, this is equal to ep

±n
i�1 Λi.pk, g

y
2 q
x � ep

±n
i�1 Λi.pk, g

x
2 q
y � ep

±n
i�1 Λi.pk, X2q

y , which is Bob’s
key. Thus our scheme is correct for the endpoints. Note that all endpoint computations including secret values can
be done by a SIM card except the pairing. Since the pairing is on public values, it can be delegated to a less secure
environment (like the phone); then the exponentiation can be done on the SIM card. The operator’s output is the session
state sst, the signed session transcript from the their point of view.

Verification. We instantiate Verify as follows:

10

– Verifyppp, sst,A.PK,B.PK,O.PK,APKq Ñ b: Parse APK as a set pΛi.PKqni�1 and parse eachΛi.PK as pΛi.pk, Λi.niq,
set ω Ð A}B}pΛiq

n
i�1. Parse sst as ω1}mX}mY }σ

1
Y }σX}σ

2
Y }σO, mX as X1}X2}niX and mY as Y }niY . if:

 @i P J1, nK, NIPoKverpΛi.pk, Λi.niq � 1;
 epX1, g2q � epg1, X2q;
 SoKverpω, pg2, X2q, niXq � SoKverpω, pg2, Y q, niY q � 1;
 SVerpB.PK, σ1

Y , ω}mX}mY q � 1;
 SVerpA.PK, σX , ω}mX}mY }σ

1
Y q � 1;

 SVerpB.PK, σ2
Y , ω}mX}mY }σ

1
Y }σXq � 1;

 SVerpO.PK, σO, ω}mX}mY }σ
1
Y }σX}σ

2
Y q � 1;

then the algorithm returns 1, else it returns 0.
Intuitively, the signatures authenticate Alice, Bob, and the operator outputting sst. The Verify algorithm retraces

the operator’s verifications of the authorities’ proofs, of the signatures and SoKs , and of the equality of the discrete
logarithms for X1 and X2.

Lawful Interception. Lawful interception employs two algorithms, one for trapdoor generation, and another which
uses all the trapdoors to extract a key.

– TDGenppp, Λ.SK, sstq: Parse sst as pω}mX}mY }σ
1
Y }σX }σ2

Y }σOq. Compute Λ.t1 Ð epX1, Y q
Λ.SK, Λ.t2 Ð

NIPoK
!
Λ.SK : Λ.pk � gΛ.SK1 ^ Λ.t1 � epX1, Y q

Λ.SK
)

and Λ.tÐ pΛ.t1, Λ.t2q, and return Λ.t.

– Openppp, sst,APK, T q: Parse T as pΛi.tqni�1, parse sst as A}B}pΛiqni�1}mX}mY }σ
1
Y }σX}σ

2
Y }σO, mX as X1}

X2}niX and mY as Y }niY , APK as pΛi.PKqni�1, parse each Λi.PK as pΛi.pk, Λi.niq, each Λi.t as pΛi.t1, Λi.t2q
and verify the non-interactive proof of knowledge: NIPoKverppg1, Λi.pk, pX1, Y q, Λi.t1q, Λi.t2q; if any verifica-
tion fails, the Open algorithm returns K. Compute and return kÐ

±n
i�1pΛi.t1q.

Informally, each authority Λi generates a trapdoor Λi.t1 � epX1, Y q
Λi.SK as well as a proof Λi.t2 that ensures that

Λi.t1 has been generated correctly, using the same Λi.SK that is associated at key-generation with that authority (e.g.,
logg1pΛi.pkq � logepX1,Y qpΛi.t1q). The session key is recovered by multiplying all the trapdoors from Λ1.t1 to Λn.t1,

i.e.,
±n
i�1 Λ1.ti �

±n
i�1 epX1, Y q

Λi.SK �
±n
i�1 epg

x
1 , g

y
2 q
Λi.SK � epg1, g

xy
2 q

°n
i�1 Λi.SK � epg

°n
i�1 Λi.SK

1 , gx�y2 q �
ep
±n
i�1 Λi.pk, X2q

y . This is indeed Bob’s key, proving correctness with respect to LI.

Complexity. Due to the NIZK verification and computing the product of the n authority public keys, the AKE protocol
runs in linear time with respect to n. If, however, authorities do not change between protocol runs (as is likely in
practice), the runtime will be constant with respect to n.

6 Security

We present our main theorem in this section, provide proof sketches in Appendix B, and give full proofs in the
appendix C. In the following, let sid :� X2}Y , and define IdentifySessionpsst, πjPq for some party P and integer j as
follows. Parsing sst as:

A}B}pΛiq
n
i�1}X1}X2}niX}Y }niY }σ

1
Y }σX}σ

2
Y }σO,

the algorithm IdentifySessionpsst, πjPq returns 1 iff:
– X2}Y � πiP.sid,
– if πjP plays the role of Alice then P � A and πjP.PID � B, else πjP.PID � A and P � B, and
– πjP.AID � pΛiq

n
i�1.

Theorem 1. Suppose LIKE is instantiated with an EUF-CMA signature scheme DS, extractable and zero-knowledge
proofs/signature of knowledge, and let pp be chosen such that the BDDH assumption holds. Then:

– Our protocol is key-secure and, for all PPT adversaries A making at most qr queries to Register, qns queries to
NewSession, qs queries to Send and qt queries to RevealTD:

AdvKSLIKE,Apλq ¤
q2s
p
� qns � q

2
r �

�
AdvEUF-CMA

DS pλq � qns � qr��
p2 � qt � qsq � εSoKpλq � qr � εNIPoKpλq � AdvBDDHpλq

		
.

11

– Our protocol is non-frameable, and for all PPT adversaries A making at most qr queries to Register, we have:
AdvNFLIKE,Apλq ¤ qr � Adv

EUF-CMA
DS pλq.

– Our protocol is honest-operator, and for all PPT adversaries A making at most qr queries to Register, we have
AdvHOLIKE,Apλq ¤ qr � εNIPoKpλq � AdvEUF-CMA

DS pλq.

An important ingredient in our protocol are the proofs and signatures of know-ledge. We start with the latter.
Without Alice’s and Bob’s signatures of knowledge, given honestly-generated X1, X2, Y from the challenge session,
A could choose random values r, s, run the protocol using X 1

1 Ð Xr
1 , X 1

2 Ð Xr
2 and Y 1 Ð Y s for two corrupted

users and the same authorities, obtain sst, and run RevealTD on sst for each authority. Using Open, the adversary
obtains: k1 �

±n
i�1pX

1
1, Y

1
2q
Λi.SK �

�±n
i�1pX1, Y2q

Λi.SK
�r�s

, and can compute the targeted key as k � pk1q1{r�s.
This attack does not work if A must prove knowledge of the discrete logarithm of X 1

2 and Y 1. Moreover, A cannot
reuse X2 and Y together with the signature of the honest user, since that signature uses the identity of the users as a
message.

Each authority must prove knowledge of its secret key. Without this proof, an authority Λj could pick random r

and compute: Λj .pk � gr1{
�±n

i�1;i ��j Λi.pk
	
. In this case, Alice’s session key becomes: k � e

�
n±
i�1

Λi.pk, Y

x
�

epgr1, g
y
2 q
x � epX1, Y q

r, and the authority computes it as epX1, Y q
r. This attack is not possible if the authority must

prove the knowledge of its secret key.
Finally, each authority must prove that the trapdoor is well-formed. This is essential for the HO property: otherwise,

the authority can output a fake trapdoor, distorting the output of the algorithm Open.

7 Proof-of-concept implementation

We provide a proof-of-concept C-implementation of LIKE, which runs the entire primitive from setup to key-recovery,
but omitting network exchanges. The implementation features: two authorities, Alice, Bob, and a single operator
(since both operators would have to perform the same computations). The choice of two authorities was arbitrary:
one for the justice system, and another for law-enforcement. More authorities would translate into a slightly higher
runtime for the endpoints (one exponentiation per added authority), and a higher runtime for LI, depending on which
authorities may view the session key (see Section 8). However, even the worst added complexity would only involve
an increased number of multiplications and potentially, the establishment of a secure multiparty channel. We measure
the time-complexity of various operations during key-exchange and recovery, and provide averaged results in Table 2.

Setup. All tests are done on a Debian GNU/Linux 10 (buster) machine with an AMD Ryzen 5 1600 Six-Core Processor
and 8GB RAM. We use the Ate pairing [43] over the the BN462 Barreto-Naehrig curve [29] with 128-bit security,
thus following the recommendations of [8] for pairing curve parameters. We use the base points described in [29] as
the generators of groups G1 and G2.

For the signature scheme, we use ed25519 [13], SHA-256 as our hash function, and we implement the signa-
tures/proofs of knowledge as explained in Section 5. We use mcl [1] for our elliptic-curve and pairing computations.
For the ed25519 signature scheme and SHA-256 we used openssl.

Results.: Table 2 shows our results, averaged over 5000 protocol runs. The protocol steps involving the authorities
(trapdoor generation/opening) have linear complexity in the number of authorities n (n � 2 in our case) because
all trapdoors are necessary to open, and opening is linear in n. In the table, A, B, and O denote the total runtimes
of Alice, Bob, and the operator respectively, during AKE (omitting the pre-computation). Verification, TDGen, and
Open represent the runtime for those algorithms – which could be improved through parallelization for the last two
algorithms. The runtime given for TDGen is a cumulation for the two authorities we consider; thus, each authority has
a runtime of about half that value. For reference we also include the runtime of a single pairing, since it is our most
expensive computation.

Our results above are promising, but insufficient for protocol deployment. An immediate next step would be to
implement it on a mobile phone. Stronger security might even require long-term secrets for Alice and Bob to be
stored in a secure element, like the SIM card, possibly delegating some computations to the mobile phone as described
in Section 5. Moreover our protocol (and LIKE at large) would require further testing and standardization prior to
deployment.

12

Operations A B O Verification TDGen Open Pairing
CPU time (ms) 9.1 15.2 10.9 12.9 12.7 10.4 3.3

Fig. 2: Average CPU time (in milliseconds) for 5000 trials.

8 Using our protocol

In this section we explore how our generic setup can be tailored to a number of different Lawful Interception require-
ments and scenarios. This highly depends on the roles of the entities involved: the operator, the authorities, and the
entity that establishes a warrant, which we call a judge for simplicity. This is a gross simplification of the legal process,
however, at the level of abstraction that we consider the matter, we only need that the entity’s key be associated with
that specific protocol instance.

The role of the authorities Lawful interception may involve multiple authorities: court of law, law-enforcement agen-
cies, and/or other administrative agencies (including city halls, government, etc.). For this scenario, we assume the
operator is not an authority. We call an authority privileged if it is allowed to view the output of the opening algo-
rithm. We explicitly assume that authorities behave honestly in the dissemination of their trapdoors, specifically: (i)
no authorities disseminates its trapdoor to a non-authority; (ii) no privileged authority disseminates its trapdoor to a
non-privileged authority.

Fig. 3: An overview of the opening procedure for the case of n privileged authorities (left) and that of ` out of n
privileged authorities (right). The circle and lock denote a secure channel shared by the parties within the circle.

Since privileged authorities are the only entities that must see sensitive data, such as the reconstructed key and
the communication contents it unlocks, they are more computationally involved in key recovery. Take the case of n
out of n privileged entities. To protect user privacy, they must first exchange their trapdoors over a secure channel
(otherwise, an adversary may gain the trapdoors and open the key itself). Then, each authority must perform the
opening procedure, involving the verification of the soundness of the trapdoors and possibly the session state.

Unprivileged authorities have a much lighter computational burden, while also being essential to the LI process.
As long as there is at least one privileged authority, the only thing unprivileged authorities must do is broadcast their
trapdoors. In the case of 1 out of n privileged authorities, the privileged party receives all the trapdoors, then computes
its own, and finally opens the key within a secure environment. For ` out of n privileged parties with 1 ` n, the
privileged authorities receive the trapdoors of unprivileged parties, then exchange their own privileged trapdoors over
a secure channel. Finally, each privileged party runs the opening algorithm. This is also visible in Figure 3.

13

The role of the operator In some cases, the operator could also play the role of an authority. Apart from participating in
the authenticated key-exchange, it will need to generate a trapdoor and potentially take part in the opening process. A
naı̈ve solution would be to have the operator use its operator credentials when it plays its part as an authority; however,
they may have a different format, and we opt for having the operator using two distinct sets of credentials for its roles,
as depicted in Figure 4. For the operator, the following steps are modified:

– Key generation: The operator runs AKeyGen in addition to OKeyGen to get its credentials.
– AKE: The operator uses its operator credentials only in the course of the AKE protocol sessions between any two

users.
– Trapdoor generation: Unlike in our original case, the operator will now also need to generate trapdoors for lawful

interception, using only its authority credentials.
– Opening: Depending on whether the operator should have access or not to the output of the opening algorithm,

the operator must also take part in the opening of the session key.
As the two credentials are independent, the operator’s participation in the opening procedure reveals no information
about its operator credentials, and vice-versa.

Fig. 4: When the operator is also an authority, it generates two pairs of independent credentials, using its operator
credentials for AKE (left-hand side) and its authority credentials for the opening of sessions (right-hand side).

The role of the judge We can consider three types of involvement from the judge: no judge (no warrants are needed),
implicit judge (provides warrant to each authority, but takes no part in the opening), and explicit judge (provides
warrants and takes part in the opening). We consider a case in which the operator is not an authority, and there is a
single privileged authority (i.e., only one authority can learn the output of the opening algorithm). If the privileged
participant is the judge, we find ourselves in the third case (explicit judge).

– No judge: The judge has no bearing on the setup of the protocol and may not be one of the authorities.
– Explicit judge: At the other extreme is the case of the explicit judge. Without loss of generality, we assume that

the judge is Λ1. The protocol is run as in the case of 1 privileged authority.
– Implicit judge: An intermediate case, in where judge must generate warrants authorizing LI, but it is not nec-

essarily an authority. This case can be treated in two ways. The simplest solution is to consider the judge an
unprivileged authority and run the protocol as indicated earlier. Then, LI cannot take place if the judge does not
authorize it, but the judge does not learn the output of the opening protocol. A more complicated scenario is that

14

in which the judge specifically does not take part in the protocol. In that case, our protocol must be composed with
a different component, which provides guarantees with respect to the exact legal dependencies between the judge,
its warrant, and the authorities. We consider this latter approach as possible future work.

9 Conclusion

In this paper we bridge the gap between privacy and fine-grained lawful interception by introducing LIKE, a new
primitive ensuring channel-establishment that is secure except with respect to: Alice, Bob, or a collusion of n legitimate
authorities. In addition, users cannot be framed of wrong-doing, even by a collusion of all the authorities and operators.
Finally, both the operator and the authorities are guaranteed that the LI procedure will reveal the key that Alice and
Bob should have computed in any given session.

We instantiate LIKE by using efficient NIZK proofs and signatures of knowledge, and signatures. As our proof-of-
concept implementation also demonstrates, the protocol is fast, and even problematic computations could be delegated
on a mobile phone.

So far, our protocol only works for domestic communications, with both operators subject to an identical authority
set. An extension to multiple authority sets is not obvious and we thus leave this as an open question.

References

1. MCL. https://github.com/herumi/mcl (2020)
2. 3GPP: TS 33.106 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; 3G security;

Lawful interception requirements (Release 15) (6 2018)
3. 3GPP: TS 33.126 3GPP; Technical Specification Group Services and System Aspects; Security; Lawful Interception require-

ments (Rel. 16) (09 2019)
4. 3GPP: TS 33.127 3GPP; Technical Specification Group Services and System Aspects; Security; Lawful Interception (LI)

architecture and functions (Rel. 16) (03 2020)
5. 3GPP: TS 33.128 3GPP; Technical Specification Group Services and System Aspects; Security; Protocol and procedures for

Lawful Interception (LI); Stage 3 (Rel. 16) (03 2020)
6. Abelson, H., Anderson, R., Bellovin, S.M., Benaloh, J., Blaze, M., Diffie, W.W., Gilmore, J., Green, M., Landau, S., Neumann,

P.G., Rivest, R.L., Schiller, J.I., Schneier, B., Specter, M.A., Weitzner, D.J.: Keys under doormats. Communications of the
ACM 58(10), 24–26 (2015)

7. Azfar, A.: Implementation and Performance of Threshold Cryptography for Multiple Escrow Agents in VoIP. In: Proceedings
of SPIT/IPC. pp. 143–150 (2011)

8. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Journal of cryptology 32, 1298–1336 (2019)
9. Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: CRYPTO ’92. LNCS, vol. 740. Springer (1992)

10. Bellare, M., Goldwasser, S.: Verifiable Partial Key Escrow. In: CCS ’97. ACM (1997)
11. Bellare, M., Rivest, R.L.: Translucent Cryptography - An Alternative to Key Escrow, and Its Implementation via Fractional

Oblivious Transfer. J. Cryptology 12(2) (1999)
12. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: CRYPTO ’93. LNCS, vol. 773. Springer (1993)
13. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures. In: Proceedings of CHES

2011. pp. 124–142 (2011)
14. Boyen, X.: The uber-assumption family. In: Pairing 2008. Springer (2008)
15. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups (extended abstract). In: CRYPTO ’97. LNCS,

vol. 1294. Springer (1997)
16. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: CRYPTO. LNCS, vol. 4117. Springer (2006)
17. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: CRYPTO ’92. LNCS, vol. 740, pp. 89–105. Springer (1992)
18. Chen, L., Gollmann, D., Mitchell, C.J.: Key escrow in mutually mistrusting domains. In: Proceedings of Security Protocols.

pp. 139–153 (1996)
19. Chen, M.: Escrowable identity-based authenticated key agreement in the standard model. In: Chinese Electronics Journal.

vol. 43, pp. 1954–1962 (10 2015)
20. Comey, J., (FBI): https://www.fbi.gov/news/speeches/going-dark-are-technology-privacy-and-public-safety-on-a-collision-

course (2014)
21. Denning, D.E., Branstad, D.K.: A taxonomy for key escrow encryption systems. Commun. ACM 39(3) (1996)

15

22. Desmedt, Y.: Abuses in Cryptography and How to Fight Them. In: CRYPTO ’88. LNCS, vol. 403. Springer (1988)
23. EU: Draft council resolution on encryption - security through encryption and security despite encryption. https://files.orf.at/

vietnam2/files/fm4/202045/783284 fh st12143-re01en20 783284.pdf (2020)
24. Europol: . https://www.europol.europa.eu/newsroom/news/europol-and-european-commission-

inaugurate-new-decryption-platform-to-tackle-challenge-of-encrypted-material-for-law-enforcement
25. FairTrials: . https://www.fairtrials.org/news/short-update-police-germany-defend-use-contact-tracing-criminal-investigations

(2020)
26. Fan, Q., Zhang, M., Zhang, Y.: Key Escrow Scheme with the Cooperation Mechanism of Multiple Escrow Agents (2012)
27. Franceschi-Bicchierai, L.: The 10 biggest revelations from edward snowden’s leaks. https://mashable.com/2014/06/05/

edward-snowden-revelations/?europe=true (2014)
28. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J.

Comput. 17(2), 281–308 (1988). https://doi.org/10.1137/0217017, https://doi.org/10.1137/0217017
29. IETF: Pairing-friendly curves. https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/ (2020)
30. Kahney, L.: The fbi wanted a back door to the iphone. tim cook said no. https://www.wired.com/story/

the-time-tim-cook-stood-his-ground-against-fbi/ (2019)
31. Kilian, J., Leighton, F.T.: Fair Cryptosystems, Revisited: A Rigorous Approach to Key-Escrow (Extended Abstract). In:

CRYPTO ’95. LNCS, vol. 963. Springer (1995)
32. Long, Y., Cao, Z., Chen, K.: A dynamic threshold commercial key escrow scheme based on conic. Appl. Math. Comput. 171(2),

972–982 (2005)
33. Long, Y., Chen, K., Liu, S.: Adaptive Chosen Ciphertext Secure Threshold Key Escrow Scheme from Pairing. Informatica,

Lith. Acad. Sci. 17(4), 519–534 (2006)
34. Martin, K.M.: Increasing Efficiency of International Key Escrow in Mutually Mistrusting Domains. In: Cryptography and

Coding. LNCS, vol. 1355, pp. 221–232. Springer (1997)
35. Micali, S.: Fair Public-Key Cryptosystems. In: CRYPTO ’92. LNCS, vol. 740. Springer (1992)
36. Mironov, I., Stephens-Davidowitz, N.: Cryptographic Reverse Firewalls. In: EUROCRYPT. vol. 9057, pp. 657–686. Springer

(2015)
37. Museum, C.: Clipper chip, available at https://www.cryptomuseum.com/crypto/usa/clipper.htm
38. Ni, L., Chen, G., Li, J.: Escrowable identity-based authenticated key agreement protocol with strong security. Comput. Math.

Appl. 65(9), 1339–1349 (2013)
39. Schnorr, C.: Efficient identification and signatures for smart cards. In: CRYPTO ’89. LNCS, vol. 435, pp. 239–252. Springer

(1989)
40. Shamir, A.: Partial key escrow: A new approach to software key escrow, presented at Key Escrow Conference, 1995
41. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: CRYPTO. pp. 47–53 (1984)
42. UN: . https://www.un.org/en/universal-declaration-human-rights/ (1948)
43. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory 56(1), 455–461 (2010)
44. Wang, Z., Ma, Z., Luo, S., Gao, H.: Key escrow protocol based on a tripartite authenticated key agreement and threshold

cryptography. IEEE Access 7, 149080–149096 (2019)
45. Wright, C.V., Varia, M.: Crypto crumple zones: Enabling limited access without mass surveillance. In: Proceedings of EuroS&P

2018. IEEE (2018)
46. Young, A.L., Yung, M.: Kleptography from Standard Assumptions and Applications. In: Proceedings of SCN. pp. 271–290

(2010)

A Model complements

Definition 12 (Correctness). Let λ a security parameter and n an integer. Run pp Ð Setupp1λq, pA.PK, A.SKq
ÐUKeyGenpppq, pB.PK,B.SKqÐUKeyGenpppq, pOA.PK,OA.SKqÐOKeyGenpppq, pOB.PK,OB.SKqÐOKeyGenpppq.
For all i P J1, nK,
pΛi.PK, Λi.SKq Ð AKeyGenpppq. Let APKÐ pΛi.PKq

n
i�1. Then:

- PKAÑB Ð ppp,A.PK,B.PK,APKq;
- pkA, sstA, sstB, kBq Ð
AKExApA.SKq, OApOA.SKq,OBpOB.SKq,BpB.SKqypPKAÑBq;

- bA Ð Verifyppp, sstA,A.PK,B.PK,OA.PK,APKq;
- For all i in J1, nK, Λi.tA Ð TDGenppp, Λi.SK, sstAq;
- k�A Ð Openppp, sstA, pΛi.PKq

n
i�1, pΛi.tAq

n
i�1q;

- bB Ð Verifyppp, sstB,A.PK,B.PK,OB.PK,APKq;

16

Symbol Meaning
pp Global public parameters
Λi The i-th authority
γ Corruption bit, indicates if a party is corrupted
α Accept bit, indicates if a party instance has terminated in an accepting state or not
ρ Reveal bit, indicates if a party’s session key was revealed
k Session key, computed by endpoints or by collusion of authorities
sst Session state, computed by operators
PID Users partnered to a given instance
AID Authorities implicitly partnered to a given instance (may open key)
OID Operators partnered to a given instance

Fig. 5: Useful notations from our model and their significance

- For all i in J1, nK, Λi.tB Ð TDGenppp, Λi.SK, sstBq;
- k�B Ð Openppp, sstB,APK, pΛi.tBq

n
i�1q.

For any pbA, bB, kA, k�A, kB, k
�
Bq generated as above: PrrbA � bB � 1^ kA � k�A � kB � k�Bs � 1.

B Proof sketches

Our main theorem includes three statements; we prove these in order below.

First statement: KS. We begin by proving that the adversary has a negligible probability of winning the key-security
experiment by querying the oracle Test on an instance that matches no other instance. Notably, if the tested instance
does not abort the protocol, the adversary will have to break the EUF-CMA of the signature scheme to generate the
expected signatures without using a matching session.

Thus, the targeted instance must have a matching one. By key-freshness, A must test a key generated by two
honest users, such that the trapdoor of at least one honest authority has never been queried to the oracle RevealTD. We
prove (by a reduction) that A can only win by breaking the BDDH assumption. Let pW�, X�, Y�,W

1
�, X

1
�, Y

1
�, Z�q

be a BDDH instance. We set W� as the part of the public key Λ.pk of the honest authority, and we set X2 as X 1
�,

X1 as X� and Y as Y 1
� for the session that matches the tested instance. Then, we build the key as follows, where Λ

is the honest authority: k Ð Z�
±n
i�1;Λi ��Λ

epX�, Y
1
�q
Λi.SK. To compute the secret keys of the authorities controlled

by the adversary, we run the extractor on the proofs of knowledge of the discrete logarithm of the public keys Λi.PK.
If Z� is a random value, k will be random for the adversary, else Z� � epX�, Y

1
�q
Λ.SK. Moreover, we simulate the

oracle RevealTD on sessions with values X and Y chosen by the adversary by using the extractor on the signatures of
knowledge of their discrete logarithms.

Second statement: NF. To win the non-frameability experiment, the adversary has to build a valid session state sst for
a given user, containing a valid signature of this user. We prove this theorem by reduction: assuming that an adversary
is able to break the non-frameability, since this adversary generates a valid signature for a user, we can use it to break
the EUF-CMA security.

Third statement: HO. The first step of the HO proof is to design a key extractor, which takes in input a session state
sst, brute-forces the discrete logarithm of Bob’s Y , then computes the key as Bob would: k � e p

±n
i�1 Λi.pk, X2q

y
.

Our goal is to prove that this is the key the authorities would retrieve.
We first show (by reduction) that the adversary can only build by itself a valid sst (that may match a fake authority

set) with negligible probability. Namely, if an adversary can output valid signatures for an honest operator, then we
can use it to break the EUF-CMA of the signature scheme.

Moreover, for any authority Λ and any values X1 and Y , the proof of knowledge of a trapdoor ensures that
gΛ.SK1 � Λ.pk and Λ.t1 � epX1, Y q

Λ.SK, which implies that Λ.t1 � epΛ.pk, X2q
y and: k� �

±n
i�1 Λi.t1 �

e p
±n
i�1 Λi.pk, X2q

y
. Thus, to win the HO experiment (and return a key such that k �� k�), the adversary must

produce a proof on a false statement, which happens with negligible probability.

17

C Appendix

Proof. (Th.1: Key-security). We show that AdvKSLIKE,Apλq is negligible for any PPT adversary A, and thus our LIKE
scheme is key-secure, using the following sequence of games:
Game G0: This game is the same as ExpKSLIKE,Apλq.
Game G1: This game is similar to G0, but aborts if the Send oracle returns twice the same element as X2 or Y . An
abort only happens if two out of the qs queried instances choose the same randomness from G2 (which is of size p),
yielding:

|P rA wins G0s � P rA wins G1s | ¤ q2s {p.

Let πi�P� denote a tested instance. Excluding collisions forX2 and Y implies that πi�P� now has at most one matching

instance. Indeed, suppose two or more instances matching π
i�
P�

exist. We parse πi�P� .sid as Z0}Z1 where Zi (for

i P t0, 1u) was generated by πi�P� .

By Def. 6, all instances matching πi�P� must sample the same Z1�i P G2 – impossible after G1.
Game G2: Let Pi be the i-th party instantiated by Register. Game G2 proceeds as G1 except that it begins by choosing

pu, v, wq
$
ÐÝ J1, qnsK� J1, qrK2. If A returns pi�,P�, d�q such that, given P1� Ð π

i�
P�
.PID, we have i� � u or P� � Pv

or P1� � Pw , then G2 aborts, returning a random bit. The adversary increases its winning advantage by a factor
equalling the probability of guessing correctly:

|P rA wins G1s � 1{2| ¤ qns � q
2
r |P rA wins G2s � 1{2|.

Game G3: Let pi�,P�, d�q be the adversary’s test session that G2 guessed. Let P1� Ð π
i�
P�
.PID. Game G3 works as

G2, except that, if there exists no πkP1� matching πi�P� , the experiment aborts and returns a random bit. For any adversary
A:

|P rA wins G2s � P rA wins G3s | ¤ AdvEUF-CMA
DS pλq.

Assume to the contrary that there exists an adversary A that wins G2 with probability εApλq by returning a guess
pi�,P�, d�q such that, setting P1� Ð π

i�
P�
.PID, no k P N exists such that πi�P� and πkP1� match. Game G2 demands

P1� Ð Pw (guessed by G2); key-freshness (Def. 7) requires Pw to be uncorrupted and ending in an accepting state. We
use A to build a PPT adversary B that breaks the EUF-CMA security of DS with non-negligible probability. B receives
the verification key P̂K, initializes LS ÐH, and faithfully simulates G2 to A, except for A’s following queries:
Oracle RegisterpP, role,PKq: If P � Pw with P.PK � K, then B sets P.PKÐ P̂K.

Oracle Send(πiP, m): There are two particular cases: P � Pw and P � P�. If P � Pw, then B queries its Sigp�q
oracle to answer A’s queries. Depending on the role of Pw and the protocol step, B runs one of: σ1

Y Ð Sigpω}mX}
mY q, σX Ð Sigpω}mX}mY }σ

1
Y q, or σ2

Y Ð Sigpω}mX}mY }σ
1
Y }σXq. Here, if Pw is the initiator, ω � Pw}Pw.PID}

pΛlq
n
l�1; else ω � Pw.PID}Pw}pΛlq

n
l�1. Moreover, mX � X1}X2}niX and mY � Y }niY . The message/signature

pairs are stored in LS . Since sid � X2}Y , the elements X2 and Y , the identities Pw and πiPw .PID, and the set of
authorities πiPw .AID � pΛlq

n
l�1 are parts of the message signed in σX , σ1

Y and σ2
Y .

If P � P�, i � i�, and πiP.PID � Pw, if SVerpPw.PK, σ
2
Y ,MY q � 1 for MY Ð ω}mX}mY }σ

1
Y }σX , and

pMY , σ
2
Y q R LS , B aborts the game and returns pMY , σ

2
Y q. Otherwise, if SVerpPw.PK, σX ,MXq � 1 for MX Ð ω}

mX}mY }σ
1
Y and pMX , σXq R LS , B aborts the game and returns pMX , σXq.

Oracle Corrupt(P): If P � Pw, B aborts (due to G2).
B wins if it sends its challenger a message/signature pair pM,σq R LS such that SVerpP̂K, σ,Mq � 1 with P̂K �
Pw.PK. We first argue that A must query Send on input P � P�, i � i�, and πiP.PID � Pw, on message MY � ω}
mX}mY }σ

1
Y }σX such that SVerpPw.PK, σ2

Y ,MY q � 1, or on message MX Ð ω}mX}mY }σ
1
Y such that

SVerpPw.PK, σX ,MXq � 1. Indeed, if A does not, the (honest) target instance πi�P� rejects.
Now we can assume that A has queried Send either with σX or with σY as above. We have two cases: the submitted

message/signature pair is in LS , or it is not. If the latter happens, clearly B wins. Assume that the former happens, i.e.,

18

the signature σ2
Y or σX are in LS (generated by B’s oracle). We recall that by assumption A’s challenge instance has

no matching instance, i.e., there exists no πjPw such that πjPw .sid � K or πjPw .sid � π
i�
P�
.sid, and πjPw .AID � π

i�
P�
.AID.

However, if πjPw .sid � π
i�
P�
.sid, or πjPw .AID � π

i�
P�
.AID, then the signature is generated for the fresh message and A

would win.
Thus, AdvEUF-CMA

DS,B pλq � εApλq, concluding the proof.
After G2, G3, either a unique instance πrPw exists, matching πi�P� or the experiment returns a random bit.

Game G4: Game G4 runs as G3 except that it begins by picking r $
ÐÝ J1, qnsK (a guess for the matching instance). If A

returns pi�,P�, d�q such that πi�P� and πrPw do not match, then the experiment returns a random bit. The advantage of
A on G4 increases w.r.t. that in G3 by a factor equalling the correct guessing probability :

|P rA wins G3s � 1{2| ¤ qns|P rA wins G4s � 1{2|.

Game G5: Game G5 proceeds as G4, except that it begins by picking l $
ÐÝ J1, qrK. If the l-th party queried to the oracle

Register is not authority, or, if it is an authority (we will denote it Λl), and is either corrupted, or RevealTD is called on
the query psst,A,B, pΛ1

iq
n1

i�1, l
1q such that Λl � Λ1

l1 and IdentifySessionpsst, πuPv .sidq � 1, then the experiment aborts
by returning a random bit. By key-freshness (Def. 7), if no index l exists such that Λl is uncorrupted (Λl.γ � 0) and
RevealTD has never been called on the query psst,A,B, pΛ1

iq
n1

i�1, l
1q such that Λl � Λ1

l1 and
IdentifySessionpsst, πjP.sidq � 1, then the experiment returns a random bit. Thus, the advantage of A in G5 is superior
to that in G4 by a factor equalling the guessing probability:

|P rA wins G4s � 1{2| ¤ qns|P rA wins G5s � 1{2|.

Game G6: Let Ext denote the knowledge extractor of the signature of knowledge. This game is the same as G5 except
that it begins by initializing Lr s Ð H and:

– each time the Send oracle generates an element d $
ÐÝ Z�

p and D Ð gd2 together with a signature of knowledge
niD Ð SoKω

d : D � gd2

(
, LrpD,ω, σDqs Ð d;

– each time the oracles Send or RevealTD verify a valid signature of knowledge SoKverpω, pg2, Dq, niDq � 1 in
a query sending by A with LrpD,ω, σDqs � K, it runs the key extractor Extpλq on A in order to extract the
witness d that matches the proof niD. If gd2 � D then the experiment aborts by returning a random bit, else it sets
LrpD,ω, σDqs Ð d.

The difference between G5 and G6 is the possibility of the extractor failing when it is called. Since RevealTD requires
2 calls (for the verification of sst) and Send, one at each query:

|P rA wins G5s � P rA wins G6s | ¤ p2 � qt � qsq � εSoKpλq.

Game G7: Let Ext denote the extractor of the NIZK proof of knowledge NIPoK

d : D � gd1

(
. Game G7 runs as G6,

except it begins by initializing an empty list L1r s Ð H and:
– Honest authority: if Register generates pΛ.PK, Λ.SKq for an authority Λ, it sets L1rΛ.PKs Ð Λ.SK;
– Malicious authority: if Register receives a query pΛ, role,PKq with role � authority and PK � K, it sets
PKÐ Λ.PK and parses PK as pΛ.pk, Λ.niq.
If NIPoKverppg1, Λ.pkq, Λ.niq � 1, G7 runs the extractor Extpλq on A to get the witness Λ.SK for Λ.ni. If
gΛ.SK1 � Λ.pk then the experiment aborts by returning a random bit, else it sets L1rΛ.PKs Ð Λ.SK.

Once more, the difference between the games is the possibility that Ext fails in at least one of the calls to the registration
oracle, yielding:

|P rA wins G6s � P rA wins G7s | ¤ qr � εNIPoKpλq.

Finally, we claim that:
|P rA wins G7s � 1{2| ¤ AdvBDDH

A pλq.

We prove this claim by reduction. Assume that A wins G7 with non-negligible probability εApλq. We show how
to build an algorithm B that breaks the BDDH problem with probability εApλq.

19

In what follows, SimNIPoK denotes the simulator of the proofs of knowledge and SimSoK is the simulator of the
signature of knowledge. For readability, if the context is clear, we use the same notation for the simulators of the two
proof of knowledge systems we use to instantiate our scheme.

B plays the BDDH with pG1 � xg1y,G2 � xg2y,GT , e, pq and receives pŴ , X̂, Ŷ , Ŵ 1, X̂ 1, Ŷ 1, Ẑq from its
challenger. Then B sets pp Ð p1λ,G1,G2,GT , e, p, g1, g2q, it runs Apppq and simulates G7 to A as in the real game
except for following cases.
Oracle RegisterpP, role,PKq Ñ P.PK: On the l-th query, if role � authority or PK � K, B aborts and returns
a random bit (this is a faithful simulation since G5), else it sets Λl Ð P ; Λl.pk Ð Ŵ ; Λl.ni Ð SimNIPoKpg1, Ŵ q;
Λl.PKÐ pΛl.pk, Λl.niq and returns Λl.PK.
Oracle Send(πiP, m): If P � P� and i � i� (challenge instance, guessed in G3), or if P � Pw and i � r (unique
matching instance, guessed in G4), then we distinguish two cases:

– P plays the role of Alice: then B proceeds as in G7 except for generating pX1, X2, niXq by setting X2 Ð X̂ 1,
X1 Ð X̂ and by running niX Ð SimSoKpω, pg2, X̂

1qq, where ω � pPv}Pw}π
i
Pv
.AIDq.

– P plays the role of Bob: then B proceeds as in G7 except for generating pY, niY q by setting Y Ð Ŷ 1 and by
running niY Ð SimSoKpω, pg2, Ŷ

1qq, where ω � pPw}Pv}π
i
Pw
.AIDq.

At the end of the protocol, the oracle does not compute k and sets πiP.kÐ K.
Oracle TestpπiPq: If P � P� and i � i�, parsing πiP.AID as pΛ1

jq
n
j�1, B sets AuthSetÐ

Λ1
j

(n
j�1

ztΛlu, it computes:

rk Ð �±
ΛPAuthSet epX̂, Ŷ

1qL
1rΛ.PKs

	
� Ẑ, and returns it. Note that if B’s challenge bit is 0, then Ẑ � epX̂, Ŷ 1qΛl.SK

for Λl.SK such that gΛl.SK1 � Λl.pk, so rk is the real key expected for πi�P� . If, however, the challenge bit of B is 1, then

Ẑ is a random value.
Oracle RevealTDpsst,A,B,O, pΛ1

iq
n
i�1, l

1q:
– if IdentifySessionpsst, πi�P�q � 1 and Λ1

l1 � Λl (challenge instance, honest authority), then B aborts returning a
random bit, as for key freshness;

– if IdentifySessionpsst, πi�P�q � 1 and Λ1
l1 � Λl (challenge instance, other authority), then B knows the secret key of

Λ1
l1 . It acts as in G7 except that it computesΛ1

l1 .t1 Ð epX̂, Ŷ 1qL
1rΛ1

l1
.PKs,Λ1

l1 .t2 Ð SimNIPoKpg1, Λ
1
l1 .pk, gT , Λ

1
l1 .t1q

and Λ1
l1 .tÐ pΛ1

l1 .t1, Λ
1
l1 .t2q;

– if IdentifySessionpsst, πi�P�q � 1 and Λ1
l1 � Λl (non-challenge session, honest authority), then B parses sst as pω1}

mX}mY }σ
1
Y }σX}σ

2
Y }σOq, mX as X1}X2}niX and mY as Y }niY , and sets ω Ð A}B}pΛ1

iq
n
i�1. Note that here,

IdentifySessionpsst, πuPv q � 1 implies that X2}Y � X̂ 1}Ŷ 1, or A}B � P�}Pw (or A}B � Pw}P� depending on
who plays the role of Alice and Bob), or pΛ1

iq
n
i�1 � π

i�
P�
.AID. It acts as in G7 except that:

 if A}B}pΛ1
iq
n
i�1 � P�}Pw}π

i�
P�
.AID (or Pw}P�}π

r
Pw
.AID, if P� plays the role of Bob), then B computes

Λl.t1 Ð epΛl.pk, Xq
LrpY,ω,σY qs; Λ.t2 Ð SimNIPoKpg1, Λl.pk,

gT , Λl.t1q and Λl.t Ð pΛl.t1, Λl.t2q. Here, LrpY, ω, σY qs is always defined since ω � P�}Pw}π
i�
P�
.AID (or

Pw}P�}π
r
Pw
.AID if P� plays the role of Bob).

 if A}B}pΛ1
iq
n
i�1 � P�}Pw}π

i�
P�
.AID (or Pw}P�}πrPw .AID, if P� plays the role of Bob) and X2 � X̂ 1, then

Y � Ŷ 1, and B computes Λl.t1 Ð epΛl.pk, X̂
1qLrpY,ω,σY qs; Λ.t2 Ð SimNIPoKpg1, Λl.pk, gT , Λl.t1q and

Λl.tÐ pΛl.t1, Λl.t2q. In this case, LrpY, ω, σY qs is always defined because Y � Ŷ 1.
 else if A}B}pΛ1

iq
n
i�1 � P�}Pw}π

i�
P�
.AID (or Pw}P�}πrPw .AID, if P� plays the role of Bob) and Y � Ŷ 1,

X2 � X̂ 1. B sets Λ1
l1 .t1 Ð epΛl.pk, Ŷ

1qLrpX2,ω,σXqs; Λ.t2 Ð SimNIPoKpg1, Λl.pk, gT , Λl.t1q and Λl.t Ð
pΛl.t1, Λl.t2q. In this case, LrpX2, ω, σY qs is always defined because X2 � X̂ 1.

At the end of the game, B forwards the bit b� received from A. The game is perfectly simulated for A, and B wins
its BDDH challenge with the same probability as A wins G7, which concludes the claim. Finally, by composing the
probability of all the games, we obtain the bound of AdvKSLIKE,Apλq.

Proof. (Th2. Non-frameability).
Game G0: The original game ExpNFLIKE,Apλq.

20

Game G1: Let Pi the i-th party instantiated by Register. Game G1 runs as G0 except that it begins by picking u $
ÐÝ

J1, qrK. If A returns psst,Pq such that P � Pu, then G1 aborts and returns 0. The advantage of A on G1 increases
w.r.t. that in G0 by a factor equal to the probability of correctly guessing u:

P rA wins G0s ¤ qr � P rA wins G1s .

We prove that P rA wins G1s ¤ AdvEUF-CMA
DS pλq by reduction. Assume there exists an adversary A that wins G1 with

probability εApλq by returning psst�,P�q such that D pA,Bq P USERS2, O P OPS, n P N and pΛiqni�1 P AUTHn such
that:

– P� � Pu; P� P tA,Bu; P�.γ � 0;
– Verifyppp, sst�,A.PK,B.PK,O.PK, pΛi.PKq

n
i�1q � 1;

– @i, if πiP� � K then IdentifySessionpsst�, π
i
P�
q � 0 or πiP� .α � 0.

We build a PPT adversary B breaking the EUF-CMA security of DS with non-negligible probability. B receives the
verification key P̂K from its challenger, initializes a set LS ÐH, then it simulates G1 to A as in the real game, except
in the following situations:
Oracle RegisterpP, role,PKq: If P � P� (as guessed before) and PK � K, B sets P�.PKÐ P̂K.
Oracle Send(πiP,m): If P � P�, B simulates the oracle faithfully except it uses its Sigp�q oracle to produce signatures.
Depending on the role of P� and the protocol step, it runs either σ1

Y Ð Sigpω}mX}mY q, σX Ð Sigpω}mX}mY }
σ1
Y q or σ2

Y Ð Sigpω}mX}mY }σ
1
Y }σXq, where ω � A}B}pΛiq

n
i�1, mX � X1}X2}niX and mY � Y }niY . The

message/signature pairs are stored in LS .
Since sid � X2}Y , then X2, Y , A � P�, B � πiP� .PID (or A � πiP� .PID, B � P�, depending on who plays the

role of Alice and Bob), and pΛiqni�1 � πiP� .AID are parts of the messages signed in σX , σ1
Y , and σ2

Y .

Oracle Corrupt(P): If P � P�, then B aborts.
We parse sst� as ω1}mX}mY }σ

1
Y }σX}σ

2
Y }σO, mX as X1}X2}niX and mY as Y }niY . For readability, we denote

by MX the value ω1}X1}X2}niX}Y }niY }σ
1
Y , and MY the value MX}σX . If Verifyppp, sst�,A.PK,B.PK,O.PK,

pΛi.PKq
n
i�1q � 1, we have that SVerpA.PK, σX ,MXq � 1 and SVerpB.PK, σ2

Y ,MY q � 1.
If @i, πiP� � K, then IdentifySessionpsst�, π

i
P�
q � 0 or πiP� .α � 0. Thus the oracle Send never outputs valid σX

or σ2
Y by using the Sigp�q oracle on messages matching the session identifier sid � X2}Y , the identities A, B, and

pΛiq
n
i�1 together. We have two cases. If P� � A, then pMX , σXq R LS . If P� � B, then pMY , σ

2
Y q R LS . Finally, if

P� � A, then B returns pMX , σXq. If P� � B, then B returns pMY , σ
2
Y q.

The experiment is perfectly simulated for A, and if A wins, then B returns a fresh and valid signature. Hence, we
get AdvEUF-CMA

DS,B pλq � εApλq, which concludes the proof.

Proof. (Th3. Honest operator). For this proof, we first describe the (deterministic, unbounded) key-extractor algo-
rithm ExtractpπO,PPKq which, given as input an operator instance πO and a set of public keys, outputs the same key
k as the (honest) instances of Alice and Bob.

ExtractpπO,PPKq works as follows:
– Parse πO.τ as pmX ,m

1
X , pmY , σ

1
Y q, pm

1
Y , σ

1
Y 1q, σX , σ

1
X , σ

2
Y , σOq if O is the operator of Alice, pmX ,m

1
X , pmY , σ

1
Y q,

pm1
Y , σ

1
Y 1q, σX , σ

1
X , σ

2
Y , σ

12
Y , σOq otherwise,mX as pX1}X2}niXq,mY as pY }niY q, πO.PID as pA,Bq and πO.AID

as pΛiqni�1,
– Set y � 0. While gy2 � Y , do y � y � 1. Output y (which exists, since Y P G2).
– For all i P J1, nK, if Λi.PK R PPK then abort, else parse each Λi.PK as pΛi.pk, Λi.niq.
– Compute kÐ e p

±n
i�1 Λi.pk, X2q

y and return k.
This extractor is correct because k is computed exactly as for Bob in the real protocol.

Informally, in the HO security game, the adversary aims to output a session state sst and a serie of trapdoors such
that piq Verify accepts the session state and piiq when applied to sst and the trapdoors, Open returns a key matching
the one extracted from Extract on the corresponding operator instance. The adversary can corrupt all users and all
authorities, but not the operator. We use the following sequence of games:
Game G0: The original game ExpHOLIKE,Apλq:
Game G1: Let Oi be the i-th oracle party output by Register. Game G1 runs as G0 except that it begins by picking

u
$
ÐÝ J1, qrK. If A returns pj�, sst�,A�,B�,O�, pΛ�,i, Λ�,i.tq

n
i�1q such that Ou � O�, then the experiment returns 0.

21

The advantage of A on G1 will be minored by the advantage of G0 multiplied by the probability of guessing correctly
the operator O�: |P rA wins G0s � 1{2| ¤ qr|P rA wins G1s � 1{2|.
Game G2: Let pj�, sst�,A�,B�,O�, pΛ�,i, Λ�,i.tq

n
i�1q be the guess of the adversary. Game G2 runs as G1, except that

if for all k P N, πkO�
.sid �� sid� or πkO�

.PID � pA�,B�q or πkO�
.AID � pΛ�,iq

n
i�1, then G2 aborts and returns 0. For

any adversary A,
|P rA wins G0s � P rA wins G1s | ¤ AdvEUF-CMA

DS pλq.

We prove this claim by reduction. Assume that there exists A winning G1 with probability εApλq by returning a
guess pj�, sst�,A�,B�,O�, pΛ�,i, Λ�,i.tq

n
i�1q such that for all k P N, πkO�

.sid � sid� or πkO�
.PID � pA�,B�q or

πkO�
.AID � pΛ�,iq

n
i�1. We recall that if A wins G0, then O�.γ � 0 and Verifyppp, sst�,A�.PK,B�.PK,O�.PK,

pΛ�,i.PKq
n
i�1q � 1.

Then, according to the rules of G1, if O� � Ou, the experiment returns 0. We build a PPT adversary B that breaks
the EUF-CMA security of DS with non-negligible advantage. B receives the verification key P̂K, initializes an empty
set LS ÐH, and then simulates G0 to Apppq faithfully, except in the following situations:
Oracle RegisterpP, role,PKq: If the u-th registration query has role � operator), or PK � K then B aborts (as
required since G1). Else B sets Ou Ð P and sets Ou.PKÐ P̂K.
Oracle Send(πiP, m): If P � Ou, then B simulates this oracle faithfully, except that it queries its Sigp�q oracle to
produce signatures, storing the message/signature pairs in LS . B sets MO Ð ω}mX}mY }σ

1
Y }σX}σ

2
Y , runs σO Ð

SigpMOq, stores pMO, σOq in LS , and sets sstÐ pMO}σOq.
Oracle Corrupt(P): If P � Ou, then B aborts.

Finally, A returns pj�, sst�,A�,B�,O�, pΛ�,i, Λ�,i.tq
n
i�1q, B parses sst� as pω�}m�,X}m�,Y }σ

1
�,Y }σ�,X}σ

2
�,Y }

σ�,Oq and returns pm�, σ�q = pω�}m�,X}m�,Y }σ
1
�,Y }σ�,X}σ

2
�,Y , σ�,Oq.

Note that G1 is perfectly simulated for A by B. If for all k P N, πkO�
.sid � sid� or πkO�

.PID � pA�,B�q or
πkO�

.AID � pΛ�,iq
n
i�1, then sst� was not returned by Send on an oracle instance, so pm�, σ�q R LS . Moreover, if A

wins G1, Verifyppp, sst�,A�.PK,B�.PK,O�.PK, pΛ�,i.PKq
n
i�1q � 1, implying that SVerpO�.PK, ω�}m�,X}m�,Y }

σ1
�,Y }σ�,X}σ

2
�,Y , σ�,Oq � 1, so σ� is a valid signature on m� for the key P̂K. We also have that O� � Ou.

If A wins G0 such that for all k P N, πkO�
.sid � sid� or πkO�

.PID � pA�,B�q or πkO�
.AID � pΛ�,iq

n
i�1, then B

wins his game. Hence, AdvEUF-CMA
DS,B pλq � εApλq, concluding the proof.

Game G3: In this game, Ext denotes the knowledge extractor of NIPoK

d : D1 � gd1 ^D2 � gdT

(
. Let pj�, sst�,A�,B�,O�,

pΛ�,i, Λ�,i.tq
n
i�1q be the guess of the adversary. Game G3 runs as G2 except that:

– G3 begins by initializing an empty list Lr s Ð H.
– Each time it runs RevealTDpsst,A,B,O, pΛiqni�1, lq Ñ Λl.t to the adversary, G3 sets LrΛl.ts Ð Λl.SK.
– After the guess of the adversary, it sets ω� Ð A�}B�}pΛ�,iq

n
i�1, it parses the session state sst� as pω1�}m�,X}

m�,Y }σ
1
�,Y }σ�,X}σ

2
�,Y }σ�,Oq, m�,X as X�,1}X�,2}ni�,X and m�,Y as Y�}ni�,Y .

– For each i P J1, nK such that LrΛ�,i.ts � K, it parsesΛ�,i.PK as pΛ�,i.pk, Λ�,i.niq andΛ�,i.t as pΛ�,i.t1, Λ�,i.t2q.
If 1 Ð NIPoKverppg1, Λ�,i.pk, epX�,1, Y�q, Λ�,i.t1q, Λ�,i.t2q, then it runs Extpλq on A in order to extract the
witness w for the proof Λ�,i.t2 and sets LrΛ�,i.ts Ð w. Else, G3 aborts and returns 0. If gLrΛ�,i.ts1 � Λ�,i.pk or
epX�,1, Y�q

LrΛ�,i.ts � Λ�,i.t1, then G3 aborts and returns 0.
The two games only differ if the extractor Ext fails on a valid proof of knowledge generated by A, in any of the (at
most) qr calls to the extractor. Hence:

|P rA wins G1s � P rA wins G2s | ¤ qr � εNIPoKpλq.

Finally, we show that P rA wins G2s � 0. Assume that an adversary A wins G2 with non-zero probability. We
parse πj�O�

.τ as pmX ,m
1
X , pmY , σ

1
Y q, pm

1
Y , σ

1
Y 1q, σX , σ

1
X , σ

2
Y q, mX as pX1}X2}niXq, mY as pY }niY q, π

j�
O�
.PID as

pA,Bq and πj�O�
.AID as pΛiqni�1. On the other hand, we parse sst� as pω�}m�,X}m�,Y }σ

1
�,Y }σ�,X}σ

2
�,Y }σ�,Oq, ω�

as A�}B�}pΛ�,iq
n
i�1, m�,X as X�,1}X�,2}ni�,X and m�,Y as Y�}ni�,Y . According to the rules of the game G1,

π
j�
O�
.sid � sid� and πj�O�

.PID � pA�,B�q and πj�O�
.AID � pΛ�,iq

n
i�1, which implies that we have X�,1 � X1,

X�,2 � X2, Y� � Y , and ω� � A}B}pΛiq
n
i�1. By definition, Extract returns k � e p

±n
i�1 Λi.pk, X2q

y
, where

Y � gy2 . We recall that epX1, g2q � epg1, X2q.

22

Algorithm Openppp, sst�, pΛ�,i.tq
n
i�1, pΛ�,i.PKq

n
i�1q returns:

k� �
±n
i�1pΛ�,i.t1q �

±n
i�1 epX�,1, Y�q

LrΛ�,i.ts

�
±n
i�1 epX1, Y q

LrΛ�,i.ts �
±n
i�1 epX1, g

y
2 q

LrΛ�,i.ts

�
±n
i�1 epX1, g2q

y�LrΛ�,i.ts �
±n
i�1 epg1, X2q

y�LrΛ�,i.ts

�
±n
i�1 epg

LrΛ�,i.ts
1 , X2q

y �
±n
i�1 epΛ�,i.pk, X2q

y

�
±n
i�1 epΛi.pk, X2q

y � e p
±n
i�1 Λi.pk, X2q

y

� k,
which implies that k� � k with probability 1, so A cannot win the game. This concludes the proof.

23

