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Abstract. Given two ciphertexts generated with a public-key encryp-
tion scheme, the problem of plaintext equality consists in determining
whether the ciphertexts hold the same value. Similarly, the problem of
plaintext inequality consists in deciding whether they hold a different
value. Previous work has focused on building new schemes or extending
existing ones to include support for plaintext equality/inequality. We
propose generic and simple zero-knowledge proofs for both problems,
which can be instantiated with various schemes. First, we consider the
context where a prover with access to the secret key wants to convince
a verifier, who has access to the ciphertexts, on the equality/inequality
without revealing information about the plaintexts. We also consider the
case where the prover knows the encryption’s randomness instead of the
secret key. For plaintext equality, we also propose sigma protocols that
lead to non-interactive zero-knowledge proofs. To prove our protocols’
security, we formalize notions related to malleability in the context of
public-key encryption and provide definitions of their own interest.

Keywords: Public-key encryption, Generic plaintext equality, Generic plain-
text inequality, Zero-knowledge proofs.

1 Introduction

The problem of proving whether two given ciphertexts encrypt the same or dif-
ferent messages is known as plaintext equality (or inequality) proofs. Considering
public-key encryption (PKE), there are scenarios in which deciding equality can
easily be done. For instance, if both ciphertexts were generated using the same
key and the encryption scheme is deterministic or if access to a trusted third
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party, who knows the private key, is provided. However, in practical scenar-
ios, where a prover needs to convince a verifier of the equality or inequality of
plaintexts, require stronger guarantees (i.e., the verifier must learn no additional
information than the yes or no answer to the problem).

Well-known examples include the use of such proofs in voting protocols
[35,34,14], reputation systems [22,15] and cloud-based applications [33]. Addi-
tionally, protocols with broadcasting phases where one of the parties needs to
broadcast encrypted messages under different keys to several parties can also
benefit from these proofs. A less common example involves a client which needs
to regularly store encrypted information in a backup server (or in a distributed
database such as blockchain), while being able to convince any third party of min-
imal claims about it. Furthermore, in settings where online interaction between
the parties is not desirable or public verifiability is preferred, non-interactive
variants can also be very useful.

Sometimes equality or inequality proofs are used as subroutines and need to
be integrated with other software. Therefore, having flexible alternatives (e.g.,
without relying on specific constructions that require particular configurations
or specific hardware) is essential to overcome possible conflicts Thus, generic
protocols that can be implemented with different PKE schemes, making them
more flexible than their customized variants and more suitable to be integrated
into different settings, are proposed.

We focus on two-party protocols, where two ciphertexts and auxiliary inputs
are given. The prover attempts to convince a verifier on either the plaintext
equality or inequality of the ciphertexts. The prover and the verifier share a
common input consisting of a set of public keys and ciphertexts generated with
those keys. The prover also knows the corresponding set of secret keys or the
randomness used to encrypt the plaintexts. As previously mentioned, our aim is
to design generic plaintext equality or inequality protocols in this setting.

Contributions. Using randomization properties of PKE schemes, we build secure
generic zero-knowledge protocols from standard techniques. Our first contribu-
tion introduces different notions related to the concept of malleability in public-
key encryption and their formalization. To that end, we make a clear distinction
between how a ciphertext can be randomized (e.g. the ciphertext alone, the plain-
text message or concerning the corresponding key). As a result, we characterize
PKE schemes in terms of generic randomizable encryption properties, which we
use to build our protocols. Our second contribution is the construction of two
interactive zero-knowledge protocols, ΠPEQ and ΠPINEQ, for plaintext equality and
inequality. These protocols are secure against malicious verifiers. For each of
them we first present a weaker variant (ΠHPEQ and ΠHPINEQ respectively) which is
only secure against honest verifiers. The protocol ΠPEQ requires the PKE scheme
to allow the randomization of both, the ciphertext and the corresponding plain-
text message. In contrast, the protocol ΠPINEQ only requires the former one. Our
third contribution is plaintext equality protocols based on proofs of knowledge
of the secret key (protocols ΠMATCHPEQ and ΠSIGPEQ), or of the randomness used for
the encryption (protocol ΠRSPEQ). Either case admits non-interactive versions ap-
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plying the Fiat-Shamir transform, but both require schemes with less common
properties. The schemes need to be key-randomizable or random coin decrypt-
able. We base our protocols on simple properties, making them independent of
a particular scheme and therefore generic. To support this claim, we list various
schemes indicating the relation with our definitions and protocols.

Finally, we also see an added value of our contributions in terms of serving
as a pedagogical tool to present zero-knowledge protocols (ZKP). Usual exam-
ples to introduce ZKP are graph 3-coloring or graph isomorphism. Although such
protocols can be explained without requiring any advanced cryptographic knowl-
edge, they are not used in real-world applications. On the contrary, the protocols
that we present are very intuitive, can easily be explained without requiring ad-
vanced cryptographic knowledge outside the concept of public key encryption,
and are also useful for real-world applications of ZKP. For this reason, we think
our protocols can serve as a convincing pedagogical example to explain ZKP to
a larger audience who has little mathematical background. With this in mind, as
a side contribution, we present a physical protocol using simple objects (boxes
and padlocks) to explain how our first proof of plaintext inequality works.

Related Work. Jakobsson et al. [25] introduced the concept of distributed plain-
text equality test (PETs), which allows n > 1 parties to determine whether two
ElGamal ciphertexts encrypt the same or different message without learning it,
but given knowledge of the secret key and assuming at least one of the parties is
honest. Very recently, McMurtry et al. [27] showed that several follow up works
based on the PET from [25] are flawed (because they use it as if no trusting
assumptions where needed), and showed how to fix it. Choi et al. [11] proposed
zero-knowledge equality/inequality proofs for boolean ElGamal ciphertexts with
knowledge of the secret key. In their work, the randomness used to produce the
two ciphertexts is required. Parkes et al. [29] proposed zero-knowledge equali-
ty/inequality proofs for Paillier ciphertexts given access to the randomness used
to produce the ciphertexts or access to the plaintexts. In [3], Blazy et al. in-
troduced a generic approach to prove a non-membership concerning some lan-
guage in non-interactive zero-knowledge. They showed how to prove plaintext
inequality of two ElGamal ciphertexts, given that the prover knows the plain-
text and the randomness used to produce one of the ciphertexts. More recently,
Blazy et al. [4] introduced a generic technique for non-interactive zero-knowledge
plaintext equality/inequality proofs in which the prover is given two ciphertexts
and trapdoor information. In such a scenario, none of the parties has access to
the secret key nor the randomness used to produce the ciphertexts. While be-
ing generic, those constructions [3,4] require a specific kind of zero-knowledge
proofs. More precisely, they need to build a zero-knowledge proof showing that a
zero-knowledge proof was computed honestly. While this design works elegantly
with pairing-based cryptography (as Groth-Sahai proofs [21] allows to prove in
zero-knowledge a pairing-product equation, while also being verifiable with a
pairing product equation), this often fails (or requires ad-hoc constructions that
are far from being efficient) in other settings. For example, when considering
Schnorr [36] proofs, the random oracle prevents any kind of chaining. There-
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fore, another design is required to allow such functionality. Extensions for PKE
schemes such that given a plaintext, a ciphertext and a public key, it is univer-
sally possible to check whether the ciphertext encrypts the plaintext under the
key also exists. Such an extension has been proposed by Canard et al. [8] un-
der the name of Plaintext Checkable Encryption. There are also different works
proposing schemes to support plaintext equality tests from user-specified autho-
rization. For instance, in [37], two users who have their keys can issue tokens to a
proxy to authorize it to perform the plaintext equality test for their ciphertexts.
Yang et al. [38] constructed a probabilistic scheme that allows anyone provided
with two ciphertexts to check if they encrypt the same message, considering that
the ciphertexts may not have been generated with the same key. They do this
achieving a weak form of ind-cca.

Previous work rests on specific constructions, which do not allow the scheme
to be separated from the protocol’s requirements. Our approach is different be-
cause we first seek to define protocols independently of the scheme and then to
present, which are the necessary conditions for a scheme to instantiate them.
As a result and unlike prior work, we present many protocols which can be in-
tegrated with existing pieces of software just as if they were templates allowing
one to switch from one scheme to another more easily. To compare the efficiency
of our protocols with custom variants, we discuss the case of ElGamal.

Outline. § 2 provides the required background. § 3 defines new notions for generic
randomizable encryption. In § 4, we present generic interactive protocols for
both, plaintext equality and inequality. In § 5, under different assumptions, we
present generic protocols for plaintext equality and discuss how to define non-
interactive versions in the random oracle model. Before concluding, we discuss
the efficiency of our protocols in § 6.

2 Cryptographic Background

Definition 1 (Public-key encryption scheme [31]). A public-key encryp-
tion (PKE) scheme Π = (KGen,Enc,Dec) is a triple of (possibly randomized)
efficient algorithms that verifies the following:

1. KGen(1k) is a p.p.t algorithm that on input the security parameter k, produces
a key pair (pk, sk).

2. Encpk(m; r) is a p.p.t algorithm that given a message m, a random coin r and
pk produces a ciphertext c.

3. Decsk(c) is a deterministic algorithm that given a ciphertext c and sk produces
a message m.

4. Correctness: The triple should be such that the following holds for every valid
message defined in the message space and every security parameter:

Pr
[
(pk, sk)

$← KGen(1k) : Decsk(Encpk(m)) = m
]

= 1.

By convention, we denote the set of the plaintexts (resp. public keys, random
coins, ciphertexts) by M (resp. K, R, C).
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Definition 2 (Random Coin Decryptable PKE (RCD-PKE) [6]). A prob-
abilistic PKE scheme is Random Coin Decryptable if there exists a polynomial-
time algorithm CDec such that for any public key pk ∈ K, any m ∈M, and any
random coin σ, the following equation holds: CDecσ(Encpk(m;σ), pk) = m.

For interactive machines P (the prover) and V (the verifier), we denote as in
[30] that 〈P(y),V(z)〉(x) is the random variable representing V’s output when
interacting with P on common input x, when the random input to each machine
is uniformly and independently chosen with z and y being auxiliary inputs. We
also denote a witness relation for a language L ∈ NP as RL and say that y is a
witness for the membership x ∈ L if (x, y) ∈ RL.

Definition 3 (Interactive Proof System [30,18]). Let εc, εs: N → [0, 1)
such that both are computable in poly(`)-time and εc(`) + εs(l) < 1− poly(`)−1.
(P,V) is called an interactive proof system for the language L with completeness
and soundness errors εc and εs, if V is p.p.t and the following conditions hold:
– Completeness: For every x ∈ L there exists a (witness) string y such that

for every auxiliary input z ∈ {0, 1}∗ : Pr[〈P(y),V(z)〉(x) = 1] = 1− εc(|x|).
– Soundness: For every x /∈ L, every interactive machine B, and every y, z ∈
{0, 1}∗ : Pr[〈B(y),V(z)〉(x) = 1] ≤ εs(|x|).

If εc ≡ 0, we say the system has perfect completeness. If the soundness condition
is required to hold only with respect to a computationally bounded prover B,
(P,V) is called an interactive argument system.

Definition 4 (Sigma protocol [23]). An interactive proof system (P,V) is
said to be a sigma protocol for the relation RL when it uses the following pattern:
P sends a commitment C, V sends a challenge b, P sends a response r after
which V accepts or rejects the proof, and the following requirement holds:
– Special soundness: There exists a polynomial-time algorithm E that given

any x and any pair of accepting transcripts (t, t′) = ((C, b, r), (C, b′, r′)) for
x such that b 6= b′ : Pr[y ← E(x, t, t′) : (x, y) ∈ RL] is overwhelming.

In [26], Lindell extends the definition of special soundness to proofs of knowl-
edge that are not sigma protocols. We now recall it using the formalism intro-
duced in [5], where t is a transcript of the protocol execution and s represents
the state of P∗ including its random tape.

Definition 5 (Statistical Witness-Extended Emulation [5]). An inter-
active proof system (P,V) has statistical witness-extended emulation if for all
deterministic polynomial-time P∗, there exists an expected polynomial-time em-
ulator E such that for all interactive adversaries A:

Pr
[
(y, s)← A(1k); t← 〈P∗(y, s),V(y)〉; b← A(t) : b = 1

]
≈

Pr

[
(y, s)← A(1k); (t, x)← E〈P∗(y,s),V(y)〉(y); b← A(t) :
b = 1 and if t is accepting then (x, y) ∈ L

]
where the oracle called by E〈P∗(y,s),V(y)〉(y) permits rewinding to a specific point
and resuming with fresh randomness for the verifier from this point onwards.
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Definition 6 (Zero-Knowledge [30]). An interactive proof system (P,V) is
zero-knowledge if for every p.p.t interactive machine V∗ there exists a proba-
bilistic expected polynomial-time algorithm S (called simulator) such that the
following two ensembles are computationally indistinguishable (when the distin-
guishing gap is a function in |x|) : {〈P(y),V∗(z)〉(x)}z∈{0,1}∗,x∈L for an ar-
bitrary y ∈ RL(x) and {S(x, z)}z∈{0,1}∗,x∈L. That is, for every probabilistic
algorithm D running in time polynomial in the length of its first input, every
polynomial p, all (x, y) ∈ RL and all auxiliary inputs z, z′ ∈ {0, 1}∗ it holds that:
|Pr[D(x, z′, 〈P(y),V∗(z)〉(x)) = 1]− Pr[D(x, z′,S(x, z)) = 1]| < p(|x|)−1.

The term “perfect zero-knowledge” refers to proof systems where the two
ensembles are identically distributed. Furthermore, a weaker variant called Hon-
est Verifier Zero-Knowledge (HVZK) is usually considered as well. Only a single
verifier V = V∗ that always follows the protocol is assumed in this variant.

Definition 7 (Commitment Scheme). A non-interactive commitment scheme
Γ = (Setup,Commit,Open) on a message space M is a tuple that verifies:
1. ck← Setup(1k) generates a commitment key ck.
2. ∀ m ∈M : (c, d)← Commitck(m) is the commitment/opening pair for m.
3. A commitment can be opened to m′ ∈ M∪ ⊥ with m′ ← Open(c, d), where
⊥ is returned if c is not a valid commitment to any message.

4. Correctness : ∀ m ∈M : Open(Commitck(m)) = m.

Commitment schemes are required to have two security properties: binding
and hiding. Binding states that it should be infeasible for any party to come
up with an opening that would reveal a different value than the one initially
committed. Hiding states that it should be infeasible for any party to reveal a
commitment without the corresponding opening. If a scheme is perfectly binding,
it can only be computationally hiding or the other way round.

Definition 8 (Hiding and Binding). A commitment scheme Γ has the hiding
security property if the advantage of any p.p.t algorithm A = (A1,A2) defined

by AdvHiding

Γ,A (k) := 2· Pr
[
ExpHiding

Γ,A (k)⇒ true
]
− 1 is negligible, where ExpHiding

Γ,A (k)

is the experiment shown in Figure 1 (left side).
A commitment scheme Γ has the binding security property if the advantage of

any p.p.t algorithm A defined by AdvBinding

Γ,A (k) := Pr
[
ExpBinding

Γ,A (k)⇒ true
]
− 1 is

negligible, where ExpBinding

Γ,A (k) is the experiment shown in Figure 1 (right side).

3 Generic Randomizable Encryption

In this section we propose several definitions to characterize the kinds of ran-
domizations that PKE schemes can support.

To begin with, we present a definition of re-randomizability [32], which has
also been introduced under different names or variants ([9,24,20,17]). Unlike pre-
vious work, we include the notion of derandomizability, and omit the distinction
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Experiment ExpHiding

Γ,A (k) Experiment ExpBinding

Γ,A (k)

ck
$← Setup(1k) ck

$← Setup(1k)
(m0,m1, state)← A1(ck) (c, d, d′)← A1(ck)

b
$← {0, 1}; (c, d)← Commitck(mb) m← Open(c, d);m′ ← Open(c, d′)

b′ ← A2(c, state) if (m = ⊥ or m′ = ⊥) then return 0
return b = b′ else return m 6= m′

Fig. 1: Experiments defining Hiding and Binding respectively.

with universal re-randomizability from [32], which we consider implicit unless
otherwise said. Informally speaking, a scheme that is randomizable and deran-
domizable supports not only the generation of fresh ciphertexts but also the
“rollback” process. Furthermore, we will say that a scheme achieves perfect ran-
domizability when no adversary can distinguish between a fresh encryption of
the original message and a randomization of the ciphertext.

Definition 9 (Randomizable PKE scheme (Rand-PKE) [32]). Given a PKE
scheme Π = (KGen,Enc,Dec), we say that Π is randomizable if there exists a
polynomial-time algorithm Rand such that:
1. Rand takes c ∈ C, r ∈ R and returns c′ ∈ C.
2. ∀ (pk, sk)

$← KGen(1k), r ∈ R and c ∈ C: Pr [Decsk(Rand(c, r)) = Decsk(c)] =
1.

Moreover, we say that Π is derandomizable if for any c ∈ C and r ∈ R, there
exists an efficiently computable r∗ such that: Pr [c = Rand(Rand(c, r), r∗)] = 1.

Definition 10 (Computational and perfect randomizability [32]). We
say that a Rand-PKE scheme is computationally randomizable if for any k,
(pk, sk) ← KGen(1k), m ∈ M, r ∈ R, c = Encpk(m; r) and any polynomial-
time distinguisher D, there exists a negligible function ε(·) such that:∣∣∣∣∣∣Pr

 r′ $← R;
c′ ← Encpk(m; r′);
b← D(pk, c, c′);

: b = 1

− Pr

 r′ $← R;
c′ ← Rand(c, r′);
b← D(pk, c, c′);

: b = 1

∣∣∣∣∣∣ ≤ ε(k).

We say that the scheme is perfectly randomizable when ε(k) = 0.

We now introduce the following definitions that specify how the random
coins used to produce fresh encryptions and randomizations can relate together.
We will say that a PKE scheme is strongly randomizable when it also supports
efficient algorithms to compute such relationship.

Definition 11 (Strong Randomizable PKE scheme). Given a PKE scheme
Π = (KGen,Enc,Dec), we say that Π is strongly randomizable if it is a Rand-
PKE and there exist a polynomial-time algorithm RandR such that:
1. RandR takes r and r′ ∈ R and returns r′′ ∈ R.
2. ∀ (pk, sk)

$← KGen(1k), m ∈ M and r′′ ← RandR(r, r′), the following equa-
tion holds: Rand(Encpk(m; r), r′) = Encpk(m; r′′).

Moreover, we say that Π is random-extractable if there exists a a polynomial-
time algorithm RandExt such that for any (r, r′, r′′) ∈ R3:

Pr [r = RandExt(r′, r′′) : r′′ ← RandR(r, r′)] = 1.
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Definition 12 (Computational and perfect strong randomizability). We
say that a Rand-PKE scheme is computationally strongly randomizable if for any
k, (pk, sk) ← KGen(1k), m ∈ M, r ∈ R, c = Encpk(m; r) and any polynomial-
time distinguisher D, there exists a negligible function ε(·) such that:∣∣∣∣∣∣∣∣Pr

 r′ $← R;
c′ ← Encpk(m; r′);
b← D(pk, r, c, r′, c′);

: b = 1

− Pr


r′′

$← R;
r′ ← RandR(r, r′′);
c′ ← Rand(c, r′′);
b← D(pk, r, c, r′, c′);

: b = 1


∣∣∣∣∣∣∣∣ ≤ ε(k).

We say that the scheme is perfectly strongly randomizable when ε(k) = 0.

We now define the notions of message-randomizability and key-randomizability.
For message-randomizability, we consider three different algorithms. The first
one computes the plaintext’s randomization, the second compute it on the ci-
phertext, and the third one computes the randomness given two messages.

Definition 13 (Message-randomizable PKE scheme (MsgRand-PKE)).
Given a PKE scheme Π = (KGen,Enc,Dec), we say that Π is message-randomi-
zable if there exists a set RM and two polynomial-time algorithms MsgRandM
and MsgRandC such that:
1. MsgRandM takes m ∈ M, r ∈ RM and returns m′ ∈ M. Moreover, the

function fr :M⇒M defined by fr(m) = MsgRandM(m, r), is bijective.
2. MsgRandC takes c ∈ C, r ∈ RM and returns c′ ∈ C.
3. ∀ (pk, sk)

$← KGen(1k), m ∈ M, r′ ∈ R, r ∈ RM and c = Enc(m; r′):
Pr [Decsk(MsgRandC(c, r)) = MsgRandM(m, r)] = 1.

Moreover, we say that Π is message-derandomizable if for any m ∈ M and
r ∈ RM, there exists a unique efficiently computable r∗ such that:

Pr [m = MsgRandM(MsgRandM(m, r), r∗)] = 1.
Finally, we say that Π is message-random-extractable if there exists a p.p.t
algorithm MsgRandExt such that for any m ∈M and r ∈ RM:

Pr [r = MsgRandExt(m,MsgRandM(m, r))] = 1.

Note that we require MsgRandM to be bijective. This property is implicity
required for the message-derandomizability. Indeed, if a randomized message can
be obtained using different messages but the same random, then it could also be
derandomized in several ways, which contradicts our definition.

Definition 14 (Computational and perfect message-randomizability).
We say that a MsgRand-PKE scheme is computationally message-randomizable
if for any k, (pk, sk) ← KGen(1k), m ∈ M, r ∈ R, c = Encpk(m; r) and any
polynomial-time distinguisher D, there exists a negligible function ε(·) such that:∣∣∣∣∣∣Pr

m′ $←M;
c′ ← Encpk(m

′; r);
b← D(pk, c, c′);

: b = 1

− Pr

 rm $← RM;
c′ ← MsgRandC(c, rm);
b← D(pk, c, c′);

: b = 1

∣∣∣∣∣∣ ≤ ε(k).

We say that the scheme is perfectly message-randomizable when ε(k) = 0.

For key-randomizability, we consider three algorithms as well. The first one
randomizes the public key, the second one the secret key, and the third one
randomizes a ciphertext given a randomized public key.
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Perfect ZK ZKPoK

Scheme Security RCD Rand MsgRand KeyRand ΠPEQ ΠPINEQ ΠMATCHPEQ ΠSIGPEQ ΠRSPEQ

ElGamal [16] IND-CPA X X X X X X X X X
Paillier [28] IND-CPA X X X X X X X
GM [19] IND-CPA X X X X X
DEG [13] IND-CCA1 X X X X X X X X X
CS-lite [12] IND-CCA1 X X X X X X
DSCS [32] RCCA X X X

Table 1: PKE schemes and their properties.

Definition 15 (Key-randomizable PKE scheme (KeyRand-PKE)). Given
a PKE scheme (KGen,Enc,Dec), we say that Π is key-randomizable if there
exists a set RK and three polynomial-time algorithms such that:

1. KeyRandPk takes a public key pk, r ∈ RK and returns pk′.
2. KeyRandSk takes a secret key sk, r ∈ RK and returns sk′.
3. KeyRandC takes c ∈ C, r ∈ RK and returns c′ ∈ C.
4. ∀ (pk, sk)

$← KGen(1k), m ∈M, r ∈ R, rk ∈ RK and c = Enc(m; r):

Pr

[
(Decsk(c) = DecKeyRandSk(sk,rk)(KeyRandC(c, rk)))
∧(DecKeyRandSk(sk,rk)(EncKeyRandPk(pk,rk)(m; r)) = m)

]
= 1.

Moreover, we say that Π is key-derandomizable if for any secret key sk and
rk ∈ RK, there exists an efficiently computable r∗k such that:

Pr [sk = KeyRandSk(KeyRandSk(sk, rk), r
∗
k )] = 1.

Definition 16 (Computational and perfect key-randomizability). We
say that a KeyRand-PKE scheme is computationally key-randomizable if for any
k, (pk, sk)

$← KGen(1k), m ∈ M, r ∈ R, c = Encpk(m; r) and any polynomial-
time distinguisher D, there exists a negligible function ε(·) such that:∣∣∣∣∣∣∣∣∣∣
Pr

 (pk′, sk′)
$← KGen(1k);

c′ ← Encpk′(m; r);
b← D(sk, pk, c′, sk′, pk′);

: b = 1

− Pr


rk

$←RK;
pk′ = KeyRandPk(pk, rk);
sk′ = KeyRandPk(sk, rk);
c′ = KeyRandC(c, rk);
b← D(sk, pk, c′, sk′, pk′);

: b = 1


∣∣∣∣∣∣∣∣∣∣
≤ ε(k).

We say that the scheme is perfectly key-randomizable when ε(k) = 0.

In Table 1, we list some well-known PKE schemes and their relationship
with our definitions and protocols. We stress that although fully homomorphic
schemes such as those based on lattices could also be used to instantiate our
protocols, partial homomorphic properties presented in the scheme can be used
to implement the different algorithms as well. Nonetheless, as shown with the
DSCS scheme [32], we note that being partially homomorphic is not necessary
to achieve re-randomizability. We refer the reader to Appendix A for examples
of how our protocols can be instantiated with ElGamal and Paillier.
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Prover P(sk, pk, c0, c1) Verifier V(pk, c0, c1)

if (pk, c0, c1) 6∈ K × C2 then Abort

r
$←R; b

$← {0, 1}

if Decsk(c
′
b) = Decsk(c0)

c′b←−−−− c′b ← Rand(cb, r)

then z = 0 else z = 1
z−−−−→ if (z = b) then Accept else Reject

Fig. 2: One round of the protocol ΠHPINEQ (repeated k times).

4 Interactive Protocols

This section presents protocols for proving plaintext equality and inequality
where the common input consists of a public key and two ciphertexts generated
with it. As private input, the prover will have the corresponding private key.
For plaintext inequality protocols we will require the scheme to be randomizable
whereas for plaintext equality we will also require it to be message-randomizable.

In both cases, we first introduce an HVZK variant, which we then modify to
achieve zero-knowledge in the presence of malicious verifiers. Complete security
proofs for all protocols in this work are given in Appendix B.

4.1 Plaintext Inequality

Let us first introduce our protocol ΠHPINEQ (Figure 2). It starts with the verifier

randomly choosing r
$← R and b ∈ {0, 1}. Then it computes c′b ← Rand(cb, r) and

sends c′b to the prover. At this stage, the prover receives a ciphertext that cannot
link without decryption to c0 or c1. Since the verifier is honest, the prover either
decrypts c′b to m0 or m1 and can determine b and send it back to the verifier.
The verifier accepts if and only if it receives b as expected.

Theorem 1. Let Π be a PKE scheme, which is (computationally) randomiz-
able. If Π is used in ΠHPINEQ, then ΠHPINEQ is complete, computationally sound and
perfect HVZK.

The idea of this protocol can easily be explained to a large audiance replacing
the ciphertexts with closed boxes using a padlock. Consider two identical closed
boxes that contain a white card and a black card respectively. The prover has
a key that allows him to open both boxes, and wants to prove the verifier that
the boxes contains different things without revealing anything else. The verifier
secretly chooses one of the two boxes and challenges the prover to guess which
box he picked. The prover secretly opens the box and deduces which one it was
from the color of the card. He then tells the verifier which was the box and if
the verifier agrees, they repeat the protocol k times. If the two identical boxes
contain the same card, then the prover has no information about the box he
receives and fails one of the rounds with probability 1/2k.

ProtocolΠPINEQ (Figure 3), is an amendment ofΠHPINEQ that uses a commitment
scheme. Without it, a malicious verifier could send a ciphertext that is not a
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Prover P(sk, pk, c0, c1) Verifier V(pk, c0, c1)

if (pk, c0, c1) 6∈ K × C2 then Abort

z = ¬(Decsk(c0) = Decsk(c
′
b))

c′b←−−−− r
$← R; b

$← {0, 1}; c′b ← Rand(cb, r)

(comm, op)← Commit(z)
comm−−−−→
r,b←−−−−

if c′b 6= Rand(cb, r) then op := ⊥ op−−−−→ z′ ← Open(comm, op)

if (z′ = b) then Accept else Reject

Fig. 3: One round of the protocol ΠPINEQ (repeated k times).

Prover P(sk, pk, c0, c1) Verifier V(pk, c0, c1)

if (pk, c0, c1) 6∈ K × C2 then Abort

r
$←R;rm

$←RM; b
$← {0, 1}

c′b ← Rand(cb, r)

m′ ← Decsk(c
′′
b );m← Decsk(c0)

c′′b←−−−− c′′b ← MsgRandC(c′b, rm)

z ← MsgRandExt(m′,m)
z−−−−→ if (z = rm) then Accept else Reject

Fig. 4: One round of the protocol ΠHPEQ (repeated k times).

randomization of c0 or c1 and check whether it encrypts the same value. The
commitment scheme protects the prover from such verifiers. To this end, the
verifier first randomizes the ciphertext and then sends it to the prover, which
computes z and commits to the resulting value. Then, the verifier reveals the
randomness used at the first stage and the prover opens the commitment if and
only if these values are consistent with the ciphertext obtained from the verifier.

Theorem 2. Let Π be a PKE scheme, which is perfectly strong randomizable
and derandomizable. Let Γ be a commitment scheme, which is computationally
binding and perfectly hiding. If Π and Γ are used in the protocol ΠPINEQ, then
ΠPINEQ is complete, computationally sound and perfect zero-knowledge.

4.2 Plaintext Equality

As before, we begin explaining our protocol ΠHPEQ (Figure 4). First, the ver-
ifier randomly chooses r ∈ R, rm ∈ RM and b ∈ {0, 1}. Then it computes
c′b ← Rand(cb, r) and c′′b ← MsgRandC(c′b, rm) to send c′′b to the prover. At this
stage, the prover receives a ciphertext that cannot be linked to c0 nor to c1. The
prover decrypts c′′b obtaining a message m′, which corresponds to a message-
randomization of either the message decrypted by c0 or by c1. The prover com-
putes z = MsgRandExt(m′,m) and sends it to the verifier. The verifier accepts
if and only if z = rm. Since both ciphertexts, c0 and c1, belong to Encpk(m), the
prover can always compute z correctly. If this is not the case, then a cheating
prover can only correctly guess the bit b with probability at most 1/2.
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Prover P(sk, pk, c0, c1) Verifier V(pk, c0, c1)

if (pk, c0, c1) 6∈ K × C2 then Abort

r
$←R; rm

$←RM; b
$← {0, 1}

c′b ← Rand(cb, r)

m′ ← Decsk(c
′′
b );m← Decsk(c0)

c′′b←−−−− c′′b ← MsgRandC(c′b, rm)

z ← MsgRandExt(m′,m)

(comm, op)← Commit(z)
comm−−−−→

if MsgRandC(Rand(cb, r), rm) 6= c′′b
(r, rm, b)←−−−−−

then op := ⊥ op−−−−→ z′ ← Open(comm, op)

if (z′ = rm) then Accept else Reject

Fig. 5: One round of the protocol ΠPEQ (repeated k times).

Theorem 3. Let Π be a PKE scheme, which is (computationally) randomizable,
(computationally) message-randomizable and message-random-extractable. If Π
is the scheme used in ΠHPEQ, then ΠHPEQ is complete, computationally sound and
perfect HVZK.

Figure 5 shows our last variant, which makes use of a commitment scheme.
Without one, a malicious verifier could send a ciphertext c∗ for which he knows
the corresponding message m∗. Once z is received from the prover, the mali-
cious verifier will gain information about the relation of (m,m∗, z) and could
eventually compute m. By relying on the commitment scheme’s hiding property,
the prover first commits to the value z. Then, it checks whether the verifier has
correctly randomized the messages or not to open the commitment.

Theorem 4. Let Π be a PKE scheme, which is perfectly strong randomizable
and derandomizable, perfectly message-randomizable and message-derandomizable
and message-random-extractable. Let Γ be the commitment scheme, which is
computationally binding and perfectly hiding. If Π and Γ are used in the protocol
ΠPEQ, then ΠPEQ is complete, computationally sound and perfect zero-knowledge.

Note that in Theorems 2 and 4 zero-knowledge can be computational if the
randomization conditions are computational instead of perfect or if the commit-
ment scheme being used has only computational hiding.

5 ZKPoK for Plaintext Equality

We switch our attention to protocols that are Zero-Knowledge Proofs of Knowl-
edge (ZKPoK) for plaintext equality. In § 5.1 we focus on ZKPoK of the secret
key whereas in § 5.2 we focus on ZKPoK of the randomness used to generate
the ciphertexts. The application is not the same because if the prover knows
the secret key, the use case to consider is when the prover acts as a receiver of
those ciphertexts. On the other hand, if the prover knows the randomness used
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Prover P((sk1, sk2), (pk1, pk2), c1, c2) Verifier V((pk1, pk2), c1, c2)

rm
$←RM; (r1, r2)

$←R2; m← Decsk1(c1)
c′1 ← MsgRandC(c1, rm)
c′2 ← MsgRandC(c2, rm)
c′′1 ← Rand(c′1, r1); c′′2 ← Rand(c′2, r2)

m′′ ← MsgRandM(m, rm)
(c′′1 , c

′′
2 )

−−−−−−→
b←−−−−−− b

$← {0, 1}
............................................................. if (b = 0) ................................................

m′′−−−−−−→
P runs a protocol twice (e.g., ΠMATCH) to prove V that: Decsk1(c′′1 ) = m′′

and Decsk2(c′′2 ) = m′′. V returns Accept if both proofs are valid
............................................................... else ................................................

(rm, r1, r2)−−−−−−−→ c̃′1 ← MsgRandC(c1, rm)

c̃′2 ← MsgRandC(c2, rm)
c̃′′1 ← Rand(c̃′1, r1)
c̃′′2 ← Rand(c̃′2, r2)
return (c̃′′1 = c′′1 ) ∧ (c̃′′2 = c′′2 )

Fig. 6: One round of the protocol ΠMATCHPEQ (repeated k times).

to generate the ciphertexts, the use case to consider is when the prover acts as a
sender. Finally, we outline how non-interactive variants can be defined in § 5.3.

5.1 Protocols based on knowledge of the secret key

Protocols in this section additionally require the scheme to be key-randomizable.
We present a protocol called ΠMATCHPEQ (Figure 6), which relies on a ZKP to prove
that the decryption of a given ciphertext matches a given message. Such proofs
are known for numerous encryption schemes (e.g., [13,16,19,28]). Then, we intro-
duce an auxiliary protocol called ΠMATCH (Figure 7), that meets the requirement
of ΠMATCHPEQ (its a proof system for the above mentioned). We also present here
a third protocol called ΠSIGPEQ (Figure 8) that merges the two previous ones. It
requires a randomizable, message-randomizable and key-randomizable scheme,
but it does not require any other protocol as a subroutine, which makes it more
efficient that ΠMATCHPEQ instantiated with ΠMATCH. An interesting additional prop-
erty of ΠMATCHPEQ and ΠSIGPEQ is that both can also be used to prove plaintext
equality of two ciphertexts encrypted under different keys.

In protocol ΠMATCHPEQ the prover sends two message-randomizations to the
verifier who then challenges it on these ciphertexts. If both ciphertexts encrypt
message-randomizations of the same message, then the prover can either prove
that it correctly did the message-randomizations or that both ciphertexts encrypt
the same message.
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Prover P(sk, pk, c,m) Verifier V(pk, c,m)

rk
$←RK; pk′ ← KeyRandPk(pk, rk)

sk′ ← KeyRandSk(sk, rk); r
$←R

c′′ ← Rand(c′, r); c′ ← KeyRandC(c, rk)
(pk′, c′′)−−−−−→

b←−−−− b
$← {0, 1}

if (b = 0) then z = sk′ else z = (r, rk)
z−−−−→ if b = 1 then

p̃k
′
← KeyRandPk(pk, rk)

c̃′ ← KeyRandC(c, rk)
c̃′′ ← Rand(c̃′, r)

return (c̃′′ = c′′) ∧ (p̃k
′

= pk′)
else return (m = Decsk′(c

′′))

Fig. 7: One round of the protocol ΠMATCH (repeated k times).

Theorem 5. Let Π be the PKE scheme used in ΠMATCHPEQ. If Π is perfectly
randomizable and derandomizable, perfectly message-randomizable and message-
derandomizable, and if the proof in step three is instantiated by a sigma protocol
that is correct, special sound, and perfectly zero-knowledge, then ΠMATCHPEQ is com-
plete, has statistical witness-extended emulation, and perfect zero-knowledge.

For ΠMATCH, we consider a setting in which the verifier has access to the pk,
the ciphertext c, the message m and challenges the prover to prove that c is an
encryption of m. This protocol’s intuition is that if the scheme is randomizable
and key-randomizable, the prover can generate a new ciphertext for the same
massage but under different keys. The verifier is then allowed to check that 1)
the prover can generate a new ciphertext c′′ which decrypts to the same message
and 2) by decrypting c′′ to m conclude that the original ciphertext c is also an
encryption of m.

Theorem 6. Let Π be the PKE scheme used in ΠMATCH. If Π is perfectly random-
izable, perfectly key-randomizable and key-derandomizable, then ΠMATCH is com-
plete, special sound, and perfect zero-knowledge.

To conclude this section, we present the protocol ΠSIGPEQ, a sigma protocol
for plaintext equality of two ciphertexts built upon the previous ones. In this
protocol, the prover performs a message-randomization on the ciphertexts and a
key-randomization to obtain new ciphertexts. These ciphertexts decrypt to the
same message m′ but under a different key. Once the prover sends the public
keys and the new ciphertexts to the verifier, the verifier challenges the prover.
The intuition behind the challenge is that if the two ciphertexts obtained by
the verifier are message-randomizations of the same message, then the prover
should be able to provide either the corresponding secret key to confirm it or
the randomness used to verify the procedure. This protocol is more efficient
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Prover P(sk1, sk2, pk1, pk2, c1, c2) Verifier V(pk1, pk2, c1, c2)

(rk,1, rk,2)
$←R2

K

rm
$←RM; (r1, r2)

$← R2

c′1 ← Rand(c1, r1)
c′2 ← Rand(c2, r2)
pk′1 ← KeyRandPk(pk1, rk,1)
sk′1 ← KeyRandSk(sk1, rk,1)
pk′2 ← KeyRandPk(pk2, rk,2)
sk′2 ← KeyRandSk(sk2, rk,2)
c′′1 ← KeyRandC(c′1, rk,1)
c′′2 ← KeyRandC(c′2, rk,2)
c′′′1 ← MsgRandC(c′′1 , rm)

c′′′2 ← MsgRandC(c′′2 , rm)
(pk′1, pk

′
2, c
′′′
1 , c′′′2 )

−−−−−−−−−−−→
b←−−−−−− b

$← {0, 1}
if (b = 0) then z = (sk′1, sk

′
2)

z−−−−−−→ if b = 1 then c̃′1 ← Rand(c1, r1)

else z = (r1, r2, rk,1, rk,2, rm) c̃′2 ← Rand(c2, r2)

p̃k
′
1 ← KeyRandPk(pk1, rk,1)

p̃k
′
2 ← KeyRandPk(pk2, rk,2)

c̃′′1 ← KeyRandC(c̃′1, rk,1)
c̃′′2 ← KeyRandC(c̃′2, rk,2)
c̃′′′1 ← MsgRandC(c̃′′1 , rm)
c̃′′′2 ← MsgRandC(c̃′′2 , rm)
return ((c̃′′′1 = c′′′1 ) ∧ (c̃′′′2 = c′′′2 )

(p̃k
′
1 = pk′1) ∧ (p̃k

′
1 = pk′1))

else return (Decsk′1(c′′′1 ) = Decsk′2(c′′′2 ))

Fig. 8: One round of the protocol ΠSIGPEQ (repeated k times).

because it requires exactly k rounds, while ΠMATCHPEQ requires k rounds times the
number of rounds of ΠMATCH.

Theorem 7. Let Π be the PKE scheme used in ΠSIGPEQ. If Π is perfectly ran-
domizable, perfectly message-randomizable and perfectly key-randomizable, then
ΠSIGPEQ is complete, special sound, and perfect zero-knowledge.

5.2 Protocols based on knowledge of the encryption randomness

Based on the previous ideas, we present in this section the protocol ΠRSPEQ, which
requires the PKE scheme to be random coin decryptable, strong randomizable
and message-randomizable. The intuition behind this protocol (Figure 9) is the
same as in ΠSIGPEQ; the verifier challenges the prover to either provide the ran-
domizers or to allow it to check the procedure.

Theorem 8. Let Π be the PKE scheme used in ΠRSPEQ. If Π is perfectly strong
randomizable, random-extractable, perfectly message-randomizable and random
coin decryptable, then ΠRSPEQ is complete, special sound, and perfect zero-knowledge.
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Prover P(r1, r2, pk1, pk2, c1, c2) Verifier V(pk1, pk2, c1, c2)

rm
$←RM; (r′1, r

′
2)

$←R2

r′′1 ← RandR(r1, r
′
1)

r′′2 ← RandR(r2, r
′
2)

c′1 ← Rand(c1, r
′
1)

c′2 ← Rand(c2, r
′
2)

c′′1 ← MsgRandC(c′1, rm)

c′′2 ← MsgRandC(c′2, rm)
(c′′1 , c

′′
2 )

−−−−−−→
b←−−−−−− b

$← {0, 1}
if (b = 0) then z = (r′′1 , r

′′
2 )

z−−−−−−→ if b = 0 then

else z = (r′1, r
′
2, rm) return (CDecr′′1 (c′′1 , pk1) = CDecr′′2 (c′′2 , pk2))

else c̃′1 ← Rand(c1, r
′
1)

c̃′2 ← Rand(c2, r
′
2)

c̃′′1 ← MsgRandC(c̃′1, rm)
c̃′′2 ← MsgRandC(c̃′2, rm)

return ((c̃′′1 = c′′1 ) ∧ (c̃′′2 = c′′2 ))

Fig. 9: One round of the protocol ΠRSPEQ (repeated k times).

5.3 Non-interactive variants

Considering that sigma protocols are invariant under parallel composition, for
protocols ΠSIGPEQ and ΠRSPEQ, one can apply the strong Fiat-Shamir transforma-
tion [2] and obtain a Non-Interactive Zero-Knowledge Proof, which is secure in
the random oracle model. In other words, the prover should generate k commit-
ments (r1, ..., rk), calculate c ∈ {0, 1}k ← H(r1||r2...rk||public parameters), and
finally compute the responses zi for all ri using the i-th bit of c. This way, the
soundness error (1/2) is amplified to 1/2k.

6 Efficiency

In order to compare the efficiency of our protocols with custom ones, we provide
here an efficiency analysis and implementation details using ElGamal.

Comparison with custom variants. Our generic ptotocols ΠPEQ, ΠRSPEQ, and
ΠPINEQ are perfect zero-knowledge and do not rely on the random oracle model.
We compare the efficiency of our protocols with the best (as far as we know)
custom protocols for ElGamal that achieve the same security properties. Note
that more efficient protocols exist under weaker hypothesis: HVZK proofs can be
done using Shnorr-like protocols [36], non-interactive protocols can be done in
the random oracle model replacing the challenge by the hash of the commitment,
and non-interactive but computationaly zero-knowlege proofs can be done using
the Groth-Sahai construction from pairings [21].

Proving the equality of two ElGamal plaintexts (m1,m2) given two cipher-
texts c1 = Encpk(m1; r1) = (gr1 , pkr1m1) and c2 = Encpk(m2; r2) = (gr2 , pkr2m2)
is equivalent to prove that (gα, gr1−r2 , gα(r1−r2)) is a Diffie-Hellman tuple, which
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Equality proofs Inequality proofs

Using [10] ΠPEQ ΠRSPEQ Using [7] ΠPINEQ

Prover 2 6 4 6 6

Verifier 2 4 4 4 4

Rounds 3 4 3 3 4

Table 2: Number of exp. and rounds for plaintext equality/inequality proofs.

Protocol ΠHPEQ ΠPEQ ΠHPINEQ ΠPINEQ ΠRSPEQ ΠSIGPEQ

Avg. time 27.47 70.31 26.13 68.75 62.12 112.98

Deviation 0.21 1.28 0.15 0.6 2.06 3.70

Table 3: Running times in ms for different protocols using ElGamal.

can be efficiently done with the Chaum-Pedersen protocol [10] (using either the
secret key or the randomness as the witness). Similarly, proving the inequality of
the two plaintexts is equivalent to prove that (gα, gr1−r2 , gα(r1−r2)m1/m2) is not
a Diffie-Hellman tuple, which can be efficiently done with the Camenisch-Shoup
protocol [7]. These protocols must be repeated k times for a security param-
eter k, like ours. Table 2 gives the number of exponentiations (the dominant
operation in all the considered protocols) and rounds for a single run of each
protocol. This comparison suggests that our generic protocols’ cost is reasonable
for perfect zero-knowledge protocols in the standard model.

Implementation. We implemented the protocols ΠHPEQ, ΠPEQ, ΠHPINEQ, ΠPINEQ,
ΠRSPEQ and ΠSIGPEQ in Rust using the dalek library [1]. Although the implementa-
tion was done for academic purposes and simulating the interaction between a
prover and a verifier (it is not production-ready), it serves to demonstrate the
practicality of our protocols. More in detail, we show on Table 3 the average
running times using a regular laptop (Macbook Pro from 2015) with no extra
optimizations and considering a security parameter of 128. Therefore, the times
shown consist of 128 repetitions for each protocol run so to achieve the desired
soundness error. This information was gathered using the external crate bencher.

7 Conclusion

We characterized malleability in terms of randomizability, message-randomiza-
bility and key-randomizability for public-key encryption. Based on those notions,
we defined and presented interactive and non-interactive zero-knowledge proto-
cols for plaintext equality and inequality. As a result, we obtained generic pro-
tocols that can be instantiated with different encryption schemes. We provided
examples of PKE schemes, which have different properties and that are secure
under different security models to support the claim. As future work, we first
want to design non-interactive protocols for plaintext inequality. We also would
like to propose protocols that do not require k rounds from a generic encryption
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scheme. Another idea is to construct generic “plaintext inequality test” to prove
that the ciphertext’s plaintext is smaller or greater than another plaintext.
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34. Ryan, P.Y.A.: Prêt à Voter with Paillier Encryption. Math. Comput. Model.
48(910), 16461662 (2008)

35. Ryan, P.Y.A., Schneider, S.A.: Prêt à Voter with Re-encryption Mixes. In: Goll-
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A Instantiation

Based on the literature review, we found that ElGamal and Paillier were the
most used schemes to implement plaintext equality/inequality proofs. For this
reason, we present here examples of how to instantiate a subset of our protocols
using these schemes (both summarized in Table 4).

Let us first note that PKE schemes whose set of random coins and messages
are cyclic groups (G1, ∗) and (G2, ∗) with identity elements e1 and e2 and which
are homomorphic for ∗ (i.e. Enc(m, r) ∗ Enc(m′, r′) = Enc(m ∗ m′, r ∗ r′)), are
randomizable and message-randomizable. To randomize a ciphertext Enc(m, r)
with r′ one can compute Enc(m, r)∗Enc(e1, r′) = Enc(m, r∗r′), and to randomize
the plaintext with m′ one can compute Enc(m, r) ∗Enc(m′, e2) = Enc(m ∗m′, r).
We show that ElGamal and Pailler verify this property. Considering two ElGamal
ciphertexts (gr1 , pkr1 · m1) and (gr2 , pkr2 · m2), we define the operation ∗ as

(gr1 , pkr ·m1)∗(gr2 , pkr ·m2) = (gr1 ·gr2 , pkr1 ·m1 ·pkr2 ·m2) = (g(r1+r2), pk(r1+r2) ·
(m1 · m2)). Considering two Pailler ciphertexts ((1 + n)m1 · rn1 mod n2) and
((1 +n)m2 · rn2 mod n2), we define the operation ∗ as ((1 +n)m1 · rn1 mod n2) ∗
((1 +n)m2 · rn2 mod n2) = ((1 +n)m1 · rn1 · (1 +n)m2 · rn2 mod n2) = ((1 +n)m1 ·
(1 + n)m2 · rn1 · rn2 mod n2) = ((1 + n)(m1+m2) · (r1 · r2)n mod n2). It follows
that ElGamal and Pailler can instantiate the protocols ΠPEQ, ΠPINEQ and ΠRSPEQ.

http://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf
http://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf
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ElGamal

Key Generation Encryption Decryption

Input: 1λ m ∈ Zp, pk (c1, c2) ∈ Zp × Zp, pk, sk
Steps: Choose a λ-bit prime p,

a generator g of Z∗p and

set h
$← Z∗p

Choose r
$← Z∗p and

compute (c1, c2) = (m ·
pkr, gr)

Compute m = c1
(c2)sk

Output: pk = gh, sk = h (c1, c2) ∈ Zp × Zp m ∈ Zp
Paillier

Key Generation Encryption Decryption

Input: 1λ m ∈ Zn, pk c ∈ Zn2 , pk, sk

Steps: Choose λ-bit primes p
and q and set n = pq

Choose r
$← Z∗n and com-

pute c = (1 + n)m · rn
mod n2

Compute m =
(cφ(n) mod n2)−1

n
· φ(n)−1

mod n

Output: pk = n, sk = φ(n) c ∈ Zn2 m ∈ Zn
Table 4: Summary of ElGamal and Paillier encryption schemes.

B Proofs

Theorem 1. Let Π be a PKE scheme, which is (computationally) randomiz-
able. If Π is used in ΠHPINEQ, then ΠHPINEQ is complete, computationally sound and
perfect HVZK.

Proof. (Completeness). When interacting with an honest verifier, the prover
can compute Decsk(c

′
b) = m′, check whether it is equal to the message encrypted

by c0 or c1 and send the value z so that the verifier always accepts. (Soundness).
Let us define the following algorithm:

GenInstance(1k,R,M): It picks (r0, r1)
$← R2 andm

$←M, generates (sk, pk)←
KGen(1k), c0 ← Encpk(m; r0), c1 ← Encpk(m; r1), and returns (sk, pk, c0, c1).

We recall that ∀ y 6∈ K × C2, the verifier aborts the protocol. It follows that
∀y such that y 6∈ L and y 6∈ K×C2 : Pr[〈B(x),V(z)〉(y) = 1] = 0 for any witness
x and any bit-string z. Furthermore, for all instances y such that y 6∈ L and
y ∈ K×C2, we have that y ∈ {(pk, c0, c1)|(sk, pk, c0, c1)← GenInstance(1k,M)}.
This means that the soundness of the protocol ΠHPINEQ can be proven by showing
that for any witness x, any bit-string z and any instance y = (pk, c0, c1) generated
from the output of GenInstance, Pr[〈B(x),V(z)〉(y) = 1] is negligible.

Let us now define an experiment ExpSoundA that takes a witness x and a tuple
(sk, pk, c0, c1) generated by GenInstance as input, where an adversary A plays one
round of the protocol ΠHPINEQ as a (dishonest) prover against a challenger that
plays the role of an honest verifier. We define A as a pair of p.p.t algorithms
(A1,A2) where A1(x, y) instantiates the dishonest prover and returns a state st,
and A2(st, c′) corresponds to the interaction between the verifier and the prover
(i.e., it takes a challenge c′ as input and returns a response z).
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Game G0 Game G1 Game G2

st← A1(x, (pk, c0, c1)) st← A1(x, (pk, c0, c1)) st← A1(x, (pk, c0, c1))

r
$← R; b

$← {0, 1} r
$←R; b

$← {0, 1} r
$←R; b

$← {0, 1}
c′b ← Rand(cb, r) m← Decsk(c0) m← Decsk(c0)

z ← A2(st, c′b) c′0
$← Encpk(m, r) c′0

$← Encpk(m, r)
if (z = b) return 1 c′1 ← Rand(c1, r) m← Decsk(c1)

else return 0 z ← A2(st, c′b) c′1
$← Encpk(m, r)

if (z = b) return 1 z ← A2(st, c′b)
else return 0 if (z = b) return 1

else return 0

Fig. 10: Sequence of games for ΠHPINEQ.

The experiment ExpSoundA (1k, (x, sk, pk, c0, c1)) runs st ← A1(x, (pk, c0, c1)),

r
$← R; b

$← {0, 1}, c′b ← Rand(cb, r) and z ← A2(st, c′b). If (z 6= b) it returns 0,
otherwise it returns 1.

Next, we prove that for any adversary A, the probability of winning this ex-
periment is negligibly close to 1/2 for any tuple (x, sk, pk, c0, c1). Observe that for
all y such that y 6∈ L and y ∈ K×C2, it holds that y ∈ {(pk, c0, c1) |(sk, pk, c0, c1)
← GenInstance(1k,M)}. Since the protocol is repeated k times, it follows that
for all instances y such that y 6∈ L and y ∈ K × C2, Pr[〈B(x),V(z)〉(y) = 1]
is negligibly close to 1/2k, which means that the soundness probability is also
negligible.

We define a sequence of games (Figure 10) which are played between an adver-
sary A and a challenger, where the first game G0 is ExpSoundA (1k, (x, sk, pk, c0, c1))
for a fixed (x, sk, pk, c0, c1). Considering the adversary’s view, gameG0 represents
a real execution of one round of the protocol ΠHPINEQ. We say that “A wins G0”
when the output is 1. G1 is defined as G0 except that we replace the instruction
c′0 ← Rand(c0, r) by m← Decsk(c0) and c′0 ← Encpk(m; r).

We claim and prove by reduction that: |Pr[A wins G0]− Pr[A wins G1]| ≤
εrand(k) where εrand(k) is the re-randomizability advantage of the encryption
scheme (Definition 10). Let c′ be a ciphertext generated by one of these two

methods: r′
$← R; c′ ← Encpk(m; r′) or r′

$← R; c′ ← Rand(c0, r
′) (where

m = Decsk(c0). We build the distinguisher D(pk, c0, c
′) as follows: D simulates

the protocol ΠHPINEQ for the fixed statement y = (pk, c0, c1), except that if b = 0,
then it sets c′0 = c′. If the proof is accepted then D returns 1, else it returns 0.

• If c′ ← Rand(c0, r
′) then D perfectly simulates G0, so:

Pr[A wins G0] = Pr
[
r′

$← R; c′ ← Rand(c, r′); b← D(pk, c0, c
′); : b = 1

]
• If c′ ← Encpk(m; r′) then D perfectly simulates G1, so:

Pr[A wins G1] = Pr
[
r′

$← R; c′ ← Encpk(m; r′); b← D(pk, c0, c
′); : b = 1

]
which concludes the proof of the claim.

Similarly, G2 is defined as G1 except that we replace the instruction c′1 ←
Rand(c1, r) by m← Decsk(c1) and c′1 ← Encpk(m; r).
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We claim that: |Pr[A wins G1]− Pr[A wins G2]| ≤ εrand(k), which we prove
as in the previous game.

Finally, since m = Decsk(c0) = Decsk(c1) and c′b is always computed from
Encpk(m) in G2, we deduce that c′b does not depend on b, which implies that A
receives no information that depends on b. Therefore, the best strategy of A in
G2 is to guess b at random, so: Pr[A wins G2] = 1

2 .
Based on the indistinguishability of transitions from the given game sequence,

we conclude that if we repeat the protocols k times, the probability thatA breaks

the soundness is negligible and majored by: Pr[A wins G0]k ≤
(
2 · εrand(k) + 1

2

)k
.

(Zero-Knowledge). We define the simulator S(y) where y = (pk, c0, c1). The

simulator S picks b
$← {0, 1} and computes r

$← R and c′b ← Rand(pk, cb, r).
Finally, it returns (c′b, b). The simulator acts as in the real protocol, so it perfectly
simulates the proof.

Theorem 2. Let Π be a PKE scheme, which is perfectly strong randomizable
and derandomizable. Let Γ be a commitment scheme, which is computationally
binding and perfectly hiding. If Π and Γ are used in the protocol ΠPINEQ, then
ΠPINEQ is complete, computationally sound and perfect zero-knowledge.

Proof. (Completeness). SinceΠ is randomizable, the prover can decrypt c′b and
c′1−b to compare the messages with the decryptions of c0 and c1 to determine z.
Hence P commits a value, and V always accepts its proof. (Soundness). Let us
define the following algorithm:
GenInstance(1k,R,M) : It picks (r, r0, r1)

$← R3 and m
$←M, generates (sk, pk)

← KGen(1k), c ← Encpk(m; r), c0 ← Rand(c, r0), c1 ← Rand(c, r1), and
returns (sk, c, r0, r1, pk, c0, c1).
We recall that ∀ y 6∈ K × C2, the verifier aborts the protocol. It follows

that ∀y such that y 6∈ L and y 6∈ K × C2 : Pr[〈B(x),V(z)〉(y) = 1] = 0 for
any witness x and any bit-string z. Since the scheme is perfectly randomiz-
able and derandomizable, the ciphertexts produced by the encryption algorithm
follow the same distribution than the ones produced by the randomization al-
gorithm, which implies that ∀y such that y 6∈ L and y ∈ K × C2, we have
y ∈ {(pk, c0, c1)|(sk, c, r0, r1, pk, c0, c1) ← GenInstance(1k,R,M)}. This means
that the soundness of the protocol ΠPINEQ can be proven by showing that for any
witness x, ∀z and ∀y = (pk, c0, c1) generated from the output of GenInstance,
Pr[〈B(x),V(z)〉(y) = 1] is negligible.

Let us define an experiment ExpSoundA that takes a witness x and a tuple
(sk, c, r0, r1, pk, c0, c1) generated by GenInstance as input. In the experiment, the
adversary A plays one round of the protocol ΠPINEQ as a (dishonest) prover against
a challenger that plays the role of an honest verifier. We define A as a triplet of
p.p.t algorithms (A1,A2,A3) where A1(x, y): instantiates the dishonest prover
and returns st1, A2(st1, c

′
b) corresponds to the first interaction of the protocol

(i.e., it takes a challenge c′b as input and returns a state st2 and the response
comm), and A3(st2, r, b) corresponds to the second interaction (i.e., it takes a
challenge r and b as input and returns a response op).
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Game G0 Game G1

st1 ← A1(x, (pk, c0, c1)) st1 ← A1(x, (pk, c0, c1))

b
$← {0, 1}; r $←R b

$← {0, 1}; r′ $←R; r ← RandR(rb, r
′)

c′b ← Rand(cb, r) c′b ← Rand(c, r′)
(comm, st2)← A2(st1, c

′
b) (comm, st2)← A2(st1, c

′
b)

op← A3(st2, r, b) op← A3(st2, r, b)
if (Open(comm, op) = b) return 1 if (Open(comm, op) = b) return 1
else return 0 else return 0

Fig. 11: Sequence of games for ΠPINEQ.

The experiment ExpSoundA (1k, (x, sk, c, r0, r1, pk, c0, c1)) runs st1 ← A1(x, (pk,

c0, c1)), b
$← {0, 1}, r $← R, c′b ← Rand(cb, r), (comm, st2) ← A2(st1, c

′
b) and

op← A3(st2, r, b). If (Open(comm, op) 6= b) then it returns 0, otherwise 1.

We prove that for any adversaryA, the probability of winning this experiment
is negligibly close to 1/2 for any tuple (x, sk, c, r0, r1, pk, c0, c1). ∀y such that
y 6∈ L and y ∈ K × C2, we have that y ∈ {(pk, c0, c1)|(sk, pk, r0, r1, c0, c1) ←
GenInstance(1k,R,M)}. Moreover, since the protocol is repeated k times, one
can deduce that for all instances y such that y 6∈ L and y ∈ K × C2, it holds
that Pr[〈B(x),V(z)〉(y) = 1] is negligibly close to 1/2k. This means that the
soundness probability is negligible. In Figure 11, we define a sequence of games
between an adversary A and a challenger. For a fixed (x, sk, c, r0, r1, pk, c0, c1),
the game G0 is ExpSoundA (1k, (x, sk, c, r0, r1, pk, c0, c1)).

Considering the adversary’s view, game G0 is a real execution of one round
of ΠPINEQ. We say that “A wins G0” when the output is 1. We define a game
G1 that proceeds as G0 except that we replace the instructions r

$← R and
c′b ← Rand(cb, r) by r′

$← R, c′b ← Rand(c, r′) and r ← RandR(rb, r
′). We

note that since the encryption scheme is strongly randomizable and deran-
domizable, and cb ← Rand(c, rb), it holds that in G1: c = Rand(cb, rb) and
c′b = Rand(cb,RandR(rb, r

′)) = Rand(cb, r). On the other hand, since the encryp-
tion scheme is perfectly strongly randomizable, an element r produced by the
sequence of instructions r′

$← R; r ← RandR(rb, r
′) follows the same distribution

as r
$← R, which implies that Pr[A wins G0] = Pr[A wins G1].

Next, we claim and prove by reduction that
∣∣Pr[A wins G1]− 1

2

∣∣ =
εbinding(k)

2 .
We use the following strategy. In game G1, the challenger can generate a random
coin r for both b = 1 and b = 0 on the same challenge c′ = c′0 = c′1 because

it builds c′b by computing r′
$← R, c′ ← Rand(c, r′), and r by computing r ←

RandR(rb, r
′). To break the soundness of the protocol, A must be able to succeed

in both cases (b = 1 and b = 0) with non negligible probability at each round. If
it is not the case, the advantage of A is bounded by a value that is negligibly close
to 1/2k. We show that if such an adversary exists, we can build an algorithm
that breaks the binding property of the commitment scheme. If the adversary
is able to succeed for both cases (b = 1 and b = 0), then it is able to open its
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commitment comm for two different message z = 0 and z = 1, which is equivalent
to breaking the binding property.

We build an adversary B that has an advantage εbinding(k) on the binding
experiment as follows: B receives ck and simulates the game G1 for b = 0 to
A using ck as commitment key. More formally, B runs st1 ← A1(x, (pk, c0, c1))

r′
$← R, r̂0 ← RandR(r0, r

′), r̂1 ← RandR(r1, r
′), c′ ← Rand(c, r′), (comm, st2)←

A2(st1, c
′), op0 ← A3(st2, r̂0, b), op1 ← A3(st2, r̂1, b). B sets win0 = 1 if and only

if (Open(comm, op0) = 0), and win1 = 1 if and only if (Open(comm, op1) = 1). If
win0 = 1 and win1 = 1, then B returns (comm, op0, op1). Note that in this case,
Open(comm, op0) = 0 6= 1 = Open(comm, op1), so B wins the experiment.

First, we observe that: Pr[A wins G1] = Pr[b = 0] · Pr[win0 = 1] + Pr[b =
1] · Pr[win1 = 1] = 1

2Pr[win0 = 1] + 1
2Pr[win1 = 1].

Let us now set three events E0, E1 and E2 as follows:

– E0 =“Open(comm, op0) = ⊥ or Open(comm, op1) = ⊥”.
– E1 =“Open(comm, op0) 6= Open(comm, op1) and Open(comm, op0) 6= ⊥ and

Open(comm, op1) 6= ⊥”. Note that Pr[E1] = εbinding(k).
– E2 =“Open(comm, op0) = Open(comm, op1) and Open(comm, op0) 6= ⊥ and

Open(comm, op1) 6= ⊥”.

We oberve that Pr[E0] + Pr[E1] + Pr[E2] = 1⇔ Pr[E2] = 1− Pr[E0]− Pr[E1]⇔
Pr[E2] ≤ 1− εbinding(k). Moreover, we have:

Pr[win1 = 1] =
∑2
i=0 Pr[Ei] · Pr[win1 = 1|Ei]

≤ Pr[E1] · Pr[win1 = 1|E1] + Pr[E2] · Pr[win1 = 1|E2]

≤ εbinding(k) · Pr[win1 = 1|E1] + (1− εbinding(k)) · Pr[win1 = 1|E2].

In the case E2, if A wins the case b = 0, it loses the case b = 1. We have
Pr[win1 = 1|E2] = 1−Pr[win0 = 1]. On the other hand, in the case E1, Pr[win1 =
1|E1] = Pr[win0 = 1], which implies that:

Pr[win1 = 1] ≤ εbinding(k) · Pr[win0 = 1] + (1− εbinding(k)) · (1− Pr[win0 = 1])

≤ 1− Pr[win0 = 1] + εbinding(k) · (2 · Pr[win0 = 1]− 1).

This in turns implies that:

Pr[win1 = 1] + Pr[win0 = 1] ≤ 1 + εbinding(k) · (2 · Pr[win0 = 1]− 1)

⇔ 1
2 · Pr[win1 = 1] + 1

2 · Pr[win0 = 1] ≤ 1
2 + εbinding(k) ·

(
Pr[win0 = 1]− 1

2

)
⇔
∣∣Pr[A wins G1]− 1

2

∣∣ ≤ εbinding(k)
2 .

Finally, if the protocol is repeated k times, then we deduce that the sound-

ness probability is: Pr[A wins G0]k = Pr[A wins G1]k ≤
(

1+εbinding(k)
2

)k
. Since

the commitment scheme has the binding property by hypothesis, εbinding(k) is
negligible and so is Pr[Awins G0]k, which concludes the proof of the soundness.

(Zero-Knowledge). Let V∗ be a dishonest verifier. We define a Simulator
SV∗(y) where y = (pk, c0, c1) that perfectly simulates V∗. The simulator S gen-
erates c′b and r as the dishonest verifier V∗.
– If c′b = Rand(cz, rz) where z ∈ {0, 1}, then the simulator runs (comm, op)←

Commit(z) and returns the transcript (c′b, comm, (r, z), op).
– If c′b 6= Rand(cz, rz) where z ∈ {0, 1}, then the simulator picks comm in

the uniform distribution on the commitment set and returns the transcript
(c′b, comm, (r, z),⊥).
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The simulator follows the same distribution as the real protocol. If the verifier
sends a wrong r, then it simulates the prover’s messages using a random com-
mitment comm and the ⊥ symbol. Indeed, since the commitment’s open key
remains unknown, the prover commitment is like a random commitment picked
in the uniform distribution according to the perfect hiding property.

Theorem 3. Let Π be a PKE scheme, which is (computationally) randomizable,
(computationally) message-randomizable and message-random-extractable. If Π
is the scheme used in ΠHPEQ, then ΠHPEQ is complete, computationally sound and
perfect HVZK.

Proof. (Completeness). When interacting with an honest verifier, the prover
can compute Decsk(c

′
b) = m′. Then, given that c0, c1 ∈ Encpk(m) and that the

scheme is message-random-extractable, the prover can always compute z = rM =
MsgRandExt(m′,m) so that the verifier always accepts.
(Soundness). Let us define the following algorithm:

GenInstance(1k,R,M): It picks (r0, r1)
$← R2, m0

$← M and m1
$← M\{m0},

generates (sk, pk) ← KGen(1k), c0 ← Encpk(m0; r0) and c1 ← Encpk(m1; r1),
and returns (sk, pk, c0, c1).
We recall that for all y 6∈ K × C2, the verifier aborts the protocol. Fur-

thermore, for all instances y such that y 6∈ L and y 6∈ K × C2, it holds that
Pr[〈B(x),V(z)〉(y) = 1] = 0 for any witness x and any bit-string z.

On the other hand, for all instances y such that y 6∈ L and y ∈ K × C2, we
stress that y ∈ {(pk, c0, c1)|(sk, pk, c0, c1) ← GenInstance(1k,M)}, which means
that the soundness of the protocol ΠHPEQ can be proven by showing that for any
witness x, any bit-string z and any instance y = (pk, c0, c1) generated from the
output of GenInstance, Pr[〈B(x),V(z)〉(y) = 1] is negligible.

We define an experiment that takes on input a witness x and a tuple (sk, pk, c0,
c1) generated by GenInstance, where an adversary A plays one round of the pro-
tocol ΠHPEQ as a (dishonest) prover with a challenger that plays the role of an
honest verifier. We define A as a pair of p.p.t algorithms (A1,A2):
A1(x, y): This algorithm instantiates the dishonest prover. It returns a state st.
A2(st, c′): This algorithm corresponds to the interaction between the verifier

and the prover. It takes a challenge c′ as input and returns a response z.
The experiment is defined as follows:
ExpSoundA (1k, (x, sk, pk, c0, c1)): compute st ← A1(x, (pk, c0, c1)), r

$← R, rm
$←

RM, b
$← {0, 1}, c′b ← Rand(cb, r), c

′′
b ← MsgRandC(c′b, rm), z ← A(st, c′′b ), if

(z = rm) then return 1, else return 0.
In what follows, we will prove that for any adversary A, the probability of win-
ning this experiment is negligibly close to 1/2 for any tuple (x, sk, pk, c0, c1).
Since for all instances y such that y 6∈ L and y ∈ K × C2, it holds that
y ∈ {(pk, c0, c1)|(sk, pk, c0, c1) ← GenInstance(1k,M)}, and since the protocol
is repeated k times, we will deduce that for all instances y such that y 6∈ L and
y ∈ K × C2, it holds that Pr[〈B(x),V(z)〉(y) = 1] is negligibly close to 1/2k,
which means that the soundness probability is negligible.



Generic Plaintext Equality and Inequality Proofs (Extended Version) 27

We define a sequence of games (Figure 12) which are played between an adver-
sary A and a challenger, where the first game G0 is ExpSoundA (1k, (x, sk, pk, c0, c1))
for a fixed (x, sk, pk, c0, c1). Considering the adversary’s view, game G0 repre-
sents a real execution of one round of the protocol ΠHPEQ. We say that “A wins
G0” when the output is 1.

Game G0 Game G1 Game G2

st← A1(x, pk, c0, c1) st← A1(x, pk, c0, c1) st← A1(x, pk, c0, c1)

r
$←R; rm

$←RM; b
$← {0, 1} r $←R; rm

$←RM; b
$← {0, 1} r $←R; rm

$←RM; b
$← {0, 1}

c′b ← Rand(cb, r) m0 = Decsk(c0) m0 = Decsk(c0)

c′′b ← MsgRandC(c′b, rm) c′0
$← Encpk(m0, r) c′0

$← Encpk(m0, r)
z ← A2(st, c′′b ) c′1 ← Rand(c1, r) m1 = Decsk(c1)

if (z = rm) return 1 else 0 c′′b ← MsgRandC(c′b, rm) c′1
$← Encpk(m1, r)

z ← A2(st, c′′b ) c′′b ← MsgRandC(c′b, rm)
if (z = rm) return 1 else 0 z ← A2(st, c′′b )

if (z = rm) return 1 else 0

Game G3 Game G4

st← A1(x, pk, c0, c1) st← A1(x, pk, c0, c1)

r
$←R; rm

$←RM; b
$← {0, 1} r

$←R; rm
$←RM; b

$← {0, 1}
m0 = Decsk(c0) m0 = Decsk(c0)

c′0
$← Encpk(m0, r) c′0

$← Encpk(m0, r)
m1 = Decsk(c1) m1 = Decsk(c1)

c′1
$← Encpk(m1, r) c′1

$← Encpk(m1, r)

m′0
$←M; c′′0

$← Encpk(m
′
0, r) m′0

$←M; c′′0
$← Encpk(m

′
0, r)

c′′1 ← MsgRandC(c′1, rm) m′1
$←M; c′′1

$← Encpk(m
′
1, r)

z ← A2(st, c′′b ) z ← A2(st, c′′b )
if (b = 0) then return z = MsgRandExt(mb,m

′
b)

return z = MsgRandExt(m0,m
′
0)

else return z = rm

Fig. 12: Sequence of games for ΠHPEQ.

G1 is defined as G0 except that we replace the instruction c′0 ← Rand(c0, r)
by m0 ← Decsk(c0) and c′0 ← Encpk(m0; r).

We claim and prove by reduction that |Pr[A wins G0]− Pr[A wins G1]| ≤
εrand(k) where εrand(k) is the re-randomizability advantage of the encryption
scheme (Definition 10). Let c′ be a ciphertext generated by one of these two

methods r′
$← R; c′ ← Encpk(m0; r′) or r′

$← R; c′ ← Rand(c0, r
′) (where

m0 ← Decsk(c0)). We build the distinguisher D(pk, c0, c
′) as follows: D simu-

lates the protocol ΠHPEQ, except that if b = 0, then it sets c′0 = c′. If the proof is
accepted then D returns 1, else it returns 0.
– If c′ ← Rand(c0, r

′) then D perfectly simulates G0, so:

Pr[A wins G0] = Pr
[
r′

$← R; c′ ← Rand(c0, r
′); b← D(pk, c0, c

′); : b = 1
]
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– If c′ ← Encpk(m0; r′) then D perfectly simulates G1, so:

Pr[A wins G1] = Pr
[
r′

$← R; c′ ← Encpk(m0; r′); b← D(pk, c0, c
′); : b = 1

]
which concludes the proof of the claim.

Similarly, G2 is defined as G1 except that we replace the instruction c′1 ←
Rand(c1, r) by m1 ← Decsk(c1) and c′1 ← Encpk(m1; r). We claim and prove as
before that |Pr[A wins G1]− Pr[A wins G2]| ≤ εrand(k).

Game G3 is defined as G2 except that we replace the instruction c′′0
$←

MsgRand(c′0, rm) by m′0
$←M and c′′0

$← Encpk(m
′
0, r). We claim and prove by re-

duction that |Pr[A wins G2]− Pr[A wins G3]| ≤ εmsgRand(k) where εmsgRand(k) is
the message-randomizability advantage of the encryption scheme (Definition 14).

Let c′′ be a ciphertext generated by one of these two methods m′0
$← M; c′′ ←

Encpk(m
′
0; r′0) or rm

$← RM; c′′ ← MsgRandC(c′0, rm). We build a distinguisher
D(pk, c′0, c

′′) as follows: D simulates the protocol ΠHPEQ, except that if b = 0,
then it sets c′′0 = c′′. If the proof is accepted then D returns 1 , else it returns 0.

– If c′′ ← MsgRandC(c′0, rm) then D perfectly simulates G2, so:

Pr[A wins G2] = Pr

 rm $← RM;
c′′ ← MsgRandC(c′0, rm);
b← D(pk, c′0, c

′′);

: b = 1


– If c′′ ← Encpk(m

′
0; r′0) then D perfectly simulates G3, so:

Pr[A wins G3] = Pr
[
m′0

$←M; c′′ ← Encpk(m
′
0; r′0); b← D(pk, c′0, c

′′); : b = 1
]

which concludes the proof of the claim.
Let us now define G4 as G3 except that we replace the instruction c′′1

$←
MsgRand(c′1, rm) by m′1

$←M and c′′1
$← Encpk(m

′
0, r). By the same argument as

before, it follows that |Pr[A wins G3]− Pr[A wins G4]| ≤ εmsgRand(k).
Finally, in G4, m′0 and m′1 are randomly picked and independent of b. There-

fore, the adversary receives no information that depends on b from c′′b . Since m0

and m1 are different, it follows that the best strategy A has is to guess b, compute
z as z = MsgRandExt(mb,Decsk(c

′′
b )). We conclude that Pr[A wins G4] = 1

2 .
Based on the indistinguishability of transitions from the given game sequence,

we conclude that if we repeat the protocols k times, the probability thatA breaks
the soundness is negligible and majored by:

Pr[A wins G0]k ≤
(

2 · (εrand(k) + εmsgRand(k)) +
1

2

)k
.

(Zero-Knowledge). We define the simulator S(y) where y = (pk, c0, c1). The

simulator S picks b
$← {0, 1}, computes r

$← R, rm $← RM, c′b ← Rand(pk, cb, r)
and c′′b ← MsgRandC(c′b, rm) . Finally, it returns (c′′b , b). The simulator acts as in
the real protocol, so it perfectly simulates the proof.
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Theorem 4. Let Π be a PKE scheme, which is perfectly strong randomizable
and derandomizable, perfectly message-randomizable and message-derandomizable
and message-random-extractable. Let Γ be the commitment scheme, which is
computationally binding and perfectly hiding. If Π and Γ are used in the protocol
ΠPEQ, then ΠPEQ is complete, computationally sound and perfect zero-knowledge.

Proof. (Completeness). If Decsk(c0) = Decsk(c1), a message-randomization of
both ciphertexts will decrypt to the same message m′. Hence, regardless of which
ciphertext the prover receives from the verifier, if it is a message-randomization
of either c0 or c1 and the scheme is message-random-extractable, the prover
can correctly compute z = rm = MsgRandExt(m′,m). It follows that the prover
always opens a commitment for rm so that the verifier accepts.

(Soundness). We define the following algorithm:

GenInstance(1k,R,M): It picks (r, r0, r1)
$← R3, rm,0

$← RM, rm,1
$← RM\{rm,0}

and m
$← M, generates (sk, pk) ← KGen(1k), c ← Encpk(m; r), c′0 ←

MsgRandC(c, rm,0), c
′
1 ← MsgRandC(c, rm,1), c0 ← Rand(c′0, r0), c1 ← Rand

(c′1, r1), and returns (sk, c, r0, r1, pk, c0, c1).

Note that since c′0 and c′1 are message-randomizations of c with two different
coins rm,0 6= rm,1, it holds that Decsk(c

′
0) 6= Decsk(c

′
1) for any (sk, c, r0, r1, pk, c0, c1)

returned by GenInstance. We recall that for all y 6∈ K × C2, the verifier aborts
the protocol. We deduce that for all instances y such that y 6∈ L and y 6∈ K×C2,
it holds that Pr[〈B(x),V(z)〉(y) = 1] = 0 for any witness x and any bit-string z.

On the other hand, since the encryption scheme is perfectly randomizable,
message-randomizable, derandomizable and message-derandomizable, the cipher-
texts produced by the encryption algorithms on random messages follow the
same distribution as the ones produced by the randomization and messages ran-
domization algorithms, which implies that for all instances y such that y 6∈
L and y ∈ K × C2, it holds that y ∈ {(pk, c0, c1)|(sk, c, r0, r1, pk, c0, c1) ←
GenInstance(1k,R,M)}, which means that the soundness of the protocol ΠPEQ

can be proven by showing that for any witness x, any bit-string z and any in-
stance y = (pk, c0, c1) generated from the output of GenInstance, Pr[〈B(x),V(z)〉
(y) = 1] is negligible.

We define an experiment that takes on input a witness x and a tuple (sk, c, r0,
r1, pk, c0, c1) generated by GenInstance, where an adversary A plays one round
of the protocol ΠPEQ as a (dishonest) prover with a challenger that plays the role
of an honest verifier. We define A as a triplet of p.p.t algorithms (A1,A2,A3):

A1(x, y): This algorithm instantiates the dishonest prover. It returns a state st1.
A2(st1, c

′′
b ): This algorithm corresponds to the first interaction between the ver-

ifier and the prover. It takes a challenge c′′b as input and returns a state st2
and the response comm.

A3(st2, (r, rm, b)): This algorithm corresponds to the second interaction between
the verifier and the prover. It takes a challenge (r, rm, b) as input and returns
a response op.

The experiment is defined as follows:
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ExpSoundA (1k, (x, sk, c, r0, r1, pk, c0, c1)): compute st1 ← A1(x, (pk, c0, c1)), b
$←

{0, 1}, r $← R, rm
$← RM, c′b ← Rand(cb, r), c

′′
b ← MsgRandC(c′b, rm),

(comm, st2)← A2(st1, c
′′
b ) and op← A3(st2, (r, rm, b)). If (Open(comm, op) 6=

rm) then return 0, else return 1.
In what follows, we will prove that for any adversary A, the probability of win-
ning this experiment is negligibly close to 1/2 for any tuple (x, sk, c, r0, r1, pk, c0, c1).
Since for all instances y such that y 6∈ L and y ∈ K × C2, it holds that
y ∈ {(pk, c0, c1)|(sk, c, r0, r1, pk, c0, c1) ← GenInstance(1k,R,M)}, and since the
protocol is repeated k times, we will deduce that for all instances y such that
y 6∈ L and y ∈ K × C2, it holds that Pr[〈B(x),V(z)〉(y) = 1] is negligibly close
to 1/2k, which means that the soundness probability is negligible.

We define a sequence of games (Figure 13) which are played between an ad-
versary A and a challenger, where the first game G0 is ExpSoundA (1k, (x, sk, c, r0, r1,
pk, c0, c1)) for a fixed (x, sk, c, r0, r1, pk, c0, c1). Considering the adversary’s view,
game G0 represents a real execution of one round of the protocol ΠPEQ. We say
that “A wins G0” when the output is 1.

Game G0 Game G1

st1 ← A1(x, (pk, c0, c1)) st1 ← A1(x, (pk, c0, c1))

b
$← {0, 1} b

$← {0, 1}
r

$←R r′
$←R

c′b ← Rand(cb, r) c′b ← Rand(c, r′); r ← RandR(rb, r
′)

rm
$←RM r′m

$←RM

c′′b ← MsgRandC(c′b, rm) c′′b ← MsgRandC(c′b, r
′
m)

rm ← MsgRandExt(Decsk(cb),Decsk(c
′′
b ))

(comm, st2)← A2(st1, c
′′
b ) (comm, st2)← A2(st1, c

′′
b )

op← A3(st2, (r, rm, b)) op← A3(st2, (r, rm, b))
if (Open(comm, op) = rm) return 1 if (Open(comm, op) = rm) return 1
else return 0 else return 0

Fig. 13: Sequence of games for ΠPEQ.

We define a game G1 that proceeds as G0 except that:
– We replace the instructions r

$← R and c′b ← Rand(cb, r) by r′
$← R,

c′b ← Rand(c, r′) and r ← RandR(rb, r
′). We note that since the encryption

scheme is strongly randomizable and derandomizable, and cb = Rand(c, rb),
it holds that in G1: c = Rand(cb, rb) and c′b = Rand(cb,RandR(rb, r

′)) =
Rand(cb, r). On the other hand, since the encryption scheme is perfectly
strongly randomizable, an element r produced by the sequence of instruc-
tions r′

$← R; r ← RandR(rb, r
′) follows the same distribution as r

$← R.

– We replace the instructions rm
$← RM and c′′b ← MsgRandC(c′b, rm) by r′m

$←
RM, c′′b ← MsgRandC(c′b, r

′
m) and rm ← MsgRandExt(Decsk(cb),Decsk(c

′′
b )).

We note that since the encryption scheme is message-randomizable and
message-random-extractable, the message encrypted in c′′b is indistinguish-
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able form a message chosen at random inM and it holds that c′′b ← MsgRandC(
Rand(cb, r), rm) in both G0 and G1.

We deduce that Pr[A wins G0] = Pr[A wins G1].

Next, we claim and prove by reduction that
∣∣Pr[A wins G1]− 1

2

∣∣ =
εbinding(k)

2 .
We use the following strategy. In game G1, the challenger can generate a ran-
dom coin r for both b = 1 and b = 0 for the same challenge c′′ = c′′0 = c′′1
because it builds c′′ by computing r′

$← R, c′ ← Rand(c, r′), r′m
$← RM, c′′ ←

MsgRandC(c′, r′m), r ← RandR(rb, r
′) and rm ← MsgRandExt(Decsk(cb),Decsk(c

′′
b )).

To break the protocol’s soundness, the adversary must succeed for both cases
b = 1 and b = 0 with non negligible probability at each round. If it is not the
case, the adversary’s advantage is bounded by a value that is negligibly close to
1/2k. We will show that if such an adversary exists, we can build an algorithm
that breaks the commitment scheme’s binding property. We show that if the
adversary is able to succeed the proof for both cases b = 1 and b = 0, then he is
able to open its commitment comm for two different message z = 0 and z = 1,
which is equivalent to breaking the binding property.

We build an adversary B that has an advantage εbinding(k) on the bind-
ing experiment as follows. B receives ck and simulates the game G1 to A us-
ing ck as commitment key. More formally, B runs st1 ← A1(x, (pk, c0, c1))

r′
$← R, r̂0 ← RandR(r0, r

′), r̂1 ← RandR(r1, r
′), c′ ← Rand(c, r′), r′m

$←
RM, c′′ ← MsgRandC(c′, r′m), r̂m,0 ← MsgRandExt(Decsk(c0),Decsk(c

′′)), r̂m,1 ←
MsgRandExt(Decsk(c1),Decsk(c

′′)), (comm, st2) ← A2(st1, c
′′), op0 ← A3(st2,

(r̂0, r̂m,0, b)), op1 ← A3(st2, (r̂1, r̂m,1), b). B sets win0 = 1 iff (Open(comm, op0) =
0), and win1 = 1 iff (Open(comm, op1) = 1).

If win0 = 1 and win1 = 1, then B returns (comm, op0, op1). Note that in this
case, Open(comm, op0) = 0 6= 1 = Open(comm, op1), so B wins his experiment.

Using the same argument as in the soundness proof of ΠPINEQ, we can prove
that:

Pr[A wins G0]k = Pr[A wins G1]k ≤
(

1 + εbinding(k)

2

)k
.

Since the commitment scheme has the binding property by hypothesis, εbinding(k)
is negligible, so Pr[A wins G0]k, which concludes the proof of the soundness.
(Zero-Knowledge). Let V∗ be a dishonest verifier. In order to prove that the
protocol is zero-knowledge, we define a Simulator SV∗(y) where y = (pk, c0, c1)
that perfectly simulates the interaction with V∗. The simulator SV∗ generates
c′′b , rb and rmb

as the dishonest verifier V∗.

– If c′′b = MsgRandCRand((cb, rb), rmb
) where b ∈ {0, 1}, then the simulator runs

(comm, op)← Commit(rmb
) and returns the transcript (c′b, comm, (rb, rmb

, b), op).
– If c′′b 6= MsgRandCRand((cb, rb), rmb

) where b ∈ {0, 1}, then the simulator
picks comm in the uniform distribution on the commitment set and returns
the transcript (c′b, comm, (rb, rmb

, b),⊥).

The simulator follows the same distribution as the real protocol. When the ver-
ifier sends a wrong pair (r, rm), it simulates the prover messages using a random
commitment comm and the ⊥ symbol. Indeed, since the commitment’s open key
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remains unknown, the prover commitment is like a random commitment picked
in the uniform distribution according to the perfect hiding property.

Theorem 6. Let Π be the PKE scheme used in ΠMATCH. If Π is perfectly random-
izable, perfectly key-randomizable and key-derandomizable, then ΠMATCH is com-
plete, special sound, and perfect zero-knowledge.

Proof. (Completeness). Since c ∈ Encpk(m), when the prover randomizes c into
c′′ after randomizing the keys, it holds that c′′ ∈ Encpk(m). It follows that when
the verifier’s challenge is b = 1, the verifier always accepts the proof. Similarly,
when the verifier’s challenge is b = 0, upon receiving the randomness used by

the prover, the verifier can check that indeed c̃′′ = c′′ and that p̃k
′

= pk′, so it
always accepts the proof as well.
(Special Soundness). Let the two following transcripts t0 =((pk′, c′′), 0, (r, rK))
and t1 =((pk′, c′′), 1, sk′)) for the statement y = (pk, c,m). We assume that t0
and t1 are transcripts of accepted proofs, i.e.,: pk′ = KeyRandPk(pk, rK), c′ =
KeyRandC(c, rK), c′′ = Rand(c′, r) and m = Decsk′(c

′′). We define the knowl-
edge extractor as follows: E(y, t, t′) returns sk = KeyRandSk(sk′, r∗K). We first
note that this algorithm is polynomial-time since computing r∗K from r and run-
ning KeyRandSk are polynomial-time operations. In the following, we prove that
m = Decsk(c). First, we have: c′′ = Rand(c′, r) ⇒ Decsk′(c

′) = Decsk′(c
′′). On

the other hand, we have sk = KeyRandSk(sk′, r∗K), so sk′ = KeyRandSk(sk, rK),
we deduce: pk′ = KeyRandPk(pk, rK) ∧ c′ = KeyRandC(c, rK) ⇒ Decsk′(c

′) =
Decsk(c). Finally, we have: m = Decsk′(c

′′) = Decsk′(c
′) = Decsk(c), which con-

cludes the proof of the special soundness.
(Zero-knowledge). We define the simulator S(y) where y = (pk, c,m). The

simulator S picks b
$← {0, 1}, then:

– If b = 0, the simulator picks r
$← R, generated (pk′, sk′)

$← KGen(1k) and
runs c′′ ← Encpk′(m; r), then it returns the transcript t = ((pk′, c′′), 0, sk′)).

– If b = 1, the simulator picks rK
$← RK and r

$← R, generates pk′ ←
KeyRandPk(pk, rK); sk′ ← KeyRandPk(sk, rK); c′ ← KeyRandC(c, rK); and
c′′ ← Rand(c′, r), then it returns t = ((pk′, c′′), 1, (r, rK)).

Note that in the case b = 1 the simulator follows the same steps as in the real
protocol, so the protocol is perfectly simulated. To prove that the simulator fol-
lows the same distribution as the real protocol {〈P(x),V∗(y)〉(y)} when b = 0, we
define a hybrid distribution H that runs the real protocol, except that it replaces
the instruction c′′ = Rand(c′, r) by c′′ = Encpk′(m). First, we have that the real
protocol is indistinguishable from the distribution H according to the definition
of re-randomization. On the other hand, the distribution H is indistinguishable
from the distribution of the simulator S(y). To show that, we argue that the only
one difference between the two distribution is that (sk′, pk′) are generated from
the key generation algorithm in the simulator, and by key-randomization algo-
rithms on (sk, pk) in H, so the two distribution are indistinguishable according
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to the key-randomization definition. Finally, we deduce that the real protocol
and the simulator produce indistinguishable distribution.

Theorem 5. Let Π be the PKE scheme used in ΠMATCHPEQ. If Π is perfectly
randomizable and derandomizable, perfectly message-randomizable and message-
derandomizable, and if the proof in step three is instantiated by a sigma protocol
that is correct, special sound, and perfectly zero-knowledge, then ΠMATCHPEQ is com-
plete, has statistical witness-extended emulation, and perfect zero-knowledge.

Proof. (Completeness). Note that if c1 and c2 are both encryptions of the same
message m, then c′′1 and c′′2 are both encryptions of m′′. This is because m′′ is a
message-randomization of m and the same rm is used to compute c′′1 , c

′′
2 and m′′.

It follows that if the verifier’s challenge is b = 0, the verifier accepts both proof
and outputs accept. Similarly, if the challenge is b = 1, the verifier will obtain
the same ciphertexts (it uses the same randomness) and so it outputs accept.
We conclude that the verifier always accepts the proof.
(Statistical witness-extended emulation). As this proof system is not a
sigma protocol because the verifier sends several challenges to the prover, it
cannot be special sound. Hence, instead of special soundness, we prove the more
general notion of statistical witness-extended emulation. To prove the statistical
witness-extended emulation, we use the forking lemma given in [5]: let T be an
accepted transcript tree for our protocol, and a statement y, i.e., a tree where
each node is labeled by a message transmitted during the protocol, each node
labeled by a prover message has 2 children labeled by two different challenges,
and any path from the root to any leaf is an accepted transcript. The forking
lemma given in [5] ensures that if there exists an extractor E such that Pr[x←
E(y, T ) : (x, y) ∈ R] is overwhelming, then our protocol is statistical witness-
extended emulation. This can be viewed as a generalization of proofs for special
soundness: each time the verifier sends a challenge, we fork the protocol for two
possible challenges.

We parse T as ((c′′1 , c
′′
2), (0,m′′, T ′), (1, (rm, r1, r2))) where T ′ is a subtree

that contains transcript trees of the two proofs ZK {sk1 : Decsk1(c′′1) = m′′} and
ZK {sk2 : Decsk2(c′′2) = m′′}. Note that we can extract two accepted transcripts
for these two proofs from T ′ such that the two transcripts have the same com-
mitment and two different challenges.

Since our protocol is instantiated with a special sound sigma protocol, there
exists an extractor E ′ that takes theses transcripts in input and returns sk1
and sk2 such that Decsk1(c′′1) = m′′ = Decsk2(c′′2). Our simulator E runs E ′
with the appropriates transcripts, receives sk1 and sk2, returns sk1, sk2. We set
c′1 = MsgRandC(c1, rm) and c′2 = MsgRandC(c2, rm). Since each path of the
tree correspond to an accepted transcript, we have that c′′1 = Rand(c′1, r1) and
c′′2 = Rand(c′2, r2). In the following, we prove that Decsk1(c1) = Decsk2(c2). first,
from message-randomizability, we have, for i ∈ {1, 2}: c′i = MsgRandC(ci, rm)⇒
Decski(c

′
i) = MsgRandM(Decski(ci), rm). Moreover, using re-randomizability of

the encryption scheme, we have: c′′i = Rand(c′i, ri)⇒ Decski(c
′
i) = Decski(c

′′
i ). We
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deduce that Decski(c
′′
i ) = MsgRandM (Decski(ci), rm). Finally, since Decsk1(c′′1) =

Decsk2(c′′2), we have that: MsgRandM(Decsk1(c1), rm) = MsgRandM(Decsk2(c2),
rm) ⇒ MsgRandM(MsgRandM(Decsk1(c1), rM ), r∗m) = MsgRandM(MsgRandM(
Decsk2 (c2), rM ), r∗m) ⇒ Decsk1(c1) = Decsk2(c2). Which concludes the proof of
the statistical witness-extended emulation.
(Zero-knowledge). We define the simulator S(y) where y = (pk1, pk2, c1, c2,m).
Since the two proofs used in the case b = 0 are zero-knowledge by hypothesis,
there exist two simulators S1 and S2 that perfectly simulate the transcripts of
these two proof systems. The simulator S picks b

$← {0, 1}, then:

– If b = 0, the simulator picks m′′
$← M and (r′′1 , r

′′
2 )

$← R2, generates c′′1 ←
Encpk(m

′′; r′′1 ) and c′′2 ← Encpk(m
′′; r′′2 ), then it generates two transcripts t1

and t2 for ZK {sk1 : Decsk1(c′′1) = m′′} and ZK {sk2 : Decsk2(c′′2) = m′′} using
the simulator S1(pk1, c

′′
1 ,m

′′) and S2(pk1, c
′′
1 ,m

′′).

– If b = 1, the simulator picks rm
$← RM and (r1, r2)

$← R2, then it computes
c′1 ← MsgRandC(c1, rm), c′2 ← MsgRandC(c2, rm), c′′1 ← Rand(c′1, r1) and
c′′2 ← Rand(c′2, r2).

Note that in the case b = 1 the simulator follows the same steps as in the real
protocol, so the protocol is perfectly simulated. To prove that the simulator fol-
lows the same distribution as the real protocol {〈P(x),V∗(y)〉(y)} , we define
a hybrid distribution H that runs the real protocol, except that it replaces the
instructions c′′1 ← Rand(c′1, r1) and c′′2 ← Rand(c′2, r2) by c′′1 ← Encpk(m

′′; r1)
and c′′2 ← Encpk(m

′′; r2) respectively. First, we have that the real protocol
is indistinguishable from the distribution H according to the definition of re-
randomization. On the other hand, the distribution H is indistinguishable from
the distribution of the simulator S(y). To show that, we argue that the only
one difference between the two distribution is that m′′ is chosen at random in
the simulator, and is generated by key-randomization algorithms on m using a
random coin rm in H, so the two distribution are indistinguishable according to
the message-randomization definition. Finally, we deduce that the real protocol
and the simulator produce indistinguishable distribution, which concludes the
proof.

Theorem 7. Let Π be the PKE scheme used in ΠSIGPEQ. If Π is perfectly ran-
domizable, perfectly message-randomizable and perfectly key-randomizable, then
ΠSIGPEQ is complete, special sound, and perfect zero-knowledge.

Proof. (Completeness). Since the scheme is perfectly randomizable, perfectly
message-randomizable and key-randomizable the ciphertexts c′′′1 and c′′′2 will both
decrypt using the key sk1 (resp. sk2) to the same message m′, which is a ran-
domization of m with rm. We conclude that all the verifier needs to do is check
the procedures following the same steps, and so it always accepts the proof.
(Special soundness). Let the two following transcripts t0 =((pk′, c′′′1 , c

′′′
2 ), 0,

(r1, r2, rK,1, rK,2, rm)) and t1 =((pk′, c′′′1 , c
′′′
2 ), 1, (sk′1, sk

′
2) for the statement y =
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(pk1, pk2, c1, c2). We assume that t0 and t1 are transcripts of accepted proofs,
i.e., computing:

– c̃′1 ← Rand(c1, r1) and c̃′2 ← Rand(c2, r2),

– p̃k
′
1 ← KeyRandPk(pk1, rK,1) and p̃k

′
2 ← KeyRandPk(pk2, rK,2) ,

– c̃′′1 ← KeyRandC(c̃′1, rK,1) and c̃′′2 ← KeyRandC(c̃′2, rK,2) ,
– c̃′′′1 ← MsgRandC(c̃′′1 , rm) and c̃′′′2 ← MsgRandC(c̃′′2 , rm)

we have:

– (c̃′′′1 = c′′′1 ) and (c̃′′′2 = c′′′2 ),

– (p̃k
′
1 = pk′1) and (p̃k

′
1 = pk′1), and

– (Decsk′1(c′′′1 ) = Decsk′2(c′′′2 ))

We define the knowledge extractor as follows: E(y, t, t′) returns (sk∗1, sk
∗
2) such

that sk∗1 = KeyRandSk(sk′1, r
∗
K,1) and sk∗2 = KeyRandSk(sk′2, r

∗
K,2). We first note

that this algorithm is polynomial-time since computing r∗K,1 and r∗K,2from rK,1
and rK,2, and running KeyRandSk are polynomial-time operations. In the fol-
lowing, we prove that Decsk∗1 (c1) = Decsk∗2 (c2). We set m′′′ = Decsk∗1 (c′′′1 ), then
we have m′′′ = Decsk∗2 (c′′′2 ). We set m′′1 = Decsk∗1 (c̃′′1) and m′′2 = Decsk∗2 (c̃′′2) For
all i ∈ {1, 2}, we have:

c̃′′′i = MsgRandC(c̃′′i , rm)⇒ m′′′ = Decsk′i(c
′′′
i ) = MsgRandM(m′′i , rm)

We deduce that MsgRandM(m′′1 , rm)=MsgRandM(m′′2 , rm),
and since MsgRandM( ·, rm) is bijective, we have that m′′1 = m′′2 . We set m′′ =

m′′1 . Moreover, since sk∗i = KeyRandSk(sk′i, r
∗
K,i) we have sk′i = KeyRandSk(sk∗i , rK,i),

so:
c̃′′i = KeyRandC(c̃′i, rK,i)⇒ m′′ = Decsk′i(c̃

′′
i ) = Decsk∗i (c̃′i)

We deduce that Decsk∗1 (c̃′i) = Decsk∗2 (c̃′2). Finally, we have:

c̃′i = Rand(ci, ri)⇒ m′′ = Decsk∗i (c̃′i) = Decsk∗i (ci)

We deduce that Decsk∗1 (c1) = Decsk∗2 (c2), which conclude the proof of the special
soundness.
(Zero-knowledge). We define the simulator S(y) where y = (pk1, pk2, c1, c2,m).

The simulator S picks b
$← {0, 1}, then:

– If b = 0, the simulator picks m′′
$← M, generates (r1, r2)

$← R the keys

(pk′1, sk
′
1)

$← KGen(1k) and (pk′2, sk
′
2)

$← KGen(1k), and computes c′′′1 =
Encpk′1(m′, r1) and c′′′2 = Encpk′2(m′, r2).

It then returns ((pk′1, pk
′
2, c
′′′
1 , c

′′′
2 ), 0, (sk′1, sk

′
2)).

– If b = 1, the simulator picks (rK,1, rK,1)
$← R2

K , rm
$← RM , (r1, r2)

$← R2

and generates c′1 ← Rand(c1, r1), c′2 ← Rand(c2, r2), pk′1 ← KeyRandPk(pk1, rK,1),
pk′2 ← KeyRandPk(pk2, rK,2), c′′1 ← KeyRandC(c′1, rK,1), c′′2 ← KeyRandC(c′2, rK,2),
c′′′1 ← MsgRandC(c′′1 , rm), and c′′′2 ← MsgRandC(c′′2 , rm).
It then returns ((pk′1, pk

′
2, c
′′′
1 , c

′′′
2 ), 1, (r1, r2, rK,1, rK,2, rm)).
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Note that in the case b = 1, the simulator follows the same steps as in the
real protocol, so it is perfectly simulated. To prove that the simulator follows
the same distribution as the real protocol {〈P(x),V∗(y)〉(y)} , we define the
following hybrid distributions:

– H1 that runs the real protocol, except that it replaces the instructions:
c′1 ← Rand(c1, r1) and c′2 ← Rand(c2, r2) by: c′1 ← Encpk(m; r1) and c′2 ←
Encpk(m; r2). The distribution of H1 is indistinguishable from the distribu-
tion induced by the real protocol. To show that, we argue that the only one
difference between the two distribution is that:
• in the real protocol, c′1 and c′2 are re-randomized
• in H1 c

′
1 and c′2 are fresh ciphertexts of the same message m as c1 and

c2 in H1

So the two distribution are indistinguishable according to the (perfect) re-
randomization definition.

– H2 that runs the same protocol as H1, except that it replaces the instruc-
tions: pk′1 ← KeyRandPk(pk1, rK,1), sk′1 ← KeyRandPk(sk1, rK,1), pk′2 ←
KeyRandPk(pk2, rK,2), sk′2 ← KeyRandPk(sk2, rK,2), c′′1 ← KeyRandC(c′1, rK,1)

and c′′2 ← KeyRandC(c′2, rK,2) by (pk′1, sk
′
1)

$← KGen(1k), (pk′2, sk
′
2)

$← KGen(1k),
c′′1 ← Encpk′(m; r1), and c′′2 ← Encpk′(m; r2). The distribution of H2 is indis-
tinguishable from the distribution of H2 . To show that, we argue that the
only one difference between the two distribution is that:
• in H1 pk′1, pk′2, sk′1, sk′2, c′′1 and c′′2 are obtained by randomization of the

key using the same coin rK in H1

• in H2 (i) (pk′1, sk
′
1) and (pk′1, sk

′
1) are fresh keys and (ii) c′′1 and c′′2 are

obtain by using the same message m and the same coins (r1, r2) as c′1
and c′2 but using the fresh public keys pk′1 and pk′2

So the two distribution are indistinguishable according to the (perfect) key-
randomization definition.

– H3 that runs the same protocol as H2, except that it replaces the instruc-
tions: c′′′1 ← MsgRandC(c′′1 , rm) and c′′′2 ← MsgRandC(c′′2 , rm) by: m′

$← M,
c′′′1 ← Encpk′(m

′; r1), and c′′′2 ← Encpk′(m
′; r2). Note thatH3 and S(y) induce

the same distribution. Moreover, the distribution of H3 is indistinguishable
from the distribution of H2. To show that, we argue that the only one dif-
ference between the two distribution is that:
• in H2 m

′, c′′′1 and c′′′2 are obtained by randomizing the message in m, c′′1
and c′′2 using the same coin rm

• in H3 m
′ is a fresh message encrypted in c′′′1 and c′′′2 using the same

public-key pk′ and the same random coins (r1, r2) as in c′′1 and c′′2
So the two distribution are indistinguishable according to the (perfect) message-
randomization definition.

Theorem 8. Let Π be the PKE scheme used in ΠRSPEQ. If Π is perfectly strong
randomizable, random-extractable, perfectly message-randomizable and random
coin decryptable, then ΠRSPEQ is complete, special sound, and perfect zero-knowledge.
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Proof. (Completeness). Since the scheme is perfectly strong randomizable, per-
fectly message-randomizable and random coin decryptable, the ciphertexts c′′1
and c′′2 will both decrypt using the key r′′1 (resp. r′′2 ) to the same message m′,
which is a randomization of m with rm. We conclude that all the verifier needs
to do is to check the procedure following the same steps, and so it always accepts
the proof.
(Special Soundness). Let t0 = ((c′′1 , c

′′
2), 0, (r′′1 , r

′′
2 )) and t1 = ((c′′1 , c

′′
2), 1, (r′1, r

′
2,

rM)) be two transcripts of accepted proofs for the statement y = (pk1, pk2, c1, c2).
We define the knowledge extractor E(y, t, t′) as follows: it parses t0 and t1 and
returns r∗1 ← RandExt(r′1, r

′′
1 ) and r∗2 ← RandExt(r′2, r

′′
2 ). Since the shceme is

random-extractable and RCD-PKE we have that CDecr∗1 (c1) = CDecr∗2 (c2) which
concludes the proof of special soundness.
(Zero-knowledge). We define the simulator S(y) where y = (pk1, pk2, c1, c2,m).

The simulator S picks b
$← {0, 1}, then:

– If b = 0, the simulator picks m′
$← M, (r1, r2)

$← R, computes c′′1 =
Encpk1(m′, r1) and c′′2 = Encpk′2(m′, r2). It then returns ((c′′1 , c

′′
2), 0, (r1, r2)).

– If b = 1, the simulator picks rm
$← RM , (r′1, r

′
2)

$← R2, and generates
c′1 ← Rand(c1, r

′
1), c′2 ← Rand(c2, r

′
2), c′′1 ← MsgRandC(c′1, rm), and c′′2 ←

MsgRandC(c′2, rm). It then returns ((c′′1 , c
′′
2), 1, (r′1, r

′
2, rm)).

Note that in the case b = 1, the simulator follows the same steps as in the
real protocol, so the protocol is perfectly simulated. To prove that the simulator
follows the same distribution as the real protocol {〈P(x),V∗(y)〉(y)} , we define
the following hybrid distribution:

– H1 that runs the real protocol, except that it replaces the instructions: r′′1 ←
RandR(r1, r

′
1), r′′2 ← RandR(r2, r

′
2), c′1 ← Rand(c1, r

′
1) and c′2 ← Rand(c2, r

′
2)

by: c′1 ← Encpk1(m; r′′1 ), c′2 ← Encpk2(m; r′′2 ). We argue that H1 is indis-
tinguishable from the distribution induced by the real protocol. The only
difference between both distributions is that in the real protocol, c′1 and
c′2 are re-randomized with an r computed by RandR whereas in H1, c′1 and
c′2 are fresh ciphertexts of the same message m (like c1 and c2). Such differ-
ence is indistinguishable according to the perfectly strong re-randomization
definition.

– H2 that runs the same protocol asH1, except that it replaces the instruction:
c′′1 ← MsgRandC(c′1, rm) and c′′2 ← MsgRandC(c′2, rm) by: m′

$← M, c′′1 ←
Encpk1(m′; r′′1 ), and c′′2 ← Encpk2(m′; r′′2 ). Note that H2 and S(y) induce the
same distribution. Moreover, the distribution of H2 is indistinguishable from
the distribution of H1. To show that, we argue that the only one difference
between the two distribution is that:
• in H1 m

′, c′′1 and c′′2 are obtained by randomizing the message m in c′′1
and c′′2 using the same rm.

• in H2 m
′ is a fresh message encrypted in c′′1 and c′′2 using the random

coins (r′′1 , r
′′
2 ).

It follows that the two distributions are indistinguishable according to the
(perfect) message-randomization definition, which concludes the proof.
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