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54506 Vandœuvre-lès-Nancy, France
(e-mail: cedric.join@univ-lorraine.fr)

∗∗∗ Institut Camille Jordan, Université Claude Bernard Lyon 1,
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Abstract.– Social distancing has been enacted in order to mitigate the spread of COVID-19. Like
many authors, we adopt the classic epidemic SIR model, where the infection rate is the control
variable. Its differential flatness property yields elementary closed-form formulae for open-loop
social distancing scenarios, where, for instance, the increase of the number of uninfected people
may be taken into account. Those formulae might therefore be useful to decision makers. A
feedback loop stemming from model-free control leads to a remarkable robustness with respect
to severe uncertainties and mismatches. Although an identification procedure is presented, a
good knowledge of the recovery rate is not necessary for our control strategy.
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1. INTRODUCTION

In two years an abundant mathematically oriented lit-
erature has been devoted to the worldwide COVID-19
pandemic. Some of the corresponding calculations had
even a significant political impact (see, e.g., Adam (2020);
Quintana et al. (2021)). Note that in the field of math-
ematical epidemiology of infectious diseases the role of
modeling human behavior became increasingly important
in the last 15 years. It gave birth to a novel research field
named behavioral epidemiology of infectious diseases: see,
e.g., Manfredi & d’Onofrio (2013); Wang et al. (2016).

A novel control technique for improving the social distanc-
ing is presented here. This fundamental topic has already
been tackled by many authors: see, e.g., Al-Radhawi et al.
(2022); Ames et al. (2020); Angulo et al. (2021); Berger
(2022); Bisiacco & Pillonetto (2021); Bliman & Duprez
(2021); Bliman et al. (2021); Bonnans & Gianatti (2020);
Borri et al. (2021); Charpentier et al. (2020); Di Lauro
et al. (2021a,b); Dias et al. (2022); Efimov & Ushiro-
bira (2021); Gevertz et al. (2021); Godera et al. (2021);
Greene & Sontag (2021); Ianni & Rossi (2021); Jing et
al. (2021); Köhler et al. (2021); McQuade et al. (2021);
Morato et al. (2020a,b); Morgan et al. (2021); Morris et
al. (2021); O’Sullivan et al. (2020); Péni et al. (2020);
Pillonetto et al. (2021); Sadeghi et al. (2021); Sontag
(2021); Stella et al. (2022); Tsay et al. (2020). Most of
those papers are based on the famous SIR (Susceptible-
Infected-Recovered/Removed) model, which goes back to
1927 (Kermack & McKendrick (1927)), or on some modi-

fications of its compartments. This communication is also
using the SIR model:

• When, like in several papers, the infection rate is
the control variable, the SIR model is (differen-
tially) flat (Fliess et al. (1995)). Remember that
flatness-based control is one of the most popular
model-based control setting, especially with respect
to concrete applications: see, e.g., Beltran-Carbajal
et al. (2021); Bonnabel & Clayes (2020); Diwold et
al. (2022); Kogler et al. (2022); Li et al. (2021);
Lorenz-Meyer et al. (2020); Miunske (2020); Richter
et al. (2021); Sahoo & Chiddarwar (2020); Sanchez
et al. (2020); Schörghuber et al. (2020); Steckler et
al. (2021); Sekiguchi et al. (2021); Tal & Karaman
(2021); Thounthong et al. (2021); Tognon & Franchi
(2021); Zauner et al. (2021) for some recent publica-
tions. Note that flatness has already been utilized by
Hametner et al. (2021) for studying COVID-19 but
with other purposes.

• There are severe uncertainties: model mismatch,
poorly known initial conditions, . . .We therefore close
the loop around the reference trajectory via model-
free control, or MFC, in the sense of Fliess & Join
(2013, 2021a). MFC, which is easy to implement,
has already been illustrated in a number of practical
situations. Some new contributions are listed here: Gu
et al. (2021); Ismail et al. (2021); Jin et al. (2021);
Kuruganti et al. (2021); Lv et al. (2022); Manzoni
& Rampazzo (2021); Mao et al. (2021); Michel et al.
(2022); Mousavi et al. (2021); das Neves & Angélico
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many authors, we adopt the classic epidemic SIR model, where the infection rate is the control
variable. Its differential flatness property yields elementary closed-form formulae for open-loop
social distancing scenarios, where, for instance, the increase of the number of uninfected people
may be taken into account. Those formulae might therefore be useful to decision makers. A
feedback loop stemming from model-free control leads to a remarkable robustness with respect
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good knowledge of the recovery rate is not necessary for our control strategy.
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1. INTRODUCTION

In two years an abundant mathematically oriented lit-
erature has been devoted to the worldwide COVID-19
pandemic. Some of the corresponding calculations had
even a significant political impact (see, e.g., Adam (2020);
Quintana et al. (2021)). Note that in the field of math-
ematical epidemiology of infectious diseases the role of
modeling human behavior became increasingly important
in the last 15 years. It gave birth to a novel research field
named behavioral epidemiology of infectious diseases: see,
e.g., Manfredi & d’Onofrio (2013); Wang et al. (2016).

A novel control technique for improving the social distanc-
ing is presented here. This fundamental topic has already
been tackled by many authors: see, e.g., Al-Radhawi et al.
(2022); Ames et al. (2020); Angulo et al. (2021); Berger
(2022); Bisiacco & Pillonetto (2021); Bliman & Duprez
(2021); Bliman et al. (2021); Bonnans & Gianatti (2020);
Borri et al. (2021); Charpentier et al. (2020); Di Lauro
et al. (2021a,b); Dias et al. (2022); Efimov & Ushiro-
bira (2021); Gevertz et al. (2021); Godera et al. (2021);
Greene & Sontag (2021); Ianni & Rossi (2021); Jing et
al. (2021); Köhler et al. (2021); McQuade et al. (2021);
Morato et al. (2020a,b); Morgan et al. (2021); Morris et
al. (2021); O’Sullivan et al. (2020); Péni et al. (2020);
Pillonetto et al. (2021); Sadeghi et al. (2021); Sontag
(2021); Stella et al. (2022); Tsay et al. (2020). Most of
those papers are based on the famous SIR (Susceptible-
Infected-Recovered/Removed) model, which goes back to
1927 (Kermack & McKendrick (1927)), or on some modi-

fications of its compartments. This communication is also
using the SIR model:

• When, like in several papers, the infection rate is
the control variable, the SIR model is (differen-
tially) flat (Fliess et al. (1995)). Remember that
flatness-based control is one of the most popular
model-based control setting, especially with respect
to concrete applications: see, e.g., Beltran-Carbajal
et al. (2021); Bonnabel & Clayes (2020); Diwold et
al. (2022); Kogler et al. (2022); Li et al. (2021);
Lorenz-Meyer et al. (2020); Miunske (2020); Richter
et al. (2021); Sahoo & Chiddarwar (2020); Sanchez
et al. (2020); Schörghuber et al. (2020); Steckler et
al. (2021); Sekiguchi et al. (2021); Tal & Karaman
(2021); Thounthong et al. (2021); Tognon & Franchi
(2021); Zauner et al. (2021) for some recent publica-
tions. Note that flatness has already been utilized by
Hametner et al. (2021) for studying COVID-19 but
with other purposes.

• There are severe uncertainties: model mismatch,
poorly known initial conditions, . . .We therefore close
the loop around the reference trajectory via model-
free control, or MFC, in the sense of Fliess & Join
(2013, 2021a). MFC, which is easy to implement,
has already been illustrated in a number of practical
situations. Some new contributions are listed here: Gu
et al. (2021); Ismail et al. (2021); Jin et al. (2021);
Kuruganti et al. (2021); Lv et al. (2022); Manzoni
& Rampazzo (2021); Mao et al. (2021); Michel et al.
(2022); Mousavi et al. (2021); das Neves & Angélico
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(2021); Sancak et al. (2021); Sehili & Boukhezzar
(2022); Srour et al. (2021); Sun et al. (2021); Xu et
al. (2020, 2021); Wang et al. (2022, 2020a); Wang &
Wang (2020b); Zhang et al. (2020, 2021); Zhou et al.
(2021). Let us single out here the excellent work by
Truong et al. (2021) on ventilators, which are related
to COVID-19.

In order to be more specific consider a flat system with
a single input u and a single output y. Assume that y is
a flat output. Our strategy (see also Villagra & Herrero-
Pérez (2012); Fliess et al. (2021b)) may be summarized as
follows:

(1) To any output reference trajectory y� corresponds at
once thanks to flatness an open-loop control u�.

(2) Let z be some measured output. Write z� the cor-
responding reference trajectory. Set u = u� + ∆u,
where ∆u is the control of an ultra-local local model
(Fliess & Join (2013)). Its output ∆z = z − z� is
the tracking error. Closing the loop via an intelligent
controller (Fliess & Join (2013)) permits to ensure
local stability around z� in spite of severe mismatches
and disturbances.

Our paper is organized as follows:

• Section 2 shows that the SIR model, where the
infection rate is the control variable, is flat and the
population of recovered/removed individuals is a flat
output; the recovery rate is identifiable in the sense
of Fliess et al. (2008).

• Section 3 is devoted to a flatness-based control strat-
egy, i.e., to a feedforward approach. Elementary
closed-form of the control and state variables are
easily derived. Various scenarios, where for instance
the number of uninfected persons is increased, may
thus be easily suggested to decision makers.

• Closing the loop via an intelligent proportional regu-
lator, stemming from model-free control, is the sub-
ject of Section 4. Computer simulations confirm an
excellent robustness with respect to severe uncertain-
ties.

• A time-varying recovery rate is estimated in Section
5 via algebraic estimation methods (Fliess et al.
(2008)). Techniques from Section 4 show however
good performances if this rate is wrongly assumed
to be constant.

• Some suggestions for future investigations and somecon-
cluding remarks may be found in Section 6.

2. MODELING ISSUES

2.1 The SIR model

The SIR model (see, e.g., Weiss (2013) for a nice intro-
duction) reads: 


Ṡ = −βIS

İ = βIS − γI

Ṙ = γI

(1)

S, I and R, which are non-negative quantities, correspond
respectively to the fractions of susceptible, infected and
recovered/removed individuals in the population. We may
set therefore

S + I +R = 1 (2)

β, 0 < β ≤ β ≤ β, which is here the control variable, 1

and the parameter γ > 0 are respectively the infection and
recovery rates.

2.2 Flatness

Equations (1)-(2) show that System (1) is flat and thatR is
a flat output (Fliess et al. (1995)). The other system vari-
ables may be expressed as differential rational functions
of R, i.e., as rational functions of R and its derivatives up
to some finite order:

I =
Ṙ

γ
(3)

S = 1−R− Ṙ

γ
(4)

β = − Ṡ

IS
=

1

S

(
İ

I
+ γ

)
(5)

Remark 1. If γ is not constant, but a differentiable func-
tion of time, Equations (3)-(4)-(5) remain valid: System
(1) is still flat and R is still a flat output. Equation (5)
shows however that γ̇ is needed.

2.3 An addendum on the SEIR model

The SEIR model (see, e.g., Brauer & Castillo-Chavez
(2012)) is a rather popular extension of the SIR model:




Ṡ = −βIS

Ė = βIS − αE

İ = αE − γI

Ṙ = γI

(6)

where α > 0 is an additional parameter. Equation (2)
becomes

S + E + I +R = 1. (7)

Equations (6)-(7) show that the SEIR model is also flat
and that R is a flat output:



I =
Ṙ

γ

E =
İ + γI

α
=

R̈+ γṘ

γα

S = 1−R− I − E = 1−R− Ṙ

γ
− R̈+ γṘ

γα

β = − Ṡ

IS

2.4 Identifiability of the recovery rate

Equation (5) yields

γ = βS − İ

I
γ is a differential rational function .of R and β: It is thus
rationally identifiable (Fliess et al. (2008)).

Remark 2. The above equation does not work for an
identifiability purpose if γ is time-varying: γ̇ is sitting

1 Softening social distancing implies increasing β(t).
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I
γ is a differential rational function .of R and β: It is thus
rationally identifiable (Fliess et al. (2008)).

Remark 2. The above equation does not work for an
identifiability purpose if γ is time-varying: γ̇ is sitting

1 Softening social distancing implies increasing β(t).

on its right hand-side. If we assume that I and S are
measured, Equation (4) yields

γ =
İ − βIS

I
(8)

γ is still rationally identifiable with respect to I, S, β. It
will be useful in Section 5.

3. FLATNESS-BASED CONTROL

3.1 Preparatory calculations

Set

Ireference(t) = I0e
−λt

where t ≥ 0, 0 ≤ I0 ≤ 1, and λ ≥ 0 is some constant
parameter. If we set R(0) = 0, it yields

Rreference(t) =
γI0
λ

(1− e−λt)

Sreference(t) = 1− γI0
λ

(
1− e−λt

)
− I0e

−λt

and the open-loop control

βflat(t) =
γ − λ

1− γI0
λ (1− e−λt)− I0e−λt

Thus

lim
t→+∞

βflat(t) =
λ(γ − λ)

λ− γI0
(9)

The following inequalities are staightforward:

γI0 < λ < γ (10)

λ < γ follows from β > 0; γI0 < λ follows from

lim
t→+∞

S(t) = 1− γI0
λ

= S(∞) > 0 (11)

Introduce the more or less precise quantity βaccept, where

β < βaccept < β. It stands for the “harshest” social
distancing protocols which are “acceptable” in the long
run. Equation (9) yields therefore

λ(γ − λ)

λ− γI0
= βaccept

The positive root of the corresponding quadratic algebraic
equation λ2 + (βaccept − γ)λ− γI0βaccept = 0 is

λaccept =
γ − βaccept +

√
∆accept

2

where ∆accept = (γ − βaccept)
2 + 4γI0βaccept ≥ 0. The

fundamental inequality

γI0 < λaccept < γ

follows from

lim
λ↓γI0

λ(γ − λ)

λ− γI0
= +∞, lim

λ↑γ

λ(γ − λ)

λ− γI0
= 0

Equation (11) leads to the notation

Saccept(∞) = 1− γI0
λaccept

The inequality

S(∞) < Saccept(∞) if λ < λaccept

demonstrates that the proportion of uninfected people
decreases if the social distancing obligations are relaxed.

3.2 Two computer experiments

Set γ = 0.1, βaccept = 0.22. Figure 1 displays the open-loop
evolutions of β, I, S when λ = λaccept. Those behaviors
are quite satisfactory.

4. MODEL-FREE CONTROL

4.1 Ultra-local model

Set ∆I(t) = I(t) − Ireference(t), β(t) = βflat(t) + ∆β(t).
In order to take into account the various uncertainties,
introduce the ultra-local model (Fliess & Join (2013))

d

dt
∆I = F + a∆β (12)

• The function F , which is data-driven, subsumes the
poorly known structures and disturbances.

• The parameter a, which does not need to be precisely
determined, is chosen such that the three terms in
Equation (12) are of the same magnitude.

• Fest = − 6
τ3

∫ t

t−τ
((t− 2σ)∆I(σ) + aσ(τ − σ)∆β(σ)) dσ, where

τ > 0 is “small”, gives a real-time estimate, which in
practice is implemented via a digital filter.

4.2 Intelligent proportional controller

Introduce (Fliess & Join (2013)) the intelligent propor-
tional controller, or iP,

∆β = −Fest +KP∆I

a
(13)

where KP is a tuning gain. Equations (12) and (13) yield

d

dt
∆I +KP∆I = F − Fest

Set KP > 0. Then lim
t→+∞

∆I(t) ≈ 0 if the estimate Fest

is “good,” i.e., if F − Fest is “small.” Local stability is
ensured.

Remark 3. When compared to classic PIs and PIDs (see,
e.g., Åström & Murray (2008)), the gain tuning of the iP
is straightforward.

4.3 Computer experiments

The sampling time interval is 2 hours. In Equations (12)
and (13), a = 0.1, KP = 1. Figure 2 displays excellent
results in spite of errors on initial conditions and of
the fuzzy character of any measurement of the social
distancing. This fuzziness is expressed here by an additive
corrupting white Gaussian noise N (0, 5.10−3) on β.

5. ON THE RECOVERY RATE γ

Assume now that γ is a differentiable time function.
Equation (8) yields the algebraic estimator

γest =
[İ]est − βIS

I
(14)

where [İ]est is an estimate of İ obtained along the lines
developed by Mboup et al. (2009) and Othmane et al.
(2021) for algebraic differentiators. Figure 3-c displays
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excellent results. The flatness-based computer experiments
is achieved as in Section 3.2, i.e., γ = 0.1 is assumed to be
constant. Lack of space prevents us from examining more
realistic situations. Closing the loop via model-free control
yields as demonstrated in Figures 3-a-b a satisfactory
behavior. Is the exact knowledge of the recovery rate
unimportant?

6. CONCLUSION

Casella (2021) questions the relevance and usefulness of
such control-theoretic considerations for non-pharmaceu-
tical mitigation policies against COVID-19. We certainly
do not claim to set aside those objections in this prelim-
inary short study. The combination however of flatness-
based and model-free controls presents nevertheless some
major advantages as demonstrated here and by Villagra &
Herrero-Pérez (2012) and Fliess et al. (2021b).

An extra theoretical effort must be made in order to design
control strategy as close as possible to the real epidemic
control enacted by Public Health authorities. Summariz-
ing, we consider this results proposed in this work as a
theoretical ideal framework, to be filled with a more realis-
tic picture: an implementable non-pharmaceutical control
strategy. Preliminary results, which we recently obtained,
indicate that the methodology here proposed is in the right
direction (see Join et al. (2022)).
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excellent results. The flatness-based computer experiments
is achieved as in Section 3.2, i.e., γ = 0.1 is assumed to be
constant. Lack of space prevents us from examining more
realistic situations. Closing the loop via model-free control
yields as demonstrated in Figures 3-a-b a satisfactory
behavior. Is the exact knowledge of the recovery rate
unimportant?

6. CONCLUSION

Casella (2021) questions the relevance and usefulness of
such control-theoretic considerations for non-pharmaceu-
tical mitigation policies against COVID-19. We certainly
do not claim to set aside those objections in this prelim-
inary short study. The combination however of flatness-
based and model-free controls presents nevertheless some
major advantages as demonstrated here and by Villagra &
Herrero-Pérez (2012) and Fliess et al. (2021b).

An extra theoretical effort must be made in order to design
control strategy as close as possible to the real epidemic
control enacted by Public Health authorities. Summariz-
ing, we consider this results proposed in this work as a
theoretical ideal framework, to be filled with a more realis-
tic picture: an implementable non-pharmaceutical control
strategy. Preliminary results, which we recently obtained,
indicate that the methodology here proposed is in the right
direction (see Join et al. (2022)).
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(a) β (b) I (c) S

Figure 1. Open loop control strategy. Trajectories corresponding to two distinct initial conditions for the infectius I0 = 0.05 (single-dashed curves:

-) and I0 = 0.1 (double-dashed curves: - -). Left panel: plot of the transition rate β(t); central panel: plot of the infectious fraction I(t); right

panel: plot of the fraction of susceptible subjects S(t).

(a) β (b) I (c) S

Figure 2. Effect of both errors on initial conditions and of the fuzziness of measurements of social distancing. In all panels, dashed blue line

represent the reference trajectories. Left panel: plot of the transition rate β(t); central panel: plot of the infectious fraction I(t); right panel:

plot of the fraction of susceptible subjects S(t).

(a) β – (blue - -): reference trajectory (b) I – (blue - -): reference trajectory (c) S – (blue - -): reference trajectory

(d) γ (- -) and γest (blue –)

Figure 3. Impact of the estimation of the time-varying recovery rate γ.


