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Abstract

Most current magnetorheological elastomers (MREs) are broadly categorized into hard(h-MREs) and soft(s-
MREs) depending on the magnetic properties of the underlying particles. The former consist of particles
exhibiting strong magnetic dissipation (e.g., NdFeB), while the later are purely energetic (e.g., carbonyl
iron). In this work, we present a unified modeling framework for h-MREs including the response of the
s-MREs as a limiting case when the dissipation is set to zero. In addition, the proposed framework is
dual in the sense of a partial Legendre-Fenchel transform of the magnetic part, i.e., we propose exactly
equivalent models in the F−H and F−B variable spaces. Efficient finite element, numerical solutions for
various boundary value problems (BVPs) involving h- and s-MREs are obtained via incremental variational
principles. The calculations for the end-tip deflection of a uniformly pre-magnetized cantilever exhibit
excellent agreement with the experimental data. The investigations on the remanent fields and the magnetic
actuation performance of hybrid h-/s-MRE rank-1 laminated cantilevers and non-uniformly pre-magnetized,
functionally graded beams are also carried out. The analysis shows that pre-magnetization profiling of the
h-MRE beams allows to program efficiently the deflection patterns upon subsequent application of a small
actuating magnetic field. Furthermore, concentrating the hard-magnetic particles near the beam flanks
reduces the actuation field considerably. The proposed F −H and F −B-based modeling frameworks and
their numerical implementations serve as useful tools in analyzing the magneto-mechanical performance of
the MRE structures made of s- and h-MREs.

1. Introduction

Recent advances in the manufacturing of particle-filled magnetorheological elastomers (MREs) via 3D
printing (Wang et al., 2019; Zhou et al., 2020) and advanced curing techniques (Zhao et al., 2019; Ren et al.,
2019; Alapan et al., 2020) uncover a vast range of opportunities towards designing programmable shape
changing materials and soft robotic manipulators (see the recent review articles by Bira et al. (2020), Bastola
and Hossain (2021) and Lucarini et al. (2022)). Depending on the magnetic properties (e.g., coercivity,
remanence, etc.) of the underlying magneto-active particles, the MRE composites are broadly classified into
two categories, namely “soft” and “hard” MREs ( or s-MRE and h-MRE in short). Moreover, recent works
by Linke et al. (2016) also investigate the performance of the “hybrid” MREs containing both the soft and
hard magnetic particles.

Magnetically soft particles, e.g., iron, exhibit negligible hysteresis loss and demagnetize completely after
the removal of the external magnetic field (Bodelot et al., 2017). The hard magnets, on the other hand,
exhibit ferromagnetic hysteresis and thus do not de-magnetize after removal of the external magnetic field
(Linnemann et al., 2009; Mukherjee and Danas, 2019). This residual magnetic field in the particles is
typically termed as the “remanent” magnetic field. In fact, the commercially-available, hard-magnetic

∗Corresponding authors
Email addresses: dm914@cam.ac.uk (Dipayan Mukherjee), konstantinos.danas@polytechnique.edu (Kostas Danas)

Preprint accepted in Int. J. Solids Struct., (2022), (DOI) March 4, 2022

https://doi.org/10.1016/j.ijsolstr.2022.111513


NdFeB particles of ∼ 5− 20 µm diameter (commercially known as the MQP particles) exhibit considerable
amount of magnetic remanence, and thus, serves as an excellent candidate in the fabrication of h-MREs.

The continuum magneto-elastic modeling considering small strains traces its way back to Brown (1966).
Later, Pao and Hutter (1975) extended this small strain frameworks and incorporated the state-dependent
internal variables in the thermodynamic framework. The finite-strain magneto-elastic modeling framework,
specifically for the s-MREs has been first proposed by Dorfmann and Ogden (2003, 2004) and Kankanala
and Triantafyllidis (2004). A number of phenomenological constitutive models for the s-MREs have been
proposed during the subsequent years. However, a continuum modeling framework for the dissipative h-
MREs has been proposed only recently. Furthermore, in the general sense, the complete dissipative h-MRE
modeling includes the s-MRE as a limiting case; that of vanishing dissipation. This work attempts to
establish a complete unified framework in this regard for both s- and h-MREs.

Currently, depending on the modeling approach, the continuum models for the s- and h-MREs may
be broadly categorized into four classes, namely, (i) phenomenological continuum models, (ii) variational
homogenization-based models, (iii) homogenization-guided phenomenological models and (iv) decoupled
reduced-order models for slender structures. As the name suggests, the last in this list is not a full continuum
model that is independent of the geometry. Thus, classifying them in the same “continuum modeling”
hierarchy may be debatable.

(i) Phenomenological continuum models: The phenomenological, finite strain magneto-elastic models are
typically expressed in terms of a number of material parameters, which need to be calibrated against exper-
imental or numerical data (Kankanala and Triantafyllidis, 2004; Dorfmann and Ogden, 2004, 2005; Danas
et al., 2012). In fact, such phenomenological models for s-MREs are closed-form and thus straightforward
to implement in a fully implicit finite element (FE) solver routine and thus, are typically employed in the
structural deflections and instability analysis involving such materials (Danas and Triantafyllidis, 2014; Keip
and Rambausek, 2016, 2017; Psarra et al., 2017, 2019).

The numerical implementation of the fully nonlinear, coupled phenomenological models for magneto/electro-
active elastomers are indeed involved. In this regard we refer the works of Miehe et al. (2011); Rosato and
Miehe (2014); Ethiraj and Miehe (2016) providing efficient finite-element-based numerical computation al-
gorithms for the active materials.

(ii) Homogenization-based models: The analytical homogenization-based models for the s-MREs based
on the “variational” homogenization (Ponte Castañeda and Galipeau, 2011; Galipeau and Ponte Castañeda,
2013) and the “differential” homogenization (Lefèvre et al., 2017) approaches typically provide an effective
strain energy density in terms of the properties of the underlying constituents and that of the representative
volume element (RVE). However, in contrast to the phenomenological models, the homogenization-based
models are usually implicit, i.e., require a set of additional differential/algebraic constraint equations to be
solved in order to extract the local constitutive response. As a result, this complicates the evaluation of the
jacobian matrix and usually leads to difficult convergence. Consequently, the numerical realization of these
models in a fully implicit FE setting becomes notoriously difficult. Besides the analytical homogenization
estimates, full field numerical homogenization estimates for the s- (Danas, 2017; Rambausek and Keip, 2018;
Mukherjee et al., 2020) and h- (Kalina et al., 2017; Mukherjee et al., 2021) MREs have also been investigated.
However, the numerical homogenization poses several challenges regarding applying a background magnetic
field and extracting the effective magnetostriction responses. These issues can be addressed by suitably
augmenting the variational principle for the numerical homogenization computations (Danas, 2017). In any
case, those analytical and numerical homogenization models include important microstructural information
(e.g., the particle volume fraction or their distributions) and thus can serve as important test-models to
inform, derive and calibrate the previously phenomenological models. In this class of materials, recently
Garcia-Gonzalez and Hossain (2020) have proposed models based on dipole interactions. Those models are
explicit and require a number of terms to resolve the particle interactions. To keep the number of terms
low, simpler periodic lattice microstructures were considered (such as FCC or BCC type) showing very
promising capabilities. Yet, those simpler periodic distributions are not isotropic, while it is not clear if they
are able to reproduce accurately long-range, loss-of-ellipticity and bifurcation effects such as those described
in particle-chain microstructures (Danas and Triantafyllidis, 2014), since they are based on nearest-neighbor,
particle interactions.
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(iii) Homogenization-guided phenomenological models: To avoid the difficulties associated with the phe-
nomenological and homogenization models, a set of recent works propose a “homogenization-guided” mod-
eling approach for the soft (Mukherjee et al., 2020; Lefèvre et al., 2020) and hard (Mukherjee et al., 2021)
MREs. These models are proposed in such a way that they yield the rigorous analytical homogenization
estimates under several limiting conditions, while remaining explicit similar to the purely phenomenological
ones. Consequently, such a modeling strategy drastically reduces the number of calibration parameters,
which are then evaluated by comparing the local model response with the corresponding analytical and/or
numerical homogenization responses. Moreover, these explicit models can be directly implemented in a
fully implicit FE solver to compute the structural responses of the soft (Rambausek and Danas, 2021; Dorn
et al., 2021) and hard (Mukherjee et al., 2021) MRE-based structures under externally applied magnetic
and mechanical fields.

(iv) Reduced-order models: The decoupled, reduced-order models are specifically of interest for the pre-
magnetized, slender h-MRE structures (Kim et al., 2018; Zhao et al., 2019; Garcia-Gonzalez, 2019; Wang
et al., 2020, 2021; Yan et al., 2021a). These class of models, which are directly inspired by numerous earlier
torque-type models (see for instance the monograph of Brown (1966) for magnetized bodies as well as some
earlier Yih-Hsing and Chau-Shioung (1973) and Lum et al. (2016) and more recent Abbott et al. (2007);
Gerbal et al. (2015) models), are distinctly different from the last three classes of s- and h-MRE models in
the sense that they involve no “intrinsic” magnetomechanical coupling, no magnetic dissipation (and thus
are valid for small applied magnetic fields) and require the knowledge of the pre-magnetized state. Yet,
these reduced-order models facilitate straightforward numerical computations for the pre-magnetized beams
and thus, are particularly of interest in designing soft robotic slender devices (Zhao et al., 2019; Wang et al.,
2021).However, it is noted that the key reduced-order modeling assumption of spatially uniform magnetic
fields (Wang et al., 2020; Yan et al., 2021a) may become increasingly inaccurate when the orientation of the
pre-magnetization field varies along the beam’s length (Mukherjee et al., 2021). In that case, the non-uniform
pre-magnetization profile needs to be considered explicitly Yan et al. (2021a).

All the aforementioned finite-strain modeling frameworks consider either a scalar potential-based F−H
(Lefèvre et al., 2017; Lefèvre et al., 2020; Mukherjee et al., 2021) or a vector potential-based F−B (Dorfmann
and Ogden, 2004, 2005; Kankanala and Triantafyllidis, 2004; Danas, 2017) formulation. In fact, the scalar
and vector potential-based models have distinct advantages over one another. For example, being based
on a scalar potential (i.e. one additional degree of freedom), the F −H models allow for a time-efficient
numerical computation schemes (Javili et al., 2013; Mukherjee et al., 2020). The F − B models, on the
other hand, include three additional degrees of freedom thus increasing the time cost of simulations but
instead are based on a minimization variational principle. Thus, the structural stability analysis using the
F−B model becomes advantageous since one can directly attribute the loss of positive definiteness of the
global stiffness matrix to the bifurcation point (Psarra et al., 2017, 2019; Rambausek and Danas, 2021;
Polukhov and Keip, 2021). In addition, in a number of practical device-based applications Dorn et al.
(2021), where actual coils need to be modeled, the F − B models are a natural choice since the electric
currents are physically conjugate to the magnetic vector potential. Evidently, one may employ, in theory, a
partial Legendre-Fenchel transformation to obtain the F−B model energy densities from the F−H model
or vice-versa (Bustamante et al., 2008), but in numerous cases such an operation is not analytical due to
the non-linearity of the constitutive terms.

The objective of this paper is thus twofold. First, we develop dual (in magnetic terms) F−H and F−B-
based continuum formulations for general, dissipative h-MREs and second, we show that a s-MRE model
may be readily obtained as a special case of the h-MRE ones in the limit of vanishing dissipation. In this
view, a single continuum model becomes sufficient to model both h- and s-MREs in a fully consistent manner.
To accomplish that, we first derive the variational principles and derive the local (point wise) constitutive
laws for the F−H and F−B models in a Lagrangian setting in Section 2. Next, specific constitutive choices
for the energy densities and dissipation potentials are provided in Section 3. Specifically, in this section,
we use the recent F−H model of Mukherjee et al. (2021) for the h-MREs to derive its dual F−B model
energy densities via a partial Legendre-Fenchel transform. The model calibration is carried out subsequently
in Section 4, where a coupling parameter is evaluated by fitting the F −H model response with full-field
numerical homogenization results. The local magnetization and magnetostriction responses for the h- and
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s-MREs, emerging from both, F −H and F − B models are shown therein. We subsequently employ the
scalar potential-based F − H and the vector potential-based F − B models for the solution of structural
boundary value problems (BVPs) involving slender structures. Specific details on the remote application of
the magnetic fields and modeling of the surrounding air are discussed in Section 5. Next, we solve BVPs
involving uniformly pre-magnetized h-MRE, s-MRE and hybrid h-/s-MRE cantilever beams as well as some
combinations of non-uniformly pre-magnetized, functionally-graded h-MRE beams in Section 6. Finally,
we conclude by discussing the key features of the proposed models and the implications of the numerically
computed results.

2. Variational framework and constitutive relations

We consider a deformable, magneto-active solid in R3 occupying a volume V0 (V) in its reference (cur-
rent) configuration. The boundary of the solid is designated by ∂V0 (∂V), while N (n) denotes the unit
normal on ∂V0 (∂V) in the reference (current) configuration (see Fig. 1a). The deformation of the solid
from the reference to current configuration is defined to be a continuous, twice differentiable (except on
the boundary/interfaces), one-to-one mapping y(X). Thus, the position of any point X in the reference
configuration is given by x = y(X) in the current configuration. The deformation gradient is then defined
to be F = Grad y, along with J = det F > 0. Furthermore, the mechanical displacement field u(X) re-
lates the current position vector to the reference so that x = X + u(X). Consequently, F relates to u via
F = I + Grad u, where I is the second-order identity tensor.

Next, we derive the governing equations for the primary and internal variables in a Lagrangian setting
from an augmented energy rate functional, which is described in terms of the rate of the stored potential
energy and dissipation potential. First, the scalar potential-based F−H formulation is presented. It would
be followed by the vector potential-based F−B formulation. Throughout the paper, we consider quasi-static
mechanical deformations under no mechanical body force (although this last may be added to solve a BVP
(Dorn et al., 2021)). Moreover, no free space charge or electrical current are considered in the analysis.

2.1. Scalar potential-based F−H formulation

We consider the mechanical deformation u and the scalar magnetic potential ϕ to be the independent
primary variables along with a vector internal variable ξ. Notice that under no spatial current density and
electric field, the local (point wise) Ampere’s law reads Curl H = 0, which, in turn, allows us to express
H in terms of the gradient of a scalar potential, so that H = −Gradϕ. Having said that, the rate of the
potential energy stored in the system, shown in Fig. 1a, reads

ṖH =
d

dt

∫
R3

W H(C,H, ξ) dV0 −
∫
∂V0

T · u̇ dS0. (2.1)

Here, W H(C,H, ξ) is the local potential energy density, where C = FTF is the right Cauchy-Green tensor

and T is the mechanical traction on the boundary ∂V0. The operators ˙(�) and d/dt in (2.1) denote the
material time derivative. Notice that the local energy density W H(F,H, ξ) is non-zero not only in V0 but also
in R3 \ V0, which is typical in the magneto-mechanical formulation (Kankanala and Triantafyllidis, 2004).

The dissipation potential D associated with the solid is also given in terms of the local dissipation
potential D(ξ̇), such that

D =

∫
V0
D(ξ̇) dV0. (2.2)

Notice that the dissipation is only considered in the h-MRE, whereas D(ξ̇) vanishes identically for all
X ∈ R3 \ V0. With these, we propose a variational principle following the seminal works of Onsager
(1931a,b), so that

Π̇H = inf
u̇∈Ũ

sup
ϕ̇∈G̃

inf
ξ̇∈R3

[
ṖH + D

]
. (2.3)
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The admissible sets for u̇ and ϕ̇ are given by

Ũ ≡
{

u̇(X) : Ḟ(X) = Grad u̇(X) ∀ X ∈ R3, and π(u̇(X)) = π(u̇(X)) ∀ X ∈ ∂Vu
0

}
(2.4)

and
G̃ ≡

{
ϕ̇(X) : Ḣ(X) = −Grad ϕ̇(X) ∀ X ∈ R3, and ϕ̇(X) = ϕ̇(X) ∀ X ∈ ∂Vϕ∞

}
, (2.5)

respectively. The operator π in (2.4) denotes a projection operator that enables applying the constraints
only on the certain components on u̇ for all X on the MRE boundary ∂Vu

0 , where the displacement is
constrained to vary with a reference rate u̇. Similarly, the boundary where the magnetic potential ϕ varies
according to a given rate ϕ̇ is denoted as ∂Vϕ∞. Since the magnetic fields are typically applied far away from
the h-MRE sample, we consider ∂Vϕ∞ to be an interface far away from the h-MRE boundary ∂V0. However,
this particular consideration does not affect the generality of the variational principle (2.3).

The stationarity conditions for Π̇H along with the arbitrariness of the considered volume element in V0

leads to the local governing equations and the boundary conditions in this scalar potential formulation.
Thus, straightforward algebraic manipulations (see (Kankanala and Triantafyllidis, 2004) or (Bustamante
et al., 2008) for instance) leads to

Div S = 0 in R3, with S = 2F
∂W H

∂C
and [[S]] ·N −T = 0 on ∂V0 \ ∂Vu

0 , (2.6)

Div B = 0 in R3, with B = −∂W
H

∂H
and [[B]] ·N = 0 on ∂V0, (2.7)

∂W H

∂ξ
+
∂D

∂ξ̇
= 0 for all X ∈ V0, with η =

∂D

∂ξ̇
= −∂W

H

∂ξ
. (2.8)

Here, η is the work conjugate of the internal variable ξ. Equations (2.6)1 and (2.6)2 represent, respectively,
the local balance law and constitutive relation for the first Piola-Kirchhoff stress S, whereas, (2.6)3 represents
the jump condition for S at the h-MRE/Air boundary ∂V0. Similarly, the balance law, constitutive definition
and the boundary condition for B is given in (2.7). Finally, the variational principle also leads to the
generalized standard materials (Halphen and Son Nguyen, 1975) relation (2.8)1, which is, in fact, the local
evolution equation for the internal variable ξ. Notice that unlike the primary variables u and ϕ, the internal
variable ξ does not need to satisfy any differential or boundary constraints. Moreover, the evolution equation
(2.8)1 only holds in the h-MRE domain, i.e., for all X ∈ V0.

Entropy imbalance and constraint on D(ξ̇): The local form of the entropy imbalance equation, also known
as the Clausius-Duhem inequality reads for the F−H model (Mukherjee, 2020; Mukherjee et al., 2021)

S : Ḟ−B · Ḣ− Ẇ H(C,H, ξ) ≥ 0. (2.9)

Expanding the derivative Ẇ H followed by substitutions of the constitutive relations (2.6)1, (2.7)1 and (2.8)1

into (2.9) we obtain
∂D

∂ξ̇
· ξ̇ ≥ 0, (2.10)

which is typically referred to be the dissipation inequality. Notably, any convex D(ξ̇) satisfies the dissipation
inequality, ensuring a positive dissipation during any loading/unloading operation.

2.2. Vector potential-based F−B formulation

Next, we derive the local balance laws and constitutive relations for an equivalent F −B-based formu-
lation. Notice that, the B field is divergence-free and hence is now expressed in terms of a vector potential
A, so that B = Curl A. In this formulation, we consider u and A to be the primary variables, while the
internal variable remains the same, i.e., ξ.
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The rate of total potential energy is then given by

ṖB =
d

dt

∫
R3

W B(C,B, ξ) dV0 −
∫
∂V0

T · u̇ dS0, with W B(C,B, ξ) = sup
H

[
W H(C,H, ξ) + H ·B

]
, (2.11)

which is the partial Legendre-Fenchel transform of W H(C,H, ξ) with respect to H (Bustamante et al., 2008).
The dissipation potential, which is defined only in terms of the rate of the internal variable ξ̇ is considered
to be identical to the F −B formulation as well. Thus, the minimization variational principle in terms of
ṖB and D now reads

Π̇B = inf
u̇∈Ũ

inf
Ȧ∈B̃

inf
ξ̇∈R3

[
ṖB + D

]
, (2.12)

where the admissible set Ũ for the rate u̇ is given by (2.4) and that for Ȧ reads1

B̃ ≡
{

Ȧ(X) : Ḃ(X) = Curl Ȧ(X) ∀ X ∈ R3, and Ȧ(X) = Ȧ(X) ∀ X ∈ ∂VA
∞

}
, (2.13)

where the specific rate Ȧ is considered on the boundary ∂VA
∞ that is far from the Air/MRE interface ∂V0.

Again, the minimizing Π̇B with respect to the rates u̇, Ȧ and ξ̇ leads to the local balance laws, constitutive
relations along with the boundary conditions, so that

Div S = 0 in R3, with S = 2F
∂W B

∂C
and [[S]] ·N −T = 0 on ∂V0 \ ∂Vu

0 , (2.14)

Curl H = 0 in R3, with H =
∂W B

∂B
and N × [[H]] = 0 on ∂V0, (2.15)

∂W B

∂ξ
+
∂D

∂ξ̇
= 0 for all X ∈ V0, with η =

∂D

∂ξ̇
= −∂W

B

∂ξ
. (2.16)

Notice that (2.14) and (2.16) remain identical to (2.6) and (2.8), respectively, with the only difference being
the replacement of W H with W B. The minimization of Π̇B with respect to Ȧ yields the local balance law
(2.15)1, constitutive relation (2.15)2 and the interface/boundary condition (2.15)3 on ∂V0.

The F−B version of the local Clausius-Duhem inequality can be readily obtained by substituting (2.11)2

into (2.9). Subsequently, the dissipation inequality can be derived mutatis mutandis the F −H case. In
fact, the final form of the dissipation inequality remains identical to (2.10), which is obvious since D remains
independent of H or B.

2.3. Current configuration representations of S, H, B and ξ

Push forward transformations of S, H and B: A set of equivalent balance laws can be derived at the
current configuration as well via the local mass-momentum-flux conservation considerations (Kankanala
and Triantafyllidis, 2004; Dorfmann and Ogden, 2004). Of interest, in this work, is to express the current
configuration stress and magnetic field quantities in terms of their referential counterparts and F. Such
expressions can be obtained directly from the equivalence of the balance laws in the reference and current
configurations, so that

σ =
1

J
SFT , b =

1

J
FB and h = F−TH, (2.17)

where σ is the (total) Cauchy stress and b, h are the current configuration equivalents of B and H,
respectively.

1The numerical solution for the three-dimensional vector potential-based BVPs requires an additional constraint on A,
namely, Div A = 0, commonly referred as the Coulomb gauge. The latter is not necessary in two-dimensional problem.
We include Coulomb gauge condition in the admissible set for A in Section 5, where further specialization of the rate-type
variational principles towards numerical implementation is carried out.
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Figure 1: (a) Reference configuration of the h-MRE of volume V0 and boundary ∂V0 along with the surrounding air, occupying
a volume R3 \V0. (b) Definition of the reference, intermediate and current configurations of volume V0, Vi and V, respectively,
along with the different field variables defined therein.

The current magnetization m can be subsequently obtained from the well-known constitutive relation

b = µ0(h + m). (2.18)

We note that some of the earlier works (Kankanala and Triantafyllidis, 2004; Danas et al., 2012) on the
s-MREs also consider m to be the primary variable and therein, the h field is obtained as a dual variable
from the m-based free energy function. However, m is not subject to any differential/boundary constraint,
which, in turn, necessitates an additional unknown field, namely, the vector potential field A to be solved for
in order to obtain a full numerical resolution of the coupled magneto-mechanical boundary value problem
(BVP) (see Appendix A of (Danas, 2017) for details). Thus, here we refrain from a model proposition in
terms of m. Rather, this text considers m to be a derived quantity that is useful in the presentation and
interpretation of the results.

Push forward transformation of ξ: In addition to the push-forward transformations for the primary H
(for F −H model) and B (for F − B model), the proposition for the push-forward transformation of the
internal variable ξ is necessary to complete the independent variable definitions and their mappings between
the different configurations. Since there is no differential or boundary constraint on ξ, the proposition for
its Eulerian counterpart ξ̂ ends up being a mere constitutive choice. This choice, in turn, is made from the
physical nature of the internal variable ξ. As per the typical definitions of the “switching surface”-based
ferromagnetic hysteresis theories (Bassiouny et al., 1988; Huber et al., 1999; Huber and Fleck, 2001; Landis,
2002; Klinkel, 2006; Linnemann et al., 2009; Kalina et al., 2017)2, the magnetic internal variable typically
represents the evolution of the local remanent magnetization, which is the magnetization that remains even
after the applied field is removed. Rigorous full-field numerical homogenization computations considering
three-dimensional, polydisperse particle-filled representative volume elements (RVEs) of the isotropic, nearly
incompressible h-MREs suggest that the current remanent magnetization remains independent of the me-
chanical stretch, but only rotates with the mechanical rotation (Mukherjee et al., 2021) (see also recent
experimental evidence by Yan et al. (2021a)). Thus, we define the current internal variable to be

ξ̂ = Rξ, (2.19)

where R is the rotation tensor obtained from the polar decomposition of F = RU. Thus, the Lagrangian
counterpart ξ of the current internal variable ξ̂ is naturally defined in a stretch-free intermediate configuration

2The works of Bassiouny et al. (1988); Huber et al. (1999); Huber and Fleck (2001); Landis (2002); Klinkel (2006) address the
hysteretic polarization response of ferroelectric ceramics in a small strain setting. Nonetheless, the thermodynamic framework
provided therein is identical to that for the ferromagnetic hysteresis.

7



Vi instead of the reference configuration V0 (see Fig. 1b). Finally, with this observation, we note that with
ξ defined in Vi, the standard materials relations (2.8) and (2.16) are also defined in Vi.

Remark 1. The recent work of Mukherjee et al. (2021) denotes the internal variable ξ as Hr, whose Eulerian
counterpart is denoted via hr. Furthermore, to express the switching surface hysteresis model in the lights
of the well known small strain mechanical plasticity framework, the “total” H and h are considered to be
additively decomposed into an “energetic” and a “remanent” part, so that, H = He+UHr and equivalently
in the current configuration h = he+hr. Notice that Hr like ξ and hr like ξ̂ are defined in the intermediate
and current configurations, respectively. Nonetheless, such an additive decomposition and expression of the
free energy density in terms of He and Hr (or equivalently, he and hr) is a constitutive choice, which is
not adopted in the present paper. Rather, here we directly define ξ to be a remanent magnetization-like
internal variable and propose the free energy densities in terms of the primary H (or B) and ξ.

2.4. Expressions for the total Cauchy stress

Although the constitutive model definitions are complete so far, the expression for the total Cauchy
stress in terms of the current magnetic and mechanical variables are often sought after to gain more insight
to the different stress contributions. Thus, the expressions for σ in terms of B, h, b and ξ̂, where B = FFT

is the left Cauchy-Green tensor, in the F−H and F−B settings are provided in the following.
Cauchy stress in the F−H model : We first express W H in terms of F, H and ξ and subsequently express

it to be W H(F,H, ξ) ≡ wh(B,h, ξ̂) = ρoψ
h(B,h, ξ̂) − (µ0/2)Jh · h, where ψh is the Helmholtz free energy

density associated with the h-MRE. Moreover, we treat the Eulerian fields to be functions of F (or R)

and their referential (or intermediate) counterparts, such tha h = h(F,H) and ξ̂ = ξ̂(R, ξ). With these, a
straightforward algebraic exercise starting from the variational statement (2.3) and utilizing (2.17), (2.19)
leads to (see Appendix A of Mukherjee et al. (2021) for details)

σ =
2ρ0

J

[
∂ψh

∂B

]
h,ξ̂

B︸ ︷︷ ︸
σe

+
2

J det Z

[
Z skw

(
ξ̂ ⊗ η̂

)
VZ

]
︸ ︷︷ ︸

σr

+

[
h⊗ b− µ0

2
|h|2I

]
︸ ︷︷ ︸

σmaxw

, (2.20)

where three distinct components of the total σ, namely the elastic σe, remanent σr and Maxwell σmaxw

stress parts are obtained. In this last expression, we introduce the Eulerian counterpart of η to be η̂ =
−ρ0[∂ψh/∂ξ̂]B,h, such that, η̂ = Rη. Moreover, in (2.20) we use the explicit fourth order tensor expression
for ∂R/∂F from (Chen and Wheeler, 1993), which, in turn, introduces the tensors V and Z defined as

V = FRT and Z = tr[V]I−V. (2.21)

By its very definition from (2.17)1, where S is given by (2.6)2, the total σ is symmetric. However, its
components σe, σr and σmaxw are not, in general, symmetric.

Cauchy stress in the F − B model : Similarly, the expression for total σ in the F − B model can be
obtained by first expressing W B(F,B, ξ) ≡ wb(B,b, ξ̂) = ψb(B,b, ξ̂)− (1/2µ0)Jb ·b with the Helmholtz free

energy density now expressed in terms of B, b = b(F,B) and ξ̂ = ξ̂(R, ξ). The expression for σ from the
variational statement (2.12) and (2.17), (2.19) becomes

σ =
2ρ0

J

[
∂ψb

∂B

]
b,ξ̂

B︸ ︷︷ ︸
σe

+
2

J det Z

[
Z skw

(
ξ̂ ⊗ η̂

)
VZ

]
︸ ︷︷ ︸

σr

+

[
h⊗ b− µ0

2

(
|h|2 − |m|2

)
I

]
︸ ︷︷ ︸

σmaxw

, (2.22)

where η̂ is defined as η̂ = −ρ0[∂ψb/∂ξ̂]B,b. Thus, the expressions for the elastic and remanent Cauchy
stresses remain the same in the F−H and F−B models, of course, the latter has a free energy density ψb,
while the former has ψh in their constitutive relations. Moreover, the hydrostatic part of the Maxwell stress
gets modified in the case of the F −B model, which is in agreement with the existing s-MRE constitutive
models (Kankanala and Triantafyllidis, 2004; Dorfmann and Ogden, 2004; Danas, 2017).
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Next, with a relative abuse in the notations3, we express the non-Maxwell part of σ to be simply the
mechanical Cauchy stress contribution, so that σmech = σe+σr. Of course, not only the mechanical strains,
but also the magnetic remanent fields in the h-MRE contribute to σmech. In fact, the expressions of σr in
(2.20) and (2.22) show that the remanent stress arises whenever the currnet remanent magnetization ξ̂ and
its dual η̂ cease to be parallel. This particular scenario arises during the non-aligned loading of the h-MREs,
leading to a “magnetic torque”-like contribution to the total σ.

The Maxwell stress σmaxw, on the other hand, remains independent of the material properties, while only
depending on the local h and b fields at any point in the continuum. The mechanical and Maxwell parts of
the first Piola-Kirchhoff stress can then be obtained directly via Smech = JσmechF−T and Smaxw = JσmaxwF−T ,
such that S = Smech + Smaxw.

3. Definitions of the energy densities and dissipation potential

This section puts forth the specific energy densities and the dissipation potential for the h-MREs and
shows the limiting cases that yield the corresponding s-MRE models. First, we recall for completeness the
specific energy functions and the evolution law for ξ in the F−H setting following Mukherjee et al. (2021).
This will be followed by the derivation of the equivalent energy density function in terms of F−B.

In particular, here we propose a microstructurally-guided macroscopic continuum model for isotropic,
incompressible h-MREs in terms of several material parameters attributed to the pure elastomeric matrix
or the hard magnetic particle phase and the particle volume fraction. Moreover, the central idea of the
microstructurally-guided modeling remains of its ability to yield a number of analytical homogenization
estimates under different limits of the purely mechanical and magnetic responses.

3.1. F−H model

We now provide the specific forms of W H(C,H, ξ) and D(ξ̇)4 in terms of several invariants, which satisfy
the material frame indifference and material symmetry conditions for the isotropic h-MREs. These invariants
include purely mechanical invariants, namely

I1 = trC, I2 =
1

2

[(
trC
)2 − trC2

]
, J =

√
detC, (3.1)

which are standard in the isotropic hyperelastic material models. Moreover, a set of magneto-mechanical
invariants based on H, ξ and C is defined to be

IHH4 = H ·H, IHξ4 = H · C1/2ξ, Iξξ4 = ξ · Cξ (3.2)

IHH5 = H · C−1H, IHξ5 = H · C−1/2ξ, Iξξ5 = ξ · ξ. (3.3)

While the invariants IHHi (i = 4, 5) are standard in the finite strain modeling of the s-MREs (Javili et al., 2013;
Lefèvre et al., 2017; Mukherjee et al., 2020), the remaining invariants in (3.2) and (3.3) are the additional
invariants introduced in the h-MRE model. All these invariants satisfy the material frame indifference and
the material symmetry conditions. Notably, the I5-based invariants are also referred to be the “purely
magnetic” invariants (Danas, 2017; Mukherjee et al., 2020, 2021; Polukhov and Keip, 2021). This is because
the I5 invariants are expressed only in terms of the current magnetic fields and internal variable (those
written on the current configuration in Fig. 1b), which, in turn, leads to no intrinsic magneto-mechanical
material coupling in the MRE local response under a uniformly applied Eulerian magnetic field. This,
however, does not imply that a solid described only in terms of I5 invariants does not exhibit structural

3Perhaps the best word for this term would have been the stress in the material, i.e., σmat to distinguish it from the Maxwell
part that is present even when there is no material. Nevertheless, for historical reasons we keep here the earlier notations.

4For clarity, we note here that in the earlier work of Mukherjee et al. (2021), the symbol Hr ≡ ξ has been used to denote
the internal variable. Nevertheless, in the present work, we use the same ξ variable for both F −H and F −B formulations
and to avoid any confusion, we have prompted for a neutral symbol.
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coupling, where resulting magnetic fields may be highly non-uniform (see for instance Psarra et al. (2019)
and Dorn et al. (2021)).

We now express the energy density associated with the h-MRE in terms of these invariants. In particular,
W H is considered to be the sum of three distinct energy densities, namely, the pure mechanical, pure magnetic
and coupling free energy density, such that

W H(I1, J, I
Hξ
4 , Iξξ4 , IHH5 , IHξ5 , Iξξ5 ) =


ρ0Ψmech(I1) + ρ0ΨH

mag(I
HH
5 , IHξ5 , Iξξ5 )

+ρ0ΨH
couple(I

Hξ
4 , Iξξ4 , IHξ5 , Iξξ5 )− µ0

2
IHH5 if J = 1

+∞ otherwise,

(3.4)

where ρ0 is the reference density of the solid. The last term µ0I
HH
5 /2 in (3.4) represents the energy associated

with free space with µ0 being the magnetic permeability of vacuum. Thus, even in absence of any material,
the energy density in the magneto-mechanical formulation does not vanish.

The purely mechanical free energy density ρ0Ψmech for the h-MRE is considered to be the analytical
homogenization estimate by Lopez-Pamies et al. (2013) for the two-phase particle-matrix, incompressible
composites, so that

Ψmech(I1) = (1− c)Ψm,mech(I1), I1 =
I1 − 3

(1− c)7/2
+ 3, (3.5)

where c is the particle volume fraction and Ψm,mech is the free energy density of the matrix. Notably, the
homogenization estimate (3.5) holds for any I1-based incompressible particle-matrix composite. Thus, the
choice for the matrix constitutive law remains open in the preset modeling framework. Evidently, Ψmech(I1)
becomes Ψm,mech(I1), i.e., the matrix free energy for c = 0, whereas, Ψmech(I1) tends to +∞ in the limit of
c→ 1, hence, modeling a rigid material.

The introduction of such an incompressible material model necessitates the modification of the consti-
tutive relations (2.6)2 and (2.14)2 for the total stress S to be

S = 2F
∂W H

∂C
+ pF−T , and S = 2F

∂W B

∂C
+ pF−T , (3.6)

respectively, where p is the Lagrange multiplier associated with the incompressibility constraint J = 1. In
practice, p adds on to the local (point wise) number of unknowns to be solved for from the variational
principle. Further discussion on the practical aspects of dealing with incompressibility is provided under
Remark 3.

Next, the magnetic and coupling free energy functions along with the dissipation potential are proposed.
Special care is taken in proposing these functions so that the magnetization response yields several limiting
cases, especially, in the limit of small primary and remanent magnetic fields. In the following we provide
these functions without elaborating on their individual significance. In turn, the main features of the
switching surface hysteresis model and its limiting case yielding the saturation-type non-hysteretic soft
magnetic response will be discussed in Section 3.2.

The pure magnetic free energy is expressed in terms of the I5-based invariants, so that

ρ0ΨH
mag(I

HH
5 , IHξ5 , Iξξ5 ) = −µ0

2
χeIHH5 + µ0(1 + χe)IHξ5 +

µ0

2

(
1− c

3c

)
Iξξ5 +

µ0

c

(ms)2

χrp
fp

(√
Iξξ5

ms

)
, (3.7)

where χrp is the remanent susceptibility of the underlying magnetic particle, whereas the “effective” param-
eters χe and ms for the composite are given in terms of the particle magnetic properties and its volume
fraction c as

χe =
3cχep

3 + (1− c)χep
, ms = c ms

p

(
1 + χep
1 + χe

)
, (3.8)

where χep and ms
p are the particle energetic susceptibility and saturation magnetization (a graphic explanation

of these parameters is provided later in the context of Fig. 2). Moreover, fp(x) is a nonlinear function that
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leads to a saturation-type magnetization behavior. Additionally, fp(x) must satisfy the properties such
that (i) it is smooth and at least twice differentiable for all 0 ≤ x < 1, (ii) f ′p(x) leading to an inverse
saturation (sigmoid) function that tends to +∞ in the limit of x → 1 and (iii) the leading order Taylor
series expansion of fp(x) around x = 0 is 0.5x2. Of course, the specific choices for fp(x) depends on the
saturation response of the (hard/soft) magnetic particles. A couple of specific choices for the hard magnetic
NdFeB and soft magnetic iron particles are provided in Section 4.

Finally, the coupling free energy ΨH
couple is proposed in terms of both, the I4 and I5-based invariants as

defined in (3.2) and (3.3), so that

ρ0ΨH
couple(I

Hξ
4 , Iξξ4 , IHξ5 , Iξξ5 ) = c β(c)µ0

[(
Iξξ4 − I

ξξ
5

)
− 2χe

(
IHξ4 − I

Hξ
5

)]
. (3.9)

Notice that the I4-type “coupling” invariants in W H only appear in the coupling free energy, whereas,
the purely magnetic free energy (3.7) is only a function of the “pure magnetic” or “decoupled” I5-type
invariants. Moreover, the coupling parameter β(c) in (3.9) requires to be calibrated against experimental
data or numerical homogenization estimates. Specifically, we will present the calibration of β(c) against the
full-field numerical homogenization estimates in Section 4. We also note the simple linear dependence on
the invariants of the coupled energy density in (3.9). This will prove extremely useful in obtaining a dual
energy density for the F−B model.

Dissipation potential : It remains to define the dissipation potential D, which along with W H completes
the local constitutive model definitions. Thus, we propose the dissipation potential to be a simple power
law in terms of ξ̇, so that

D(ξ̇) =
n bc

n+ 1
|ξ̇|

n+1
n , with 1 ≤ n < +∞, (3.10)

where bc is the effective coercive field of the composite that is given in terms of the particle coercivity along
with the particle and effective energetic susceptibility, so that

bc = bcp

(
1 + χe

1 + χep

)4/5

, (3.11)

with bcp being the particle ceorcivity. Typically, for a hard-magnetic composite the effective coercivity is
given by bc = bcp (Idiart et al., 2006). Nonetheless, the term multiplying bcp in (3.11) essentially serves as a
correction term for an actual magnet, whose saturation magnetization slope is not identically zero.

The dissipation potential D(ξ̇) in (3.10) is strictly convex (except for n = +∞ that becomes simply

convex), hence, satisfies the dissipation inequality constraint. Moreover, the rate |ξ̇| =

√
ξ̇ · ξ̇ satisfies

the material frame indifference and material symmetry conditions. By observing the experimental data on
magnetic materials, we focus next on a rate-independent ferromagnetic hysteresis model. Thus, we consider
the limiting case n = +∞ at which, the dissipation potential (3.10) becomes D(ξ̇) = bc|ξ̇|, whose derivarive
with respect to ξ̇ is non-unique at |ξ̇| = 0. Hence, we start from the Legendre-Fenchel transform of D, i.e.,
Dη such that

Dη(η) = inf
ξ̇

[
η · ξ̇ − bc|ξ̇|

]
(3.12)

in the rate-independent limit. The minimization condition of the last expression leads to a criterion known
as ferromagnetic switching surface

Φ(η) := η · η − (bc)2 = 0, (3.13)

which must be satisfied during the energy dissipation in a magnetic loading/unloading cycle. With (3.13),
we rephrase the dissipation potential D(ξ̇) by introducing a (non-negative) Lagrange multiplier Λ̇, so that

D(ξ̇) = sup
η

inf
Λ̇≥0

[
η · ξ̇ − Λ̇Φ(η)

]
. (3.14)

In fact, substituting η = bcξ̇/|ξ̇| (the minimization condition of (3.12)) yields exactly D(ξ̇) = bc|ξ̇| but now
with a constraint (3.13), which must be satisfied to make the term Λ̇Φ(η) in (3.14) to vanish.

11



The constrained dissipation potential in (3.14) thus needs to be employed in the variational principle
(2.3) to obtain a set of equations involved in obtaining the evolution of ξ. These stationarity conditions of
(3.14) are

ξ̇ = Λ̇
∂Φ

∂η
, Φ(η) ≤ 0, Λ̇ ≥ 0 and Λ̇Φ = 0, (3.15)

where the latter three is commonly referred to be the Kraush-Kuhn-Tucker (KKT) conditions. With (3.15),
the evolution equation for the internal variable ξ is now fully defined.

3.2. Discussion on the particle and effective hysteresis responses

The definition of the F−H constitutive model becomes complete in terms of fully specifying the energy
(3.4) and the dissipation (3.15) potentials. This section elaborates on the key properties of the hysteresis re-
sponse obtained from the proposed variational principle (2.3). Note that the practical aspects of numerically
solving the equations deriving from (2.3) will be detailed in Section 4.

We first show a representative particle magnetic hysteresis response obtained for c = 1 in Fig. 2a. Both,

Figure 2: (a) Magnetization response under applied uniaxial cyclic h-field h = h1e1. Both, ideal (χe
p = 0) and actual (χe

p > 0)
hysteresis loops are shown along with the slopes of the m−h response before and after switching. (b) Evolution of the internal
variable ξ under the same load for both, actual and ideal hysteresis cases. (c) Magnetization responses for finite and zero
coercivity leading to, respectively, hysteretic and energetic magnetization responses.

ideal (χep = 0) and actual (χep > 0) hysteresis loops are shown on Fig. 2a along with the initial slopes χep
and χrp(1 + χep)

2 + χep of, respectively, the energetic and remanent magnetization. In fact, the remanent
magnetization initiates once the switching criteria Φ(η) = 0 is satisfied. This initiation point is termed as
the “switching point”, which is indicated on Fig. 2a to be h1 = bcp/[(1 +χep)µ0]. The magnetization, after a
subsequent increase following the switching, gradually acquires the effective energetic magnetization slope
of χep. The ideal m− h hysteresis loop, on the other hand, exhibits a magnetization response that saturates
at the saturation magnetization ms

p.
The evolution of the remanent internal variable ξ under the same applied h = h1e1 is shown in Fig. 2b.

The responses shown therein exhibit the qualitative nature of ξ ∼ −m. In fact, for the ideal hysteresis
response the magnetization reads m = −ξ. However, the last relation does not hold for the non-ideal
hysteresis loops and for the coupled magneto-mechanical analysis where C 6= I. Moreover, the slope of the
ξ1 − h1 response immediately after the switching is −χrp for all χep ≥ 0.

Finally, the important limiting case that allows to retrieve the saturation-type reversible magnetization
response from the proposed dissipative framework is shown in Fig. 2c. As pointed out by Mukherjee
and Danas (2019), the switching surface framework leads to the typical saturation-type, non-hysteretic
magnetization response when the coercive field bcp becomes vanishingly small. Specifically, the switching
condition for bcp = 0 leads to η = 0, which, in turn, yields ξ to be an algebraic function of H. Moreover,
this limit — valid mutatis-mutandis for the h-MREs — leads to a non-hysteretic s-MRE model. Thus, the
proposed h-MRE model is shown to be a general modeling framework for the MREs, whose response for
bcp = 0 and χep = 0 leads to a constitutive model for an s-MRE. In fact, substituting η = η̂ = 0 into the
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expressions for σ in (2.20) and (2.22), we observe that the remanent stress σ̆r vanishes identically, recovering
the σ expressions for the s-MREs as derived by Kankanala and Triantafyllidis (2004).

Since the magneto-mechanical coupling at the material level does not affect the magnetization response
of the MRE as a whole (Danas, 2017; Bodelot et al., 2017; Mukherjee et al., 2020, 2021), the hysteresis
response of the composite exhibits the same features as discussed for the particle hysteresis except now the
initial slopes of energetic and remanent magnetization are given in terms of the “effective” susceptibility
measures χe and χr. While χe is given by (3.8)1, we obtain the effective χr while expressing ΨH

mag in the
limit of |ξ| → 0, so that (3.7) becomes

ρ0ΨH
mag(I

HH
5 , IHξ5 , Iξξ5 ) = −µ0

2
χeIHH5 + µ0(1 + χe)IHξ5 +

µ0

2χr
Iξξ5 +O(|ξ|3), χr =

3cχrp
3 + (1− c)χrp

. (3.16)

In fact, these definitions of χe and χr are the classical Maxwell-Garnet homogenization estimates for the
effective susceptibility for the isotropic two phase composites comprising a magnetic and a non-magnetic
phase (Lefèvre et al., 2017). Moreover, the model yields an effective saturation magnetization ms ≈ cms

p

and coercivity bc ≈ bcp, which are, in turn, identical to their respective analytical homogenization estimates
(Lefèvre et al., 2017). Of course, here we introduce suitable correction terms to these analytical estimates
in order to obtain more accurate model response specifically for the h-MREs having χe > 0.

3.3. F−B model

The proposed W H in (3.4) along with the invariants in (3.2) and (3.3) lead to a strictly concave energy
density function in terms of H, i.e., for a given C and ξ, W H is a strictly concave function of H. Consequently,
in order to obtain an equivalent F −B energy density, we seek for a closed form partial Legendre-Fenchel
transform of W H following (2.11)2. Straightforward algebraic manipulations lead to the expression for
W B(C,B, ξ) such that

W B(I1, J, I
ξξ
4 , IBB5 , IBξ5 , Iξξ5 , IBξ6 , Iξξ6 ) =


ρ0Ψmech(I1) + ρ0ΨB

mag(I
BB
5 , IBξ5 , Iξξ5 )

+ρ0ΨB
couple(I

ξξ
4 , IBξ5 , Iξξ5 , IBξ6 , Iξξ6 ) +

1

2µ0
IBB5 if J = 1

+∞ otherwise.

(3.17)

The new B and ξ-based invariants introduced in the last expression are defined as

IBB5 = B · CB, IBξ5 = B · C1/2ξ, IBξ6 = B · C3/2ξ and Iξξ6 = ξ · C2ξ. (3.18)

Notice that the above invariants appear naturally in the course of obtaining the Legendre-Fenchel transform.
The first among these invariants is the standard I5 invariant based on B and C that is employed widely
in the F−B-based s-MRE modeling (Kankanala and Triantafyllidis, 2004; Ponte Castañeda and Galipeau,
2011; Danas et al., 2012; Danas, 2017; Mukherjee et al., 2020). The other invariants in (3.18) are the mixed
or purely remanent ones, which appear only in the modeling of h-MREs. Moreover, the mixed invariants
when expressed in terms of the current quantities (b, ξ̂) reads IBξ5 = b · ξ̂ and IBξ6 = b · Bξ̂, thus, asserting
the fact that I5-based invariants yield no magneto-mechanical coupling under applied Eulerian magnetic
field.

The mechanical free energy Ψmech in (3.17) remains identical to (3.5), whereas the transformed magnetic

free energy ΨB
mag(I

BB
5 , IBξ5 , Iξξ5 ) becomes

ρ0ΨB
mag(I

BB
5 , IBξ5 , Iξξ5 ) = − 1

2µ0

χe

1 + χe
IBB5 + IBξ5 +

µ0

2

(
χe +

1 + 2c

3c

)
Iξξ5 +

µ0

c

(ms)2

χrp
fp

(√
Iξξ5

ms

)
, (3.19)

where all the model parameters along with the function fp(x) remain identical to their respective definitions
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in Section 3.1. Finally, the coupling free energy reads

ρ0ΨB
couple(I

ξξ
4 , IBξ5 , Iξξ5 , IBξ6 , Iξξ6 ) = cβ

[
µ0(1− 2χe)

{
Iξξ4 − I

ξξ
5

}
− 2χe

1 + χe

{
IBξ6 − I

Bξ
5

}]
+ 2µ0

(cβχe)2

1 + χe

{
Iξξ5 + Iξξ6 − 2Iξξ4

}
. (3.20)

Notice further that the particle volume fraction remains limited to c ≤ 0.3 in all the practical applications
of h-MREs (Zhao et al., 2019; Alapan et al., 2020). Consequently, we obtain 0 < χe � 1 for the h-MREs
comprising NdFeB particles. Thus, the last term in the expression for ρ0ΨB

couple in (3.20) turns out to be
substantially smaller than the preceding ones and hence, can be dropped for all practical modeling purposes.
Consequently, the coupling energy in the proposed F−B model simplifies to

ρ0ΨB
couple(I

ξξ
4 , IBξ5 , Iξξ5 , IBξ6 , Iξξ6 ) = cβ(c)

[
µ0(1− 2χe)

{
Iξξ4 − I

ξξ
5

}
− 2χe

1 + χe

{
IBξ6 − I

Bξ
5

}]
. (3.21)

With this, the definition of the F−B based energy density becomes complete. Notice that the dissipation
potential defined via (3.10) is independent of H and thus, remains the same for the F−B model. Hence, here
also, the switching surface and the evolution equation for ξ are defined via (3.13) and (3.15), respectively.

Being the closed-form Legendre-Fenchel transform of the F−H model, the derived F−B model exhibits
the exact same features discussed in Section 3.2. Consequently, no further calibration of β(c) parameter is
needed in (3.21). Specific comparisons between the local responses of the F−H and F−B models will be
shown next following three remarks.

Remark 2. A similar exercise of proposing equivalent, explicit models exclusively for the s-MREs has been
carried out by Mukherjee et al. (2020). Being non-dissipative in nature, those s-MRE models were proposed
entirely in terms of F−H or F−B invariants. Consequently, the pure magnetic and coupling energy functions
need to become notoriously nonlinear in terms of H (or B) in order to capture the magnetic saturation and
magnetostriction responses. Thus, a closed form Legendre-Fenchel transformation of the F−H-based energy
density in terms of F−B or vice-versa was not possible in that study. In contrast, in the present work of a
“more general” h-MRE model, the nonlinear saturation-type magnetization and magnetostriction responses
are modeled in terms of the internal variable ξ, while the “energetic” magnetization and magnetostriction
before switching remain linear in H (or B). This key feature of the h-MRE models makes the energy density
W H (or W B) strictly concave (or convex) in terms of the primary H (or B), thus, admitting a closed form
Legendre-Fenchel transform. Hence, the equivalent F −H and F −B-based energy densities are obtained
in closed forms for the more general case of h-MREs as well as for the limiting case of s−MREs.

Remark 3. The limiting case of c = 0 leads to the energy densities associated with the non-magnetic
elastomer for both, F −H and F −B models. Specifically, the condition c = 0 leads to the magnetic free
energies (for both the models) so that

ρ0ΨH/B
mag =

{
+∞ if ξ 6= 0,

0 if ξ = 0.
(3.22)

This condition essentially constraints ξ to remain 0 for c = 0. Thus, the dissipation potential (3.10) vanishes
and the energy densities for the F−H and F−B models read, respectively, W H

c=0 = ρ0Ψmech(I1)− (µ0/2)IHH5

and W B
c=0 = ρ0Ψmech(I1) + (1/2µ0)IBB5 . The limit of c → 1, on the other hand, leads to the mechanically

rigid hard-magnetic particle response, essentially yielding the pure magnetic switching surface model.

Remark 4. We note that the quasi incompressible equivalents of the proposed incompressible models are
often useful in the numerical computations. Thus, we extend the proposed F −H and F −B-based MRE
models in a rather ad-hoc way so that the energy densities read

W H
comp(I1, J, I

Hξ
4 , Iξξ4 , IHH5 , IHξ5 , Iξξ5 ) = ρ0Ψcomp

mech(I1, J) + ρ0ΨH
mag(I

HH
5 , IHξ5 , Iξξ5 )

+ ρ0ΨH
couple(I

Hξ
4 , Iξξ4 , IHξ5 , Iξξ5 )− µ0

2
JIHH5 (3.23)
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and

W B
comp(I1, J, I

ξξ
4 , IBB5 , IBξ5 , Iξξ5 , IBξ6 ) = ρ0Ψcomp

mech(I1, J) + ρ0ΨB
mag(I

BB
5 , IBξ5 , Iξξ5 )

+ ρ0ΨB
couple(I

ξξ
4 , IBξ5 , Iξξ5 , IBξ6 ) +

IBB5

2µ0J
, (3.24)

respectively. The term Ψcomp
mech(I1, J) in (3.23) and (3.24), given by

ρ0Ψcomp
mech(I1, J) = (1− c)ρ0Ψm,mech(Icomp1 ) +

G′m
2(1− c)6

(J − 1)2, Icomp1 =
I1 − 3− 2 lnJ

(1− c)7/2
+ 3, (3.25)

is the nearly incompressible approximation of the analytical effective mechanical free energy density (3.5).
We typically set the Lamé parameter G′m > 500Gm, which ensures a nearly incompressible response delivering
J ≈ 1.

4. Local magneto-mechanical response

The local (point wise) model response is now computed for both, F−H and F−B models and compared
to the numerically computed effective response for the h- and s-MREs. The numerical homogenization com-
putations for the effective response are carried out via considering three-dimensional RVEs having spherical
particle inclusions, which are either hard or soft magnets. The local energy densities for the elastomer and
particle phases in the RVE are obtained directly by substituting c = 0 and c = 1 in the proposed model,
respectively (see the discussion under Remark 3 for the energy density functions with c = 0). In particular,
we use the scalar potential-based F−H model in the RVE computations to reduce the computational cost.
The reader is referred to (Mukherjee et al., 2020, 2021) for the details on the numerical homogenization
computations and its artifacts.

The following provides specific choices for the matrix hyperelastic model, the magnetic particle hardening
function fp and the magnetic material parameters, which are then employed in comparing the macroscopic
model and microscopic RVE computed results. Note that the following choices remain the same for both,
F−H and F−B models.

4.1. Choice of matrix hyperleastic model

The hyperelastic matrix is considered to be a simple I1-based, incompressible Neo-hookean material, so
that the free energy density associated with it reads

Ψmech,m(I1) =
Gm

2
(I1 − 3), (4.1)

where Gm is the shear modulus of the matrix. Of course, the numerical RVE computations considers a nearly
inompressible equivalent of (4.1) given by

Ψcompr
mech,m(I1, J) =

Gm

2
(I1 − 3− 2 lnJ) +

G′m
2

(J − 1)2. (4.2)

In fact, one can derive the last equation directly by substituting c = 0 in (3.25). We set G′m = 500Gm to
obtain all the FE computed results to follow.

4.2. Choice of magnetic particle models

We choose the hard and soft magnetic parameters along with the non-linear hardening functions fp for
the respective cases. While the rare earth-based NdFeB particles (commercially known as MQP particles)
are the most used filler in the h-MREs (Kim et al., 2018; Zhao et al., 2019; Ren et al., 2019; Alapan et al.,
2020), the s-MREs typically contain the carbonyl iron particles (CIPs) as a filler (Danas et al., 2012; Bodelot
et al., 2017; Psarra et al., 2017; Dorn et al., 2021).
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We first fit the model hysteresis response to the experimental NdFeB hysteresis data to obtain the model
parameters. Specifically, Mukherjee and Danas (2019) show that the function

fp(x) = fhard(x) = −
[
x+ ln(1− x)

]
, 0 ≤ x < 1 (4.3)

in (3.7) (or (3.19)) describes best the saturation response of the NdFeB particles.
The soft CIPs, on the other hand, exhibit a Langevin-type saturation (Psarra et al., 2017; Bodelot

et al., 2017; Danas, 2017), which is a stiffer saturation function compared to x/(1 + x) that is obtained
from (4.3) (Mukherjee and Danas, 2019). Thus, a different fp(x) must be employed for the s-MREs, so
that f ′p(x) = L−1(x), where L−1(x) is the inverse Langevin function. Unfortunately, L−1(x) has no unique

algebraic expression. Nevertheless, we use the expression5

fp(x) = fsoft(x) = −1

3

[
x− x2 +

x3

3
+ ln(1− x) + cos(3.5x)

{
0.0571x2 − 0.0093

}
− 0.0327x sin(3.5x) + 0.0093

]
, (4.4)

which is smooth differentiable for all 0 ≤ x < 1 (see Fig. 3a). For comparison we plot the fp(x) and f ′p(x)
for both, the hard and soft magnets in Fig. 3a and b, which clearly shows that f ′soft approaches +∞ slower
than f ′hard. This property, in turn, yields a more “gradual” saturation in the hard magnets as compared to
the soft magnetic counterpart. Nevertheless, the initial slope near x = 0 remains the same for both f ′hard

Figure 3: Comparison of the (a) hardening functions fp(x) and (b) their derivatives f ′p(x) for the and soft magnetic particles.

and f ′soft, thus, ensuring the same initial susceptibility of χrp given χep = 06.
Once the hardening function is selected, we calibrate the coercivity, susceptibilities and the saturation

magnetization parameters from available experimental data by fitting the model response employing a least
square-based fitting algorithm (see (Mukherjee and Danas, 2019) for details). These calibrated parameters
for the NdFeB and iron particles are given in Table 1.

Table 1: Magnetic properties of the particles

χep χrp µ0m
s
p (T) bcp (T) µ0 (µN ·A−2)

NdFeB (hard) 0.105 8.0 0.84 1.062 4π10−1

Carbonyl iron (soft) 0.0 30.0 2.5 0.001 4π10−1

5The function is chosen such that f ′soft(x) becomes f ′soft(x) = x+0.067x2 sin(3.5x)+0.33x3/(1−x), which is the approximate
inverse Langevin function proposed by Petrosyan (2016).

6The function fsoft(x) in (4.4) does not reduce exactly to 0.5x2 +O(x3) in its Taylor series expansion. Nevertheless, Fig. 3b
shows that the slopes of f ′soft and f ′hard remain nearly the same near x = 0. Moreover, both functions yield a qualitatively
similar overall behavior.
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4.3. Computation of the local model response

The local magnetization and magnetostriction (strain induced by the local particle-to-particle interactions
in the composite) responses are obtained from the proposed constitutive models via solving for the stretch
components λi (i = 1−3) and the magnetic primary variable (H or B depending on the model) components
from the equations

S11 − Smaxw
11 = S22 − Smaxw

22 = S33 − Smaxw
33 = 0 and h1 − ha = h2 = 0, (4.5)

where ha is the applied Eulerian h-field. Moreover, we consider Fij = 0 for all i 6= j in this particular
case of uniaxial loading/unloding. Specifically, we consider a purely magnetic uniaxial loading along e1.
The variation of h1 with time is considered to be a simple ramp-type increase to the maximum h1 and
subsequently decrease to the minimum h1. However, the temporal profile of the magnetic loading remains
inconsequential in the proposed rate-independent MRE models. The evolution of the internal variable ξ is
computed numerically solving (3.15) with a fully implicit Newton-Raphson solution method (see Chapter 4
of (Mukherjee, 2020) for details).

We emphasize that the Maxwell stress Smaxw must be subtracted from the total stress S to capture the
actual magento-mechanical coupling at the material level. A detailed explanation for this manipulation
is provided by Danas (2017) and Mukherjee et al. (2021) in the context of s- and h-MREs, respectively.
Thus, in this text we refrain from discussing any further details on the significance of (4.5) for brevity. In
particular, we use the relevant expressions for Smaxw as provided in Section 2.4 in the context of F−H and
F−B-based constitutive modeling.

4.4. Calibration for the coupling β parameter

The proposed F −H and F − B model responses are compared with the full-field numerical homoge-
nization response in Fig. 4 for c = 0.1, 0.2 and 0.3. Here we consider a representative Gm = 0.5 MPa, which
corresponds to the shear modulus of the PDMS elastomer. Notice in Fig. 4a that the saturation magneti-

Figure 4: Comparison of the local (a) magnetization, (b) parallel and (c) transverse magnetostriction responses from the F−H
and F − B models with the numerical homogenization estimates. The h-MRE is subjected to an uniaxial cyclic h-field of
magnitude |h1| = 3ms

p and the results for three different particle volume fractions of c = 0.1, 0.2 and 0.3 are shown.

zation of the h-MREs increases in an almost linear fashion with c, which resembles closely to the s-MREs
responses (Lefèvre et al., 2017; Danas, 2017; Mukherjee et al., 2020). The coercivity bc of the composite,
however, undergoes very little change with the increase in c. Nonetheless, the effective susceptibilities χe

and χr also increase with c, which can be observed clearly from Fig. 4a. Overall, the model predictions for
the magnetization in the h-MRE match perfectly with the numerically computed effective response.

The local magnetostriction responses, on the other hand, exhibit a butterfly-shaped hysteresis loop with
the applied cyclic magnetic field (see Fig. 4b and c). This response is essentially controlled by the coupling
parameter β, which is calibrated from the numerically computed magnetostriction responses to be

β = 19.0c2 − 10.4c+ 1.71 (4.6)
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by considering the proposed F−H model (Mukherjee et al., 2021). Being the closed form complementary
energy density, the F−B model does not need any further calibration. Thus, the same β parameter is used
for the F−B model, yielding excellent match with the numerical homogenization response.

4.5. Soft MRE model response

Finally, we probe the calibrated model response against another set of numerically computed effective
response but now for the case of s-MREs with carbonyl iron particle inclusions. Specifically, we consider a
Gm = 0.3 MPa along with the soft magnetic particle parameters shown in Table 1 and the coupling parameter
as in (4.6). The microscopic computations of the effective response for this particular case is detailed in
(Mukherjee et al., 2020).

Figure 5: Comparison of the local (a) magnetization, (b) parallel and (c) transverse magnetostriction responses from the F−H
and F − B models with the numerical homogenization estimates. The s-MRE is subjected to an uniaxial cyclic h-field of
magnitude |h1| = 0.5ms

p and the results for three different particle volume fractions of c = 0.1, 0.2 and 0.3 are shown.

We plot the numerical FE response from (Mukherjee et al., 2020) along with the model magnetization
and magnetostriction responses in Fig. 5a and b,c, respectively. Besides the excellent agreement between the
numerical homogenization computations and the model predictions, we observe two key differences between
the s- and h-MREs by comparing Figures 4 and 5. Firstly, and the obvious is the absence of hysteresis in
the s-MREs. Moreover, the latter tends to saturate at a lower applied h1, while the former never saturates
to a constant magnetization.

5. Time discrete variational principles — solution of the boundary value problems

The rate-type variational principles for the F −H and F − B models in Section 2 are now expressed
in a time discrete form to analyze any practical boundary value problem (BVP) involving MREs. First,
the scalar potential-based F − H model is present in a time discrete form. This will be followed by the
specification of the corresponding vector potential-based F−B model.

5.1. Time discrete variational principle for F−H model

The scalar potential-based F−H model needs to be solved for the displacement u and potential ϕ, such
that F = I + Gradu and H = −Gradϕ both satisfy the relevant Dirichlet boundary conditions. Specifically
in the incremental setting of a numerical solution, we consider the state of the continuum to be known
at a time t, from which we solve for the minimizing fields u and ϕ for the next time step τ = t + ∆t.
We henceforth indicate all the variables with the subscripts “t” or “τ” to indicate that the variables are
computed at a given discrete time.

First, the variational principle (2.3) upon substitution of D(ξ̇) from (3.14) reads

Π̇H = inf
u̇∈Ũ

sup
ϕ̇∈G̃

inf
ξ̇∈R3

[ ∫
R3

Ẇ H(C,H, ξ) dV0 −
∫
∂V0

T · u̇ dS0 +

∫
V0

sup
η

inf
Λ̇≥0

{
η · ξ̇− Λ̇Φ(η)

}
dV0

]
. (5.1)

18



Expressing all the rates in time discrete form like u̇ = (uτ−ut)/∆t and taking note on the fact that the state
at time t is already converged, one can express the rate-type variational principle (5.1) in a time-discrete
form so that

ΠH
τ = inf

uτ∈U
sup
ϕτ∈G

[ ∫
V0
WH
τ (C,H) dV0 +

∫
R3\V0

W H
c=0,τ (C,H) dV0 −

∫
∂V0

T · uτ dS0

]
. (5.2)

Here the subscript “τ” with W H and WH both indicate that all their arguments are at a discrete time τ . In
(5.2) we have introduced a reduced energy density WH

τ , which is, in turn, the variational principle employed
for the computation for the internal variable ξτ locally at each point of the computation domain, such that

WH
τ (C,H) = inf

ξτ
sup
η

inf
∆Λ≥0

{
W H
τ (C,H, ξ) + η · ξτ −∆ΛΦ(η)

}
. (5.3)

This last variational statement, in turn, leads to the time-discrete forms of the KKT conditions stated in
(3.15). Finally, the admissible sets for uτ and ϕτ are given by, respectively,

U ≡
{

uτ : Fτ = I + Graduτ , Jτ > 0, ∀ X ∈ R3 and uτ = uτ , ∀ X ∈ ∂V u
0

}
, (5.4)

G ≡
{
ϕτ : Hτ = −Gradϕτ , ∀ X ∈ R3 and ϕτ = ϕτ , ∀ X ∈ ∂V ϕ∞

}
. (5.5)

Thus, for an initial guess uτ and ϕτ we first update the internal variable ξτ via extremizing (5.3). Then
the updated ξτ is used to compute for the corrector for uτ and ϕτ from the global implicit solver. Thus,
the introduction of the reduced energy density allows us to update ξτ locally at each integration point,
while computing for uτ and ϕτ from the global variational principle. This computation algorithm provides
efficient update procedure for u, ϕ and ξ and facilitates the implementation in the commercially-available
finite-element solvers like ABAQUS/Standard (Miehe et al., 2011; Rosato and Miehe, 2014; Mukherjee et al.,
2021).

5.2. Time discrete variational principle for F−B model

The time discrete equivalent of the F−B-based variational principle (2.12) can be obtained in a similar
way to (5.2) after substituting D(ξ̇) from (3.14), finally leading to

ΠB
τ = inf

uτ∈U
inf

Aτ∈B

[ ∫
V0
WB
τ (C,B) dV0 +

∫
R3\V0

W B
c=0,τ (C,B) dV0 −

∫
∂V0

T · uτ dS0

]
, (5.6)

where the reduced energy density WB
τ (C,B) reads

WB
τ (C,B) = inf

ξτ
sup
η

inf
∆Λ≥0

{
W B
τ (C,B, ξ) + η · ξτ −∆ΛΦ(η)

}
. (5.7)

Again, the extremizaiton of (5.7) leads to the KKT conditions for the F−B model and thus, to the update
equations for ξτ . The admissible set U for the displacement field remains the same as in (5.4), while the
admissible set for the vector potential Aτ reads

B ≡
{

Aτ : Bτ = Curl Aτ , Div Aτ = 0, ∀ X ∈ R3 and Aτ = Aτ , ∀ X ∈ ∂V A
0

}
, (5.8)

where the condition Div Aτ = 0 is the well-known Coulomb gauge that leads to an uniquely defined vector
potential Aτ (Biro and Preis, 1989; Stark et al., 2015). The implementation of the Coulomb gauge may be
done in various manners. Here, we use a penalty formulation described in Dorn et al. (2021) together with
under-integration of the constraint term. Again, for an initial guess of uτ and Aτ , the internal variable ξt
is updated to be ξτ at the local integration points. The subsequent global increments for the uτ and Aτ

are carried out via using the already updated ξτ . The correction increments for uτ and Aτ continues until
a global convergence is achieved.
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5.3. Numerical BVP setting

The discretization of the scalar and vector potential-based variational principles were discussed in a fairly
general setting so far in the last two subsections. We now specify a geometry for the numerical BVP of
interest. Although the h-MREs are finding applications in a wide variety of engineering devices, such as in
sensors, most of the recent attention is in fabrication and testing of pre-magnetized slender structures, which
find applications in soft robotic devices (Kim et al., 2018; Zhao et al., 2019; Ren et al., 2019; Alapan et al.,
2020). Thus, in this paper we will focus on various aspects of the bending of pre-magnetized slender beams
under applied actuating magnetic fields. This includes spatially uniformly and non-uniformly pre-magnetized
beams and functionally graded beams with a distribution of the particle volume fractions c.

In particular, we consider a two-dimensional, plane-strain analysis of the bending of pre-magnetized
slender beams. We emphasize in this context, that the magnetic fields are applied via the fixed electromagnet
poles far away from the MRE (not modeled explicitly here), both during the pre-magnetization and actuation.
Thus, it is necessary to embed the MREs in a surrounding air. Moreover, since the magnetic fields are applied
far away, the air domain is considered to be substantially larger than the MRE. In particular, we consider
the air domain length L = 10` to ensure that the MRE deflection is sufficiently far from the boundary of
the air ∂VTop

Air ∪ ∂V
Right
Air ∪ ∂VBottom

Air ∪ ∂VLeft
Air (see Fig. 6a).

Figure 6: (a) Diagram of the full BVP domain having MRE and the surrounding air. The air domain with an external boundary

∂VTop
Air ∪∂V

Right
Air ∪∂VBottom

Air ∪∂VLeft
Air is considered to be a square of length L. The reference coordinate system X is considered

to have origin at the center of the air domain. (b) Dimensions of the MRE having the interface ∂VTop
MRE ∪∂V

Right
MRE ∪∂V

Bottom
MRE ∪

∂VLeft
MRE with the surrounding air. The MRE length ` is considered to be ` = 0.1L and the aspect ratio of the MRE is defined as

rasp = `/w. (c) A part of the structured mesh considered in the calculations. Standard linear 4-node quadratic isoparametric
elements are employed.

As shown in Fig. 6b, the slender MRE beam of length ` and width w has a common interface ∂VTop
MRE ∪

∂VRight
MRE ∪ ∂VBottom

MRE ∪ ∂VLeft
MRE with the surrounding air. The aspect ratio of the beam is hence defined via

rasp = `/w. Finally, the structured FE mesh used in the computations is shown in Fig. 6c. Throughout this
paper we consider linear four-node quadrilateral isoparametric elements in the FE computations.

5.4. Treatment of air

The air surrounding the MRE has (nearly) zero mechanical stiffness, whereas the magnetic b and h
fields in it are finite. Specifically, the former is related to the latter via b = µ0h in the surrounding air.
Dealing with a material of nearly zero mechanical stiffness in the present fully implicit, Lagrangian modeling
framework leads to extreme mesh distortions at the corners of the MRE, eventually stopping the numerical
simulation from converging.

Till this date, a number of methods have been implemented for dealing with the surrounding air in
the magneto-active structures. The most straightforward way to model the air is to consider it a nearly
incompressible or compressible hyperelastic solid having shear modulus of ∼ 1 Pa (Rambausek and Keip,
2018; Dorn et al., 2021). However, such an assumption may lead to an underestimation of the mechanical
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deformations of the MREs, specifically when undergoing large deformations or deflections. An alternative
approach, namely, the method of constraining the motion of the air nodes surrounding the MRE is found
to yield very accurate results of MRE deformations in air (Psarra et al., 2019; Mukherjee et al., 2021). In
particular, the latter considers the air shear modulus to be zero but simultaneously applies linear constraints
on each nodes in the air domain to make them move according to the deformation/deflection of the MRE
boundary. Having said that, we also remark that the application of such linear constraints on the air nodes
where two or more (magnetic or non-magnetic) structures are interacting may become difficult to implement
properly so that numerical convergence is achieved. A quantitative comparison of the performance of different
modeling approaches for the surrounding air is drawn in a companion paper (Rambausek et al., 2021).

In this paper, we consider standalone MRE beams that are subjected to spatially uniform magnetic
fields, as shown in Fig. 6a. Thus, we employ the air node constraining method to model the deformation in
the domain VAir. In fact, the linear constraints on the displacement field u for all X ∈ VAir can be applied
via directly augmenting the incremental variational principles (5.2) and (5.6) by a penalty potential

Wpenalty(u) =

NAir∑
j=1

2∑
i=1

Gc

2Lcζ

(
C(j)
i

)2

, (5.9)

where NAir is the number of air nodes, Lc is a reference length parameter usually considered to be equal
to w, Gc is an arbitrary shear modulus that we consider to be identical to that of the matrix and ζ is the
penalty parameter, which is set to 10−3. Nevertheless, any value of ζ in the range 10−6 − 10−3 ensures a
proper imposition of the constraint properly, not affecting the numerical convergence significantly. Given
that those constraints are linear one has also the option to directly use the *Equation command in Abaqus.
Such an approach has also been tested showing no differences with the penalty approach described here in

two and three dimensions. Finally, the pointwise constraint C(j)
i is defined as (Psarra et al., 2019)

C(j)
i ≡


d

(j)
i u

(j)
i

∣∣∣
∂VMRE

− u(j)
i

∣∣∣
VAir

= 0, if 0 < d
(j)
i ≤ 1

u
(j)
i

∣∣∣
VAir

= 0, otherwise,
(5.10)

which constrains the displacement of any node j in VAir with that of it nearest node on the Air/MRE
interface ∂VMRE. In practice, we construct a set of two-node elements comprising one node from VAir and
one from the set ∂VMRE that has the least Euclidean distance from the former. Subsequently, we add the
“force” and “stiffness” terms to the global force and stiffness matrices. Those terms emerge by considering
first and second variations of the corresponding degrees-of-freedom involved the penalty potential (5.9).

The constraint “weight” function d
(j)
i is defined in terms of the absolute distance difference between the

Xi (i = 1, 2) coordinates of the points in VAir and on ∂VMRE, such that

d
(j)
i = 1−

∣∣∣X(j)
i

∣∣
VAir
−X(j)

i

∣∣
∂VMRE

∣∣∣
0.5L

, with i = 1, 2. (5.11)

With (5.9) along with the BVP definition in Fig. 6, the F −H-based incremental variational principle
(5.2) reads

ΠH
τ = inf

uτ∈U
sup
ϕτ∈G

[ ∫
VMRE

WH
τ (C,H) dV0 +

∫
VAir

W H
c=0,τ (C,H) dV0 +Wpenalty(uτ )

]
. (5.12)

Even though the specific Dirichlet boundary conditions for the u and ϕ fields change depending on the
loading conditions, the general form of the admissible sets U and G remains the same as in (5.4) and (5.5),
respectively. Similarly, the F−B incremental variational principle now reads

ΠB
τ = inf

uτ∈U
inf

Aτ∈B

[ ∫
VMRE

WB
τ (C,B) dV0 +

∫
VAir

W B
c=0,τ (C,B) dV0 +Wpenalty(uτ )

]
, (5.13)
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where the admissible set B for the vector potential Aτ is given by

B ≡
{

Aτ : Bτ = CurlAτ , Aτ (X1, X2) = ατ (X1, X2)Ê3 ∀ X ∈ VMRE ∪ VAir and ατ = αaτ , ∀ X ∈ ∂VAir

}
.

(5.14)

Notice that for the present 2D plane strain analysis, we consider only the out of plane Ê3 component of
the vector potential Aτ , so that the components of Bτ are given by (Bτ )i = εij(ατ ),i, where εij is the 2D
permutation symbol (Psarra et al., 2017; Danas, 2017). In this case no Coulomb gauge is required. For a
three-dimensional implementation of the Coulomb gauge the reader is referred to Dorn et al. (2021).

6. Results

This section shows numerically computed BVP solutions for uniformly and non-uniformly pre-magnetized
h-MRE beams, s-MRE beams and the cantilever beams having h-/s-MRE laminated structures. The fol-
lowing results consider the hard/soft particle magnetization parameters as in Table 1 and the matrix shear
modulus is taken to be Gm = 0.187 MPa, which resembles closely to that of the moderately-soft PDMS
elastomers (Kim et al., 2018; Zhao et al., 2019). Moreover, the matrix bulk modulus is considered to be
G′m = 500Gm, which ensures a nearly incompressible material response. The particle volume fraction c and
the loading conditions for the pre-magnetization and actuation steps are discussed under specific subsections
depending on the examples. Moreover, the specific Dirichlet boundary conditions on uτ , ϕτ and ατ , i.e, the
case-specific versions of the admissible sets U , G and B, respectively, are detailed in the following.

6.1. Uniformly pre-magnetized h-MRE cantilever beams

We start with the simplest case of the uniformly pre-magnetized cantilever beams with the aspect ratios
rasp = 10 and 17.5. Specifically, we simulate the experimental observations of Zhao et al. (2019) for the
deflection of pre-magnetized h-MREs under uniform transverse actuation fields. To accomplish that, the
loading is considered to be two steps, which are detailed in the following.

• Step-I: First, we carry out the pre-magnetization along Ê1 by considering the air and MRE boundaries
to be fixed. Thus, the Dirichlet boundary conditions on u and ϕ for the F−H model reads

uτ = 0, ∀ X ∈ ∂VMRE, and uτ = 0, ∀ X ∈ ∂VAir (6.1)

ϕτ = 0, ∀ X ∈ ∂VLeft
Air and ϕτ = −

bmag1,τ

µ0
L, ∀ X ∈ ∂VLeft

Air , (6.2)

where bmag1,τ is the magnetization field at time τ . In particular, bmag1,τ is increased linearly in time up to

2 T followed by its decrease at the same rate to 0 T. The rate of bmag1,τ (and all the following applied
fields) is inconsequential in the simulations since the material model is rate-independent. Similarly,
the Dirichlet boundary condition on α for the F−B model reads

ατ = 0, ∀ X ∈ ∂VBottom
Air and ατ = bmag1,τL, ∀ X ∈ ∂VTop

Air , (6.3)

while that on uτ remains identical to (6.1).

• Step-II: Next, we carry out the actuation step, where we apply a uniform field bactu2 along Ê2, i.e.,
transverse to the centerline of the beam. The magnitude of bactu2 is increased monotonically from 0 T.
The specific Dirichlet boundary conditions on uτ and ϕτ in this step for the F−H model reads

uτ = 0, ∀ X ∈ ∂VLeft
MRE, and uτ = 0, ∀ X ∈ ∂VAir (6.4)

ϕτ = 0, ∀ X ∈ ∂VBottom
Air and ϕτ = −

bactu2,τ

µ0
L, ∀ X ∈ ∂VTop

Air . (6.5)

In turn, the boundary condition on α in this step for the F−B model computations reads

ατ = 0, ∀ X ∈ ∂VLeft
Air and ατ = −bactu2,τ L, ∀ X ∈ ∂VRight

Air . (6.6)
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In addition, we choose to work with a particle volume fraction of c = 0.177, which is identical to that of
the fabricated h-MREs by Zhao et al. (2019). Moreover, we consider Gm = 0.187 MPa, which leads to an
effective shear modulus G = 0.303 MPa for the composite. In fact, the latter is experimentally measured by
Zhao et al. (2019) for the h-MREs with c = 0.177.

In agreement to the experimental observations, the computations show the pre-magnetized h-MREs to
deflect immediately under the applied bactu2 . The end-tip deflections of the pre-magnetized cantilevers with
an increasing bactu2 is plotted in Fig. 7a for rasp = 10 and 17.5. Therein, we observe that the F − H

Figure 7: (a) Comparison of the experimentally measured and the model (both F−H and F−B) predicted end-tip deflections
of the pre-magnetized cantilever beams of rasp = 10 and 17.5 under the applied actuation field along e2. Comparison of the
FE predicted deflected beam shape with the respective experimental measurements of Zhao et al. (2019) under bactu2 = 25 mT
for (b) rasp = 10 and (c) 17.5.

and F−B-based numerical simulations yield identical responses, which also agree with the experimentally
measured end-tip deflection values for the two aforementioned aspect ratios. Moreover, the experimentally
captured deflected shape in Fig. 7b, which is of the cantilever beam having rasp = 10 under bactu2 = 25 mT
agrees excellently with its numerically computed counterpart in Fig. 7c. The FE solutions are carried out
via writing an user-defined element (UEL) and coupling it with the ABAQUS/Standard solver.

The contours of the magnetic b, h and m field magnitudes along with te arrows showing their directions
in and around the pre-magnetized h-MRE cantilever of rasp = 17.5 are shown in Fig. 8. Specifically, we show
the contours under bactu2 = 0 mT and bactu2 = 12.5 mT in Figures 8a-c and d-f, respectively. Notice from
Fig. 8b that the h field in the pre-magnetized cantilever is considerably smaller than the b and m fields in
it. Thus, one can approximate the remanent b-field,i.e., the b-field in the h-MRE after pre magnetization
as shown in Fig. 8a, to be br ≈ µ0m. This is, in fact, the key feature upon which the magnetic torque-
based models (Kim et al., 2018; Zhao et al., 2019) for the pre-magnetized h-MREs are based. Such simple
approximations, however, do not hold in general for the cases of non-uniform pre-magnetization or the
hybrid h-/s-MRE beams. Specific examples of the hybrid hybrid h-/s-MRE beams and non-uniform pre-
magnetization will be discussed later in this section.

The contours in and around the deflected h-MRE under bactu2 = 12.5 mT in Figures 8d-f show that
the magnetic self fields (both, b and h but not m, which is 0 in the air) around it get perturbed by the
external field application and the mechanical deformation of the beam. The remanent b and m fields in the
h-MRE, however, only undergo rotation with a negligible change in their magnitudes. Clearly, the applied
field bactu2 = 12.5 mT, which results in such a rapid deflection of the cantilever, is too weak to alter the
remanent magnetization direction. Thus, in spite of being a dissipative material in general, such very low
field deflections of the pre-magnetized beams leads to a highly reversible structural response, hence, making
them an ideal candidate for the remotely-actuated soft robots (Ren et al., 2019; Alapan et al., 2020; Lucarini
et al., 2022).

6.2. s-MRE cantilever beams under transverse magnetic field

Next, we consider the exact same loading conditions as in Section 6.1 but now with the soft magnetic
carbonyl iron particles as the fillers. Identical to Section 6.1, we consider the particle volume fraction of
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Figure 8: Contours of the (a,d) |b|, (b,e) |h| and (c,f) |m| fields in and around a pre-magnetized h-MRE cantilever of rasp = 17.5,

(a-c) before and (d-f) after the application of an actuation field bactu2 = 12.5 mT along Ê2. The black colored arrows are used
to indicate the direction of the respective vector fields. The length of the arrows are scaled according to the magnitude of the
respective vectors.

c = 0.177 and a matrix shear modulus of Gm = 0.187 MPa. Since Fig. 7a shows that the F−H and F−B-
based numerical simulations yield identical results, from here onwards we only show the results yielding
from the F−H model simulations.

Evidently, the pre-magnetization Step-I becomes inconsequential in this case, where the magnetic coer-
civity is vanishingly small. Nevertheless, the Step-II, i.e., the actuation step exhibit an interesting feature
as shown in Fig. 9a. Firstly, there is no significant deflection in the low field actuation regime, i.e., bactu2 < 50
mT. However, once bactu2 is increased beyond 0.2 T, we observe a rapid increase in the beam deflection such
that the cantilever start to deflect and align itself momentarily with the applied bactu2 direction. Such an
unstable, snapping-type response cannot be captured by the present fully implicit FE solver. Of course, the
s-MRE cantilevers start becoming unstable at a lower bactu2 with the increasing rasp as the flexural strength
of the cantilever also decreases with the increasing rasp.

The contours of the b, h and m field magnitudes along with their directions shown by the arrows in and
around the s-MRE cantilever of rasp = 17.5 under bactu2 ≈ 0.2 T, i.e., at the last numerically converged state
are shown in Fig. 9b-d, respectively. Since there was no remanent b and m before the application of bactu2 ,
we observe in Fig. 9b-d that the local b, h and m fields remain always aligned to the direction of bactu2 ,
thus, contrasting the observations for the h-MREs in Fig. 8. Indeed, this very low field responsiveness of
the h-MREs makes them a better candidate for the soft robots as compared to the s-MREs. Nevertheless,
s−MREs allow for a completely demagnetized behavior upon removal of the magnetic field, a feature that
may be necessary in a numerous other applications such as cell-growth devices.
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Figure 9: (a) Variation of the end-tip deflection of the s-MREs of rasp = 10 and 17.5 under the actuation field bactu2 along Ê2.
Contours of the (b) |b|, (c) |h| and (d) |m| fields along with the respective directions of these vectors are shown in and around
the s-MRE of rasp = 17.5. The deflected s-MRE under an actuation field bactu2 ≈ 0.2 T, i.e., at the last converged point on (a)
is shown on (b-d).

6.3. Pre-magnetized hybrid h-/s-MRE cantilever beams

Given the variety of applications of the pre-magnetized slender structures and the advancements in their
fabrication techniques, one can come up with functionally-graded composite structures with domains of soft
and hard magnetic fillers. In order to demonstrate the model applicability in all those application-oriented,
hybrid MREs, we consider the slender cantilever beams with rasp = 12, having simple rank-1 laminates of
h- and s- MREs. Specifically, we consider two sets of laminated structures as shown in Fig. 10a and b, i.e,
having unit normals nlam on the laminate interfaces along Ê2 and Ê1, respectively. For simplicity, we refer
to the former as the “horizontal” and the latter as the “vertical” laminates in the discussions to follow. All
the laminates are considered to have uniform thickness of tlam.

The pre-magnetization and actuation field amplitude and directions, along with the Dirichlet boundary
conditions on uτ are considered to be identical to those defined in Section 6.1. Moreover, the particle
volume fraction c and the matrix shear modulus Gm are also considered to be the same as in Section 6.1.
Furthermore, the hard and soft magnetic particle properties are taken from Table 1. With these, the profile
of the magnitude of remanent magnetization after the pre-magnetization step in the horizontally laminated
beam along the cross section of the beam is shown in Fig. 10c, where three laminate thickness values,
namely, tlam/w = 0.5, 0.25 and 0.125 are considered. As shown in Fig. 10c, the remanent magnetization in
the h-MRE part remains ∼ cms

p, while that in the s-MRE part is vanishingly small. The direction of m0

remains along Ê1 in all the laminates.
In contrast, the pre-magnetized beam with vertical laminates exhibit a considerable amount of remanent

magnetization in the s-MREs as well. In this context, Fig. 10d shows the variation of |m0| along the
centerline of the beam for three distinct cases with tlam/` = 0.5, 0.25 and 0.125. The direction of m0

remains identically along Ê1, i.e., the pre-magnetization direction. Furthermore, we observe that, unlike the
horizontal laminates, |m0| in the s-MRE domains are not constant in the vertical laminates. Rather, the
average |m0| in the s-MRE phases increases with the decreasing tlam. The explanation for this observation
is straightforward, that is, when a s-MRE is placed between two identically pre-magnetized s-MREs, a finite
b field and hence, a magnetization m field is induced to the s-MREs in order to maintain the continuity
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Figure 10: Schematic diagram of rank-1 laminates comprising h-MRE and s-MRE layers with the uniform layer thickness tlam
and unit normal nlam on the laminate interface along (a) Ê2 and (b) Ê1. Variation of the remanent magnetization magnitude

along the centerlines of the laminates in the direction of nlam for different tlam values and for (c) nlam = Ê2 and (d) nlam = Ê1.

of the b fields across the boundaries those are perpendicular to the pre-magnetization direction. Of course,
such an induction is not possible when the h-/s-MRE interface is placed parallel to the pre-magnetization
field, i.e, in the case of horizontally laminated beams.

The end-tip deflections of the horizontally and vertically laminated cantilevers are shown in Fig. 11a and
b, respectively. The horizontally laminated cantilevers exhibit a greater deflection with the increase in the
lamination, i.e., decrease in tlam. However, the relative increase in the deflection remains minuscule in these
laminates, as seen in Fig. 11a. The horizontally laminated cantilevers, on the other hand, exhibit a lower
deflection for tlam/` = 0.5. However, the end-tip deflection does not increase with the further refinement in
the lamination beyond tlam/` = 0.25 (see Fig. 11b).

The contours of b, h and m field magnitudes, along with arrows showing their directions are shown in
Fig. 12a and b for the horizontally and vertically laminated cantilevers, respectively, both under bactu2 = 50
mT. Very little qualitative change is observed between the contours around the deflected uniformly pre-
magnetized h-MREs (Fig. 8b) and that around the horizontally laminated pre-magnetized MREs (Fig. 12a).
Moreover, as observed from Fig. 12a, the s-MRE phases in the horizontally laminated MREs behave identical
to non-active elastomeric phase that acts as a binding laminate between two h-MRE layers. The vertically
laminated cantilevers, however, exhibit non-zero b and m fields in the s-MRE phases. Hence, the magnetic
self-fields around the MRE cantilever becomes more intricate and distinct from those around the uniformly
pre-magnetized h-MREs (cf., Fig. 8d and 12d). However, such a difference would become less with a further
refinement of the laminate.

Overall, with the present choice of material parameters and particle volume fractions, the behavior of
the pre-magnetized h-/s-MRE laminated structures in the low field actuation regime is primarily controlled
by the h-MRE phase. Furthermore, an increase in the degree of lamination does not significantly change the
actuation performance of these hybrid MRE structures. Nevertheless, the proposed structures and many
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Figure 11: End-tip deflection of the cantilevered h-/s-MRE laminates with overall rasp = 12 and (a) nlam = Ê2 ,(b) nlam = Ê1

under the actuation field bactu2 along Ê2. Effect of a decreasing tlam on the end-tip deflections are shown.

Figure 12: Magnitude contours along with the directions of the (a,d) b, (b,e) h and (c,f) m fields in and around the deflected

cantilevered laminates of overall rasp = 12 under actuation field bactu2 = 50 mT. Two specific laminates having (a-c) nlam = Ê2,

tlam/w = 0.125 and (d-f) nlam = Ê1, tlam/` = 0.125 are shown.

others that can derive from those involve a large number of design parameters (e.g., volume fraction of
particles, pre-magnetization amplitudes, more complex lamination or geometrical patterning) and such an
endeavor is left for a future study.

6.4. Non-uniformly pre-magnetized, functionally-graded h-MRE cantilever beams

The increasing trend in the development of remotely-actuated locomotion of mili-robotic structures
necessitates the employment of non-uniformly pre-magnetized h-MREs, exhibiting preferential deflections
patterns depending on the actuation field directions (Ren et al., 2019; Alapan et al., 2020). Motivated from
these recent applications, we employ the proposed incremental variational framework in the investigation of
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non-uniformly pre-magnetized h-MREs, specifically towards their pre-magnetization patterns and actuation
performances.

In particular, we consider a slender h-MRE beam with rasp = 20, Gm = 0.187 MPa and profile it

according to the configurations shown in Fig. 13a and b before applying the pre-magnetization field along Ê2.
Depending on this pre-magnetization profiling, the h-MREs are categorized into two, namely, S1 and S2, as
indicated on Fig. 13a and b. Moreover, we consider two more types of h-MREs, namely, T1 and T2, depending

Figure 13: (a,b) Pre-magnetization profiles along the magnetizing field b
mag
2 direction for the h-MRE beams of rasp = 20. The

profile S1 in (a) is considered to be the mirror image with respect to X2 axis, whereas, S2 in (b) is considered to be the mirror
image with respect to both, X1 and X2. (c) Volume fraction distribution profiles, namely, T1 and T2, along the length of the
beam.

on the spatial distribution of the particle volume fraction. In particular, we consider a constant c = 0.177
for type T1, while a linearly varying c along the reference coordinate X1 so that c = 0.054 + 0.492|X1|/` for
the type T2 (see Fig. 13c). Notice that the cumulative volume of the hard-magnetic particles are considered
to be identical in T1 and T2, so that the areas under both the curves in Fig. 13c remain identical. Hence, we
investigate the transverse actuation response of four distinct pre-magnetized h-MREs, namely, SiTj , where
i, j ≡ 1, 2.

Evidently, the initial profiling of the h-MRE beams and their release after the pre-magnetization ne-
cessitates a couple of additional steps of mechanical loading compared to the examples presented in Sec-
tions 6.1—6.3. These steps read

• Step-I: First, the profiling of the undeformed to the pre-magnetization shapes are performed by
applying a prescribed displacement uτ = uTop

τ for all X ∈ ∂VTop
MRE for S1 and uτ = uTop

τ for all

X ∈ ∂VTop
MRE, X1 > 0 and uτ = uBottom

τ for all X ∈ ∂VBottom
MRE , X1 < 0 for S2

7. In addition, we set
uτ = 0 for all X ∈ ∂VAir and for all X ∈ VMRE if X1 = 0, i.e., the displacements of the central vertical
section of the beam are also blocked.

• Step-II: Next, the pre-magnetization is carried out along Ê2 in terms of applying a suitable Dirichlet
boundary condition on ϕτ similar to Section 6.1. Moreover, the temporal profile and amplitude of
(bmag2 )τ remains identical to that of (bmag1 )τ in Section 6.1.

• Step-III: This step gradually releases the constraints on uτ for all X ∈ ∂VTop
MRE and X ∈ ∂VBottom

MRE ,
while keeping uτ = 0 at VAir and the central vertical section of the beam. The beam comes back to
its (almost) undeformed shape after this step.

7In practice, we employ the “DISP” subroutine of ABAQUS, which apply an user-defined displacement in terms of the

current coordinates. We thus define the displacements uTop
1 = −0.6`(x1/`)3 and uTop

2 = 1.2`(|x1|/`)3 for S1 and additionally,
uBottom
1 = −0.6`(x1/`)3 and uBottom

2 = −1.2`(x1/`)3 to achieve the deformation profile S2. These displacements are applied
incrementally, held to the prescribed constant values and then released incrementally during the appropriate steps.
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• Step-IV: This is essentially the actuation step where the field (bactu2 )τ is applied along Ê2. Hence, the
Dirichlet boundary condition on ϕτ is set identical to (6.5), while that on uτ remain the same as at
the end of Step-III.

The first key outcome from the aforementioned magneto-mechanical loading exercise is the variation
of the remanent magnetization m0 along the beam’s centerline at the end of Step-III. Specifically, the

variation of the magnitude of m0 and its angle with Ê1 for all four combinations of pre-magnetization
and c profiles, namely, SiTj with i, j ≡ 1, 2 are shown in Fig. 14a and b, respectively. In agreement with

Figure 14: Variation of the remanent magnetization m0 (a) magnitudes and (b) directions along the length of the pre-magnetized
h-MRE beams of type SiTi (i = 1, 2).

the experimental observations (Ren et al., 2019; Alapan et al., 2020) , the magnitude of m0 remains the
same in the beams S1T1 and S2T1, which have a spatially uniform c. The beams S1T2 and S2T2, on the
other hand, exhibit a variation of |m0| along the centerline. In fact this variation is proportional to the c
variation in these beams. Thus, |m0| in the beam is primarily controlled by c. In contrast, the orientation
of m0 is dictated by its pre-magnetization profile S1 and S2 (see Fig. 14b). While the S1-type beams show
opposite m0 directions along its two flanks, the direction of m0 in S2-type beams are identical in both the
flanks, hence, showing a bell curve like variation in angle with the X1 axis. Even though |m0| in the beam
is predictable in terms of c, the functional relationship of the θm profiles in Fig. 14b with the respective
pre-deformed shapes in Fig. 13a and b are not straightforward and cannot be predicted beforehand prior
solving the full field BVP.

To obtain more insight on the complexity of the non-uniform remanent fields, we plot the spatial profiles
of b0, h0 and m0 fields, both, in terms of magnitude and directions, in Fig. 15 for all four aforementioned
types of beams. The first, and obvious feature observed is the higher magnitude of b0, h0 and m0 in the
beams of type T2, which can directly be attributed to the higher c value in T2 near the beam flanks (cf. e.g.,
Figures 15a-c and g-i). Moreover, comparing Fig. 15b,e with h,k we observe that by linearly increasing c
along the flanks, the concentration of h0 field near the center of the beam can be eliminated. Of course, the
spatial gradient of c in the T2-type beams results in a stiffer gradient in the |b|0 along the beams’s centerline
(cf. Figures 15a,d and g,j).

In contrast, the directions of b0, h0 and m0 fields in the h-MRE along with the stray fields around
the MRE domain depend strongly on their pre-magnetization profiles. Thus, we observequalitatively similar
stray b and h field distributions around the in all the S1 or S2-type beams, irrespective of the c distributions
in them. Specifically, we observe from Figures 15a and g that the beams with pre-magnetization profile S1

exhibit stronger self fields at the vicinity of their bottom boundary as compared to the top. Such preferential
self-field distributions are typically achieved by constructing Halbach chains (Halbach, 1980; Hilton and
McMurry, 2012; Mansson, 2014), which consists of an array of permanent magnets arranged in a particular
fashion in order to concentrate the resulting magnetic self field at one side of the chain. A similar feature
is observed here for the S1-type non-uniformly pre-magnetized hMRE in Figures Fig. 15a and g. Thus, a
properly pre-magnetized, monolithic h-MRE can mimic the properties of classical, essentially heterogeneous,
Halbach chain structures.

In turn, such a concentration of the magnetic self fields are not observed in the beams having the pre-
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Figure 15: Magnitude contours along with the directions of the remanent b0, h0 and m0 fields after the pre-magnetization
step (Step-3) for the h-MRE types (depending on the pre-deformation profile and particle distribution) (a-c) S1T1, (d-f) S2T1,
(g-i) S1T2 and (j-l) S2T2.

magnetization profile as S2. Rather, the contours of higher magnetic self fields render an inverted “S”-type
shapes in all the S2-type beams. Thus, proper profiling of the beam before the pre-magnetization may help
engineering different self field distributions in the vicinity of a h-MRE. The implications of such self field
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distributions on the actuation response of the S1 and S2-type beams will be discussed next.

Remark 5. The b, h and m field magnitude contours and directions in Fig. 15 reveal that the local
remanent b and m fields in the h-MREs are not related by the relation b = µ0m. Hence, unlike the
uniformly pre-magnetized h-MREs, it may reveal inaccurate to assume, in general, that the magnetic torque
at a point in the h-MRE is simply given by bactu × µ0m during the actuation under remotely applied bactu

field. Thus, even though the magnetic toque-based, reduced-order models for slender h-MRE beams exhibit
sufficiently accurate deflection profiles (Wang et al., 2020; Yan et al., 2021a,b), their employment to the
non-uniformly pre-magnetized h-MRE structures must be carried out with caution and certainly use the
local non-uniform pre-magnetization profile. Moreover, the pre-magnetization directions along the beam
length do not exhibit any straightforward correlation with its pre-deformation geometry. Hence, solving for
the full-field BVP with a surrounding air becomes inevitable even for a reduced-order analysis in the later
stage.

Finally, we show the transverse magnetic actuation performance of the four types of beams, namely, SiTj
with i, j ≡ 1, 2. First, we investigate the uniformly distributed c cases, i.e., the response of T1-type h-MREs
in Fig. 16a-c. Specifically, Figures 16a and b show the deflected beam centerline under an actuation field

Figure 16: Deflected centerlines of the h-MREs type (a) S1T1 and (b) S2T1 under the actuation fields bactu2 = 20 and −20 mT

along Ê2. (c) Variation of the top-right corner delfection of S1T1 and bottom left corner delfection S2T1 under bactu2 . Deflected

centerlines of the h-MREs type (d) S1T2 and (e) S2T2 under the actuation fields bactu2 = 12.5 and −12.5 mT along Ê2. (f)
Variation of the top-right corner delfection of S1T2 and bottom left corner delfection S2T2 under bactu2 .

bactu2 = 20 mT along Ê2 and −Ê2 directions. Identical deflection of both the beam flanks are observed for
the beam S1T1. However, the deflection is substantially higher (∼ 2.5 times) when the fields are applied

along −Ê2. This observation can directly be attributed to the pre-magnetization direction in both the beam
flanks, which, eventually leads to a higher deflection when deflecting in the opposite direction of m0. This
preferential deflection phenomena can be termed as the magneto-mechanical Halbach effect. In fact, this
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preferential deflection property is harnessed effectively in locomotion of soft jellyfish-like swimming robot
(Ren et al., 2019; Alapan et al., 2020).

Even though equal in their magnitudes, the two flanks of the S2-type pre-magnetized beams always deflect
in the opposite direction. For example, the deflected centerline of the h-MRE beam under bactu2 = 20 mT

along Ê2 and −Ê2 are shown in Fig. 16b. Of course, here the deflection magnitude remains identical to the
S1-type h-MRE, but overall, leading to a rocking-type motion, where the two flanks deflect simultaneously in
the opposite directions. In particular, the variation of the vertical displacement of top-right and bottom-left
corners of the S1T1 and S2T1-type h-MRE beams under bactu2 are shown in Fig. 16c. This figure clearly
shows that the deflection magnitude under the same |bactu2 | becomes ∼ 2.5 times when the direction of its

application is along −Ê2.
The T2-type beams exhibit a qualitatively similar deflection response under bactu2 vis-a-vis the T1-type.

The only and obvious difference between the former and the latter is that the T2-type beams deflect the same
amount at a lower actuation field (∼ 0.75 times). The deflected shapes of the S1T2 and S2T2-type beams
are shown in Figures 16d and e, respectively, both, under bactu2 = 12.5 and −12.5. Finally, the deflection
variation of the top-right and bottom-left corners of, respectively, S1T2 and S2T2-type beams under bactu2

are shown in Fig. 16f.
In closing, we remark that except lowering of the actuation field magnitude, the functionally-graded

h-MREs with a linearly increasing c towards the beam flanks do not exhibit any substantial difference with
the actuation performance of its uniform c counterpart. In turn, fabricating the functionally-graded h-MREs
adds on to the difficulty level and cost. The pre-magnetization profiling, in contrast, can dramatically change
the actuation performance of the h-MRE beams. In this regard, the proposed model serves as an efficient
tool to analyze the effect of different pre-magnetization profiles and directions even before the manufacturing
of an actual sample is carried out.

7. Concluding remarks

In this work, we propose fully-coupled, dual, continuum models for the magneto-active particle-filled
isotropic, incompressible (and quasi-incompressible) MREs in the F −H and F −B variable spaces. Both
models are fully explicit and have direct dependence on the mechanical and magnetic properties pf the
MRE’s constituents, i.e., the elastomer matrix and magneto-active particles, along with the particle volume
fraction. The only scalar phenomenological parameter introduced in the models is a coupling parameter that
depends solely on the particle volume fraction and is calibrated from full-field numerical homogenization
estimates.

Specifically, we first frame a fully Lagrangian, rate-type variational framework for the scalar potential-
based F−H modeling of dissipative h-MREs, where we introduce a thermodynamic internal variable ξ. This
variable resembles closely the (local) remanent magnetization in the material. The vector potential-based
F − B variational framework is defined simultaneously by expressing the magnetic energy density W B in
terms of the partial Legendre-Fenchel transform with respect to H of its F−H-based counterpart W H. By
construction, the F−B model involves the same internal variable ξ. Moreover, the dissipation potential D,
expressed only in terms of |ξ̇|, remains the same in both the models.

Specific functional forms for the energetic W H and dissipation D potentials are then introduced following
the recent F −H-based h-MRE model of Mukherjee et al. (2021). Being strictly concave in terms of H,
the F−H energy density W H admits a closed form partial Legendre-Fenchel transform with respect to H,
eventually leading to an explicit W B, i.e., the F−B-based energy density. Consequently, we have the exact
F−B equivalent of the F−H-based model, involving the same particle, matrix and coupling parameters.
Thus, starting from the equivalent F−H and F−B-based variational principles, we have stated the explicit
forms of the energy density functions, which can be independently employed to calculate the model response
and solve various BVPs.

The important limiting case of vanishing particle coercivity bcp → 0 leads to a seamless class of dual
s-MRE models, which exhibits a reversible, purely energetic magneto-mechanical response. Of course, in
this limit, the dissipation potential D vanishes and ξ is given in terms of C and H or B depending on the
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independent variable we choose. Thus, the proposed h-MRE models are simply general models for any type
of MREs since the h- and s-MRE model response can be obtained from the exact same model by simply
setting 0 < bcp � 1 for the latter. Furthermore, the expression(s) for the total Cauchy stress σ in F −H
and F−B models in the bcp → 0 limit become identical to those obtained by Kankanala and Triantafyllidis
(2004); Dorfmann and Ogden (2004) for the specific case of s-MREs. In this sense, this paper provides a
unified approach towards a microstructurally-guided modeling of MREs, both, in the F − H and F − B
variable spaces.

Numerical solution of the fully coupled magneto-mechanical BVPs necessitates further specialization of
the rate-type variational formulations in a time-discrete form. Moreover, following Rosato and Miehe (2014),
we introduce the notion of a reduced potential that facilitates the finite-element solution for the dissipative
materials by locally updating the internal variables prior to solving the global BVP. The predictive capa-
bilities of the proposed models for the deflection of pre-magnetized slender h-MREs are probed against the
experimental measurements of Zhao et al. (2019). Besides predicting the deflection of the uniformly pre-
magnetized h-MREs, the model is employed to investigate the magnetic actuation performance of a number
of slender MRE structures having non-uniform remanent magnetization fields. In particular, the magnetic ac-
tuation response of the rank-1 h-/s-MRE laminates and non-uniformly pre-magnetized, functionally-graded
h-MREs are shown in Section 6. The intricate remanent b, h and m fields in the MRE observed for the
latter cases are impossible to predict beforehand. Thus, employing the fully coupled, dissipative frameworks
becomes unavoidable before analyzing any magneto-active structure beyond the uniformly pre-magnetized
slender beams.

Efficient modeling of the surrounding air domain is necessary to accommodate large deflections of the
MREs and the interactions between two pre-magnetized MREs through air. Although the air node con-
straining method used here performs a fairly decent jobs in modeling large deflection of the MRE beams,
this approach becomes cumbersome when modeling complicated structures with intricate geometries. Thus,
there exists ample scope of improving the numerical modeling of surrounding air. Perhaps, a mesh-free
Lagrangian finite element method in the lines of (Kumar et al., 2019) would be useful to overcome the
aforementioned shortcomings.

In closing, we remark that, even though most of the experimental works and the examples chosen in this
paper concern different actuation performance of the uniformly and non-uniformly pre-magnetized MREs,
there exist a vast opportunity of engineering the magnetic self fields around a structure by optimizing the
spatial distribution of the particle volume fraction and the pre-deformation of the MRE. In this regard,
we observe a number of attempts of stray magnetic field engineering using the metallic hard magnets (Lee
et al., 2017; Kee et al., 2020). However, achieving the same using a monolithic and flexible MRE structure
still remains unaddressed.
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Bodelot, L., Voropaieff, J.P., Pössinger, T., 2017. Experimental investigation of the coupled magneto-mechanical response in
magnetorheological elastomers. Experimental Mechanics 58, 207–221. URL: https://doi.org/10.1007/s11340-017-0334-7,
doi:10.1007/s11340-017-0334-7.

Brown, W.F., 1966. Magnetoelastic interactions. volume 9. Springer.
Bustamante, R., Dorfmann, A., Ogden, R., 2008. On variational formulations in nonlinear magnetoelastostatics. Mathematics

and Mechanics of Solids 13, 725–745. URL: https://doi.org/10.1177/1081286507079832, doi:10.1177/1081286507079832.
Chen, Y.C., Wheeler, L., 1993. Derivatives of the stretch and rotation tensors. Journal of Elasticity 32, 175–182. URL:

https://doi.org/10.1007/bf00131659, doi:10.1007/bf00131659.
Danas, K., 2017. Effective response of classical, auxetic and chiral magnetoelastic materials by use of a new variational

principle. Journal of the Mechanics and Physics of Solids 105, 25–53. URL: https://doi.org/10.1016/j.jmps.2017.04.016,
doi:10.1016/j.jmps.2017.04.016.

Danas, K., Kankanala, S., Triantafyllidis, N., 2012. Experiments and modeling of iron-particle-filled magnetorheological
elastomers. Journal of the Mechanics and Physics of Solids 60, 120 – 138. URL: http://www.sciencedirect.com/science/
article/pii/S0022509611001736, doi:10.1016/j.jmps.2011.09.006.

Danas, K., Triantafyllidis, N., 2014. Instability of a magnetoelastic layer resting on a non-magnetic substrate. Journal of
the Mechanics and Physics of Solids 69, 67–83. URL: https://doi.org/10.1016/j.jmps.2014.04.003, doi:10.1016/j.jmps.
2014.04.003.

Dorfmann, A., Ogden, R., 2003. Magnetoelastic modelling of elastomers. European Journal of Mechanics-A/Solids 22, 497–507.
URL: https://doi.org/10.1016/s0997-7538(03)00067-6, doi:10.1016/s0997-7538(03)00067-6.

Dorfmann, A., Ogden, R., 2004. Nonlinear magnetoelastic deformations of elastomers. Acta Mechanica 167, 13–28. URL:
https://doi.org/10.1007/s00707-003-0061-2, doi:10.1007/s00707-003-0061-2.

Dorfmann, A., Ogden, R., 2005. Some problems in nonlinear magnetoelasticity. Zeitschrift für angewandte Mathematik und
Physik ZAMP 56, 718–745. URL: https://doi.org/10.1007/s00033-004-4066-z, doi:10.1007/s00033-004-4066-z.

Dorn, C., Bodelot, L., Danas, K., 2021. Experiments and numerical implementation of a boundary value problem involving
a magnetorheological elastomer layer subjected to a nonuniform magnetic field. Journal of Applied Mechanics 88. URL:
https://doi.org/10.1115/1.4050534, doi:10.1115/1.4050534.

Ethiraj, G., Miehe, C., 2016. Multiplicative magneto-elasticity of magnetosensitive polymers incorporating micromechanically-
based network kernels. International Journal of Engineering Science 102, 93–119. doi:10.1016/j.ijengsci.2015.08.007.
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