%0 Conference Proceedings %T Feedback control of social distancing for COVID-19 via elementary formulae %+ Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX) %+ ALgèbre pour Identification & Estimation Numériques (AL.I.E.N.) %+ Centre de Recherche en Automatique de Nancy (CRAN) %+ Institut Camille Jordan (ICJ) %A Fliess, Michel %A Join, Cédric %A d'Onofrio, Alberto %< avec comité de lecture %Z CID %B 10th Vienna International Conference on Mathematical Modelling, MATHMOD 2022 %C Vienna, Austria %8 2022-07-27 %D 2022 %Z 2110.01712v2 %K Biomedical control %K COVID-19 %K social distancing %K SIR model %K flatness-based control %K model-free control %K robustness %K identifiability %K algebraic differentiator %Z Life Sciences [q-bio]/Santé publique et épidémiologie %Z Computer Science [cs]/Automatic Control Engineering %Z Computer Science [cs]/Systems and Control [cs.SY] %Z Mathematics [math]/Optimization and Control [math.OC]Conference papers %X Social distancing has been enacted in order to mitigate the spread of COVID-19. Like many authors, we adopt the classic epidemic SIR model, where the infection rate is the control variable. Its differential flatness property yields elementary closed-form formulae for open-loop social distancing scenarios, where, for instance, the increase of the number of uninfected people may be taken into account. Those formulae might therefore be useful to decision makers. A feedback loop stemming from model-free control leads to a remarkable robustness with respect to severe uncertainties and mismatches. Although an identification procedure is presented, a good knowledge of the recovery rate is not necessary for our control strategy. %G English %2 https://polytechnique.hal.science/hal-03547380v1/document %2 https://polytechnique.hal.science/hal-03547380v1/file/CovidMATHMOD22.pdf %L hal-03547380 %U https://polytechnique.hal.science/hal-03547380