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Abstract

We propose a novel pointwise descriptor, called DWKS,
aimed at finding correspondences across two deformable
shape collections. Unlike the majority of existing descrip-
tors, rather than capturing local geometry, DWKS cap-
tures the deformation around a point within a collection
in a multi-scale and informative manner. This, in turn,
allows to compute inter-collection correspondences with-
out using landmarks. To this end, we build upon the suc-
cessful spectral WKS descriptors, but rather than using
the Laplace-Beltrami operator, show that a similar con-
struction can be performed on shape difference operators,
that capture differences or distortion within a collection.
By leveraging the collection information our descriptor fa-
cilitates difficult non-rigid shape matching tasks, even in
the presence of strong partiality and significant deforma-
tions. We demonstrate the utility of our approach across
a range of challenging matching problems on both meshes
and point clouds. The code for this paper can be found at
https://github.com/RobinMagnet/DWKS

1. Introduction

Shape matching is an ubiquitous problem in 3D com-
puter vision, with various applications like texture and de-
formation transfer. Numerous methods have therefore been
developed during the last decade to compute correspon-
dences between surfaces, relying on simple rigid deforma-
tions to more recent learning-based models [44, 36].

While these methods have shown impressive results on
several datasets, there remain some very challenging sce-
narios especially when dealing with symmetries and non-
isometric shapes. The existence of intrinsic symmetries
in non-rigid shapes (e.g. left-right symmetry in a human
shape) can be handled in multiple ways, using an orien-
tation preserving constraint on shape descriptors [31], ex-
ploring the space of maps [30], or adding priors through
learning-based methods [23, 34, 9]. These methods respec-

Figure 1. Our method uses two collections of noisy point-clouds
with roughly similar deformations (left) and outputs a point-wise
inter-collection map (right).

tively require the existence of precise shape descriptors, an
automatic selection of symmetric and non-symmetric map,
and large datasets for neural network training. The case of
non-isometric shapes is typically addressed either by requir-
ing user-specified landmarks [1, 11, 38] or again, through
extensive neural network training [14], among many other
approaches. In the specific case of partial non-rigid shape
matching, several methods have been developed [33, 24],
relying on theoretical properties of the changes to the
Laplace-Beltrami operator under partiality.

Remarkably while 3D shapes often come in the context
of a collection, very few methods [39, 5] have tried to lever-
age the commonality of the deformations that exist within
the collections to facilitate matching across them, e.g. to
disambiguate such symmetries or address partiality. No-
tably while matching two human shapes in resting pose can
suffer from their intrinsic symmetry ambiguity, using infor-
mation from the deformed version of these shapes with e.g.



their left knee up could help disambiguate their symmetries.
Figure 1 exhibits how local deformations of the knees when
jumping on one leg allow to compute correspondences be-
tween two human shapes, even when the upper-half of the
body is missing.

In this work we propose to develop a local descriptor of
differences between surfaces and point clouds. Our method
is inspired by successful spectral point-based descriptors
extracted from the Laplace-Beltrami operator [43, 2]. Our
main insight is that a similar construction can be performed
on other functional operators, leading to informative de-
scriptors that capture different properties of shapes and col-
lections. In our work, we use shape difference operators
[35] that have been used for both analysing deformations
within a collection [16] and even shape synthesis [19]. In
the context of cross-collection mapping, shape difference
operators have been used in [39, 5] as global objectives
within the functional map framework, which can limit their
utility to complete shape matching. Instead, we demon-
strate that pointwise spectral descriptors can successfully
be extracted from shape difference operators. Our descrip-
tor, termed DWKS, thus combines the power and flexibility
of local descriptors with the information of shape distortion
present in shape difference operators, which, as we demon-
strate below, makes it applicable in partial cross-collection
matching scenarios. We also exploit recent advances in con-
structing robust operators [41] to enable accurate and effi-
cient matching across shapes represented as both meshes
and point clouds.

Our main contributions can be summarized as follows: 1.
we introduce a novel pointwise descriptor that reflects de-
formation around a point within a collection, 2. we demon-
strate how spectral methods, and specifically the WKS de-
sciptors can be extended beyond the Laplacian to shape
difference operators, and 3. we demonstrate how difficult
matching scenarios with partiality and symmetry ambigu-
ity, on both point clouds and meshes can strongly benefit
from our descriptor without landmarks or neural network
training.

2. Related Work
The shape matching literature is very vast and we will

only highlight existing methods that are most relevant to
our setting. We refer the reader to a recent survey [37] on
the subject for more information. We base our method on
the functional map framework defined in [28] which seeks
to match functional spaces on the shapes instead of the
shapes themselves, and has led to impressive results in the
last decade. Several follow-up works [27, 45, 31, 18, 25,
30] have brought substantial improvements on the original
pipeline, and all heavily rely on the existence of consistent
descriptor functions of shapes which are functions supposed
to be preserved by the mapping, based either on local de-

scriptors [43, 2, 8] or landmarks. Generating informative
and robust descriptors in a fully automatic way remains a
very challenging problem, and often requires near-isometric
shapes without symmetries. To alleviate this issue, recent
works have sought to learn descriptors using neural net-
works, either from usual descriptors [23, 34] or directly
from raw data [9, 40]. This allows to incorporate prior in-
formation into descriptors, and possibly disambiguate sym-
metries like left and right for a human shape.

A more demanding setting lies in partial shape matching,
which is a simple case of non-isometric shape matching. A
remarkable adaptation of the original framework was intro-
duced in [33, 24], based on the theoretical insights of the
relation between the Laplace-Beltrami operators of a shape
and a compact subset of it.

Methods computing correspondences using functional
maps can typically produce somewhat noisy correspon-
dences which then serve as initialization for refinement al-
gorithms. The original refinement technique uses a variant
the ICP algorithm [28] which supposes shapes to be isomet-
ric, but new more general approaches have then been devel-
oped [10, 31, 11, 25, 20]. The ZoomOut algorithm [25]
is of particular interest as it starts from very rough corre-
spondences to obtain high quality maps through spectral up-
sampling. While it also relies on a strong near-isometry as-
sumption, the theoretical background developed in [33] can
be used to adapt the algorithm to partial shapes in practice.

More related to our contribution are multiple works on
shape collections. Several methods have been developed
to refine intra-collection correspondences using cycle con-
sistency constraints, e.g. [26, 15, 42, 20, 12] among many
others. These methods also leverage information within
shape collections, but are typically not aimed at comput-
ing cross-collection maps and often still rely on pairwise
map estimation as a building block. Extracting informa-
tion about the variability of shapes within a collection was
brought about by the introduction of shape difference op-
erators [35], which summarize intrinsic distortion between
a pair or a collection of shapes as two functional operators
using simply rough correspondences between two shapes
represented as functional maps. These two “difference” op-
erators, together with a source shape, have been shown to
be sufficient to reconstruct the deformed version up to iso-
metric deformations [6], and up to rigid motion using ad-
ditional extrinsic shape differences [6, 19]. Shape differ-
ence operators provide a powerful tool for summarizing the
variability within shape collections, which has motivated
their use in computing cross-collection shape correspon-
dences. Our work is directly inspired by the excellent re-
sults shown in [39, 5] where corresponding shape difference
operators are matched together to compute cross-collection
functional maps. The solving procedure, however, relies on
SVD which suffers both from sign ambiguity and possible



instability. Furthermore the method supposes the global de-
formations to be matched to correspond, which breaks down
in the case of partiality.

In this work we focus on computing local or pointwise
descriptors from shape differences, which can be used both
within the functional maps pipeline and beyond [2, 28].
We show that while shape difference operators [35] cap-
ture the global difference between shapes, their properties
allow pointwise information to be extracted in the form of
vertex-wise descriptors. This information can be used ei-
ther in conjunction with the pipeline of [39, 5] in the case
of complete shapes, or even directly, in the case of partial
shapes

3. Background
3.1. Functional Maps

Our work falls within the functional map framework
originally introduced in [28] and that we review below
briefly for completeness. Given two surfaces M and
N , a point-wise correspondence T : N → M can be
equivalently represented as a linear (functional) map F :
L2(M)→ L2(N ) between the space of squared integrable
functions on each shape.

Using an appropriate basis for the two functional spaces,
the functional map F can be represented as a possibly in-
finite matrix. Specifically, eigenfunctions of the Laplace-
Beltrami operator of each shape have had a lot of success in
spectral shape analysis [22, 32, 28] and can be interpreted
as Fourier basis for functions on surfaces, and enable basis
truncation due to their multi-scale nature.

3.2. Shape Matching

The standard functional correspondence pipeline [29]
between shapes M and N looks for a functional map
C ∈ RkN×kM from L2(M) to L2(N ), where kM and kN
represent the size of the corresponding (truncated) basis.

Given a set of descriptor functions on each shape
{(fi, gi)}pi=1 with fi ∈ L2(M) and gi ∈ L2(N ), expected
to be preserved under the functional map, we encode them
in their respective basis as two matrices A ∈ RkM×p and
B ∈ RkN×p. Standard choices are HKS [43] or WKS [2]
descriptors.

Denoting ∆M (resp. ∆N ) the Laplace-Beltrami oper-
ator on shape M (resp. N ), expressed in their respective
basis as diagonal matrices, the functional correspondence
problem is written as:

argmin
C∈RkN ×kM

∥CA−B∥2F + µl∥C∆M −∆NC∥2F (1)

with ∥ · ∥F the Frobenius norm. Here the first term ensures
descriptor preservation, while the second one favors isomet-
ric maps, and µl ∈ R is a manually set scaling factor.

Among many extensions to this basic pipeline, e.g.
[21, 31, 45, 33, 13] a notable one introduced in [27] and
that we use below, proposed a term promoting the functional
maps to arise from pointwise correspondences. For this,
a functional operator is associated to each input descriptor
Γfi , Γgi , that acts on other functions through multiplica-
tion. These operators are then introduced into the optimiza-
tion objective (1), by promoting commutativity with them,
namely µdc

∑
i ∥CΓfi − ΓgiC∥2F . While this pipeline can

produce accurate correspondences given appropriate de-
scriptors it suffers from multiple issues. Namely, it does not
allow to disambiguate symmetries, requires specific adap-
tation for partial matching and more broadly does not take
into account information about collections that shapes often
naturally are part of.

3.3. Shape Difference Operators

Our work also heavily relies on shape difference opera-
tors introduced in [35], that intuitively capture differences
or distortion across a pair or within a collection of shapes.
Specifically given shapes M1 and M2 with known corre-
spondences encoded as a functional map F between them,
and inner products ⟨·, ·⟩M1

and ⟨·, ·⟩M2
on each shape,

the associated shape difference operator is defined as the
unique linear operator D acting on L2(M1) so that

⟨f,Dg⟩M1 = ⟨F (f), F (g)⟩M2 ∀f, g ∈ L2(M1) (2)

This operator can be seen as compensating the distor-
tion induced by F with respect the given inner products.
Note that shape difference operators sharing both a com-
mon source shape and inner product can all be compared as
they all act on the same functional space.

The original work [35] introduced two shape differ-
ence operators, which capture the complete intrinsic dis-
tortion across shapes. The first one VM1,M2 , is asso-
ciated to the standard L2 inner product on both shapes
⟨f, g⟩L2(S) =

∫
S f(x)g(x)dµ

S on a shape S. The second
one, denotedRM1,M2

is associated to theH1
0 inner product

⟨f, g⟩H1
0 (S) = ⟨∇f,∇g⟩L2(S).

The two operators VM1,M2
and RM1,M2

are called
respectively area-based and conformal shape differences
since they equal identity if the underlying maps are respec-
tively area-preserving and conformal [35].

Using the spectral basis of size k1 and k2 to encode the
F into C ∈ Rk2×k1 , the shape difference operators can be
computed directly as k1 × k1 matrices

VM,N = C⊤C (3)

RM,N =
(
∆M)†

C⊤∆NC (4)

with † denoting the Moore-Penrose pseudo inverse.



Figure 2. Examples of DWKS descriptors for meshes. The left part displays the source meshes and their deformed version. The right part
displays for each mesh the DWKS descriptors at 3 fixed energy levels shown at the bottom (seen as a function of the mesh). Notice that
descriptor remain somewhat consistent even in the case of partiality.

3.4. Matching with Shape Difference Operators

Although originally shape difference operators were in-
troduced for shape analysis, they also have been used for
solving cross-collection shape correspondence problems
[39, 5]. Specifically, given two shape collections {Mi}ni=0

and {Ni}ni=0, where deformation between M0 and Mi

are similar to deformation between N0 and Ni for any
i ∈ {1, . . . , n}, the goal is to compute a cross-collection
map betweenM0 and N0 which we denote asM and N .

With similar differences between these pairs of shapes,
we expect their associated shape difference operators DM

i

and DN
i to act similarly, where D denotes any of the area or

conformal shae difference operator and the index indicates
the operator is associated to the deformation between shape
0 and shape i. In the functional map framework, this is
equivalent to expecting the sought functional map to com-
mute with these operators, that is CDM

i ≃ DN
i C. This

leads to the optimization problem solved in the recent ap-
proach of [5] (which extends the method in [39]):

argmin
C∈RkN ×kM

∥C∥F =1

n∑
i=1

Ei(C) + α∥C∆M −∆NC∥2F (5)

where α ∈ R is a scaling factor and

Ei(C) = ∥CRM
i −RN

i C∥2F + ∥CVM
i −VN

i C∥2F (6)

Note that unlike the standard functional matching
pipeline (1), the optimization objective (5) does not rely on
the existence on coherent descriptors. Moreover, without
the constraint ∥C∥F = 1 the trivial solution C = 0 would
give zero error. The authors of [39, 5] solve the problem
in Eq.(5) using SVD, which results both in sign ambiguity
for the solution and instability in practice. Moreover, the

Algorithm 1: Computing DWKS descriptors
Input: A shape difference operator D expressed in

the reduced basis, eigenvectors of the Laplacian on
the source shape as columns of Φ, a list of p
energy values (ej)j , a scale parameter σ

Output: One DWKS descriptors at each energy
value.

(1) Compute the eigenvectors U and the eigenvalues
(λi)i of D

(2) Compute Ψ = ΦU the eigenvectors of D in the
canonical basis.

(3) Use Ψ, (λi)i and σ to compute the DWKS
descriptor for each ej using equation (7).

second term of the objective (5) acts as a powerful regular-
izer in the case of near-isometric shapes but fails in more
challenging settings, including partiality.

In this work, we build on this pipeline and use local
pointwise descriptors extracted from the shape difference
operators. This allows both to use standard optimization
techniques, thus avoiding the costly SVD associated with
∥C∥F = 1 regularization, and to remove the need for near-
isometric regularization. Ultimately, our framework is both
more efficient and leads to significant improvements, espe-
cially in the case of partial shapes.

4. Our approach – DWKS

4.1. Motivation and Overview

The standard functional correspondence pipeline de-
scribed in Section 3.2 relies on both commutativity with
the Laplacian operators and alignment of local descriptors.



Algorithm 2: Aggregate DWKS descriptors for a
collection

Input: A list of functional maps {Ci}ni=0 between
the base shape and shape i, eigenvectors Φ of the
Laplacian on the base shape, a list {∆i} of
diagonal matrices of eigenvalues of the Laplacian
for each shape, energy values (ej)

p
j=1, a scale

parameter σ
Output: DWKS descriptors for the complete
collection

for i← 1 to n do
Compute Vi and Ri using Eq. (3) and Eq. (4)

with Ci, ∆0 and ∆i.
Compute DWKS descriptors of Vi and Ri

using Algorithm 1 with σ, Φ and (ej)
p
j=1

end

Interestingly, spectral descriptors such as HKS or WKS
[43, 4, 2] are extracted from the same Laplacian opera-
tors. Nevertheless, their use in the optimization problem
of Eq. (1) both helps to prevent trivial solutions and in-
jects local information into the process. Our main goal is to
mimic this construction for cross-collection matching, but
using shape difference operators. Interestingly, commuta-
tivity with shape differences has already been advocated in
[39, 5]. We seek to extend this construction by also extract-
ing pointwise descriptors from shape difference operators,
similarly to the way WKS is extracted from the Laplacian.

Unfortunately, such an adaptation is not straightforward
primarily because unlike the Laplace-Beltrami operators
whose spectral properties are well-understood and have in-
tuitive physical interpretations, shape difference operators
are much less studied and it is therefore not clear whether
pointwise spectral descriptors can be extracted in the same
manner. We thus start with the following key observation
(with proof given in the supplementary materials):

Theorem 1 Given a non-degenerate functional map F ,
both the area-based and conformal shape difference op-
erators are positive (semi)-definite, provided that the area
and stiffness matrices of the Laplacian are positive (semi)-
definite.

This theorem, which interestingly was not demonstrated
in the original shape difference work [35], provides the first
insight into the possibility of applying spectral approaches
to shape difference operators, since, similarly to the Lapla-
cian their eigenvalues are guaranteed to be non-negative.
Moreover, we remark that shape difference operators en-
joy both locality and composition or functoriality properties
(see, respectively, propositions 4.2.3 and 4.2.4 in [7]). The
former remark resonates with the more general property of
shape difference operators in [35], which states these two

Figure 3. Our pipeline takes two collections as input, with given
base shapes. DWKS descriptors for each deformation are aggre-
gated to smooth out the noise, and are then used for point-wise
map computation.

operators act on functions depending on the local distortion
induced by the underlying correspondence map.

While the eigenfunctions of the Laplace-Beltrami oper-
ator capture the “smoothest” possible functions on the sur-
face, the eigenfunctions of the shape difference operators,
intuitively, capture areas of distortion between the shapes
(see [35, 17] for a discussion of this property). More-
over functions that are preserved by the shape differences
Df = f (and thus correspond to eigenvalue 1) correspond
to areas of no distortion (see Theorem 4.2.1 in [7]). One can
draw a parallel with the constant function, corresponding
to the zero eigenvalue of the Laplacian. Moreover, shape
differences naturally enjoy the multiplicative algebra [35]
(see also Proposition 4.2.4 in [7]), which means, for exam-
ple that DN ,M = (DM,N )

−1 and DM,N = DM,PDP,N
for any shape difference operator D and shapesM, N and
P (up to the appropriate change of basis).

The two observations above suggest that the spectrum
of shape difference operators is more naturally expressed
using the log-scale. This way, the undeformed regions cor-
respond to log(1) = 0 log-eigenvalues. Moreover, the log-
eigenvalues of the operator that captures the inverse defor-
mation are simply negative of that of the direct deforma-
tion. Finally, in some cases (e.g., when deformations com-
mute) the composition of difference operators leads to log-
eigenvalues being sums of individual difference operators.
We expand upon these observations and provide a more for-
mal treatment in the supplementary materials.

A final but essential remark is that the shape difference
operators we use in practice are all expressed using the
truncated basis of Laplace-Beltrami eigenfunctions using
Eq. (3) and (4). The eigenfunctions of shape differences can
therefore only represent very smooth functions and in par-
ticular cannot represent a Dirac delta function on the mesh
but rather a heat kernel centered around a point.



Figure 4. Visualization of the fitting pipeline. Starting from descriptors, a first point-wise map is computed, which is then projected into a
low-dimension functional map ignoring some outlier vertices. This functional map is then refined using ZoomOut algorithm [25].

4.2. Definition

Using these remarks and inspired by the definiton of
WKS descriptors [2], we define the DWKS descriptor of
a given shape difference operator D acting on shapeM as

DWKS(D) :M× R→ R

(x, e) 7→ C

kM∑
k=1
λk>0

e−
(e−log(λk))2

2σ2 ψk(x)
2 (7)

with (λk)k and (ψk)k respectively the eigenvalues and
eigenvectors of the operator D, σ a manually set parame-
ter, and C ensures that

∫
R ∥DWKS(D)(·, e)∥Mde = 1.

DWKS can be interpreted as a Gaussian blur of the spec-
trum of the operator, where parameter σ defines the spread
of eigenvectors on the log scale. Remarks from Section 4.1
motivate the choice of a constant σ across all energy levels.

Note that in order to compute a DWKS descriptor we
assume to be given either a pair or a collection of shapes
with functional maps between them. The functional maps
are represented in the truncated Laplacian eigenbasis, which
leads to small-size shape difference operator matrices. Note
that DWKS also produces a separate pointwise descriptor
for each (area-based and conformal) shape difference oper-
ator, and can be extended to any shape difference operator
by applying the construction described in Algorithm 1.

Examples of DWKS descriptors of the area shape dif-
ference operator, seen as functions of the shape at a given
energy level are displayed on Figure 2. Each line displays
descriptors for similar deformations of a cat and a lion,
which do not share either similar geometry or number of
vertices. Note that the descriptors seem quite similar up to
some noise as with e = log 1.2. The bottom line demon-
strates that the descriptors remain stable even in the case of
partiality as they capture local information.

4.3. Stability of descriptors

As seen from Figure 2, DWKS descriptors seem to re-
main stable even in the case of partial shapes, but the reason
might be unclear.

When comparing DWKS descriptors between two com-
plete and two partial shapes, two phenomenona occur. On
the one hand, eigenfunctions of shape difference operators
and therefore the associated DWKS descriptors are more lo-
calized in the partial case since the spectral basis can repre-
sent more precise elements, as shown in [33]. On the other
hand, only a fraction of the less localized eigenfunctions in
the complete case are located on the zone represented by the
partial shape. Eventually we observe in practice that these
two effects get averaged out by the Gaussian blur

In practice DWKS descriptors provide partial informa-
tion on shape deformation and therefore use additional reg-
ularization to obtain more meaningful point-to-point cor-
respondences. In the following we present one possible
pipeline, illustrated on Figure 3 to obtain point-wise maps
from DWKS descriptors.

4.4. Matching Pipeline

We suppose being given two similar collections of
shapes (Mi)

n
i=0 and (Ni)

n
i=0, aligned in the sense that de-

formation between M0 and Mi is similar to the one be-
tweenN0 andNi for all i. Note that this information can be
automatically retrieved from unaligned collections of differ-
ent size using the pipeline from [5]. We also assume to have
access to approximate intra-collection maps, which can be
computed using known near-isometric shape matching tech-
nique.

For simplicity we equivalently write M (resp. N ) or
M1 (resp. N1). Our matching pipeline proceeds in four
steps shown in Figure 4:

1. Compute shape difference operators of dimension kM
and kN for each collection, and aggregate DWKS de-



scriptors for each of them in matrices A ∈ RnM×np

and B ∈ RnN×np.

2. Compute an approximate point-wise map using
DWKS descriptors.

3. Project the point-wise map into a low dimension func-
tional map, using only a subset of the vertices.

4. Refine the functional map using e.g. the ZoomOut [25]
algorithm.

In the first step, we use p evenly spaced energy values
(e1, . . . , ep) and compute descriptors using Algorithm 2.

In the second step, we firstly combine the standard func-
tional map pipeline described in Section 3.2 with the com-
mutativity terms introduced in [39, 5] :

C∗ = argmin
C∈RkN ×kM

Ed(C) + µdcEdc(C) + µlEl(C)

+ µcEc(C) + µaEa(C)
(8)

with Ed(C) = ∥CA − B∥2F the descriptor preservation
term where A and B are matrix A and B projected in
the spectral basis, Edc(C) promotes commutativity with
operators built from individual descriptors described in
Section 3.2, El(C) the standard commutativity with the
Laplace Beltrami Operator ∥C∆M −∆NC∥2F , Ec and Ea

respectively enforcing commutativity with the conformal
and area-based shape difference operators ie

∑
i ∥CRM

i −
RN

i C∥2F and
∑

i ∥CVM
i −VN

i C∥2F where Ri is the i-th
conformal shape difference operator and Vi the i-th area
one. The result C∗ from problem (8) is then transformed
into a point-wise map TF : N → M using standard
method from [28].

In Step 3., we seek to project the point-wise map T into
a low-dimensional functional map. To do so we fist dis-
card the fraction α of vertices ofN with the largest descrip-
tor distance defined for vertex j as d(j) = ∥lTF (j)(A) −
lj(B)∥2 where lm denotes the m-th line of a matrix. This
usually ignores vertices near cuts and holes where descrip-
tors are less precise, as seen on Figure 4.

In step 4 we refine the low-dimensional functional map
using the ZoomOut algorithm [25]. Note that the absence
of refinement algorithm tailored for partial matching makes
results particularly sensitive to the refinement parameters.
During the first iterations we ignore vertices of N belong-
ing to the previous subsample and use the complete set of
vertices for the last few iterations.

5. Experiments
Parameters. Unless stated otherwise, the parameters for
DWKS are fixed across all experiments. The energy values
are set to 200 values linearly-spaced values between− log 3

Figure 5. Results on the Sumner dataset using the complete shapes.
We show our method obtains similar results as [5] in this case.

Figure 6. Results on the Sumner dataset. While our method
doesn’t achieve visually perfect result due to the absence of tai-
lored refinement, it outperforms usual methods. Digits on the leg-
end describe the average geodesic error for each method.

and log 3. The standard deviation parameter σ is set to 1.2%
of the total range. The size of the computed shape differ-
ence operators is set to kM = kN = 50 and the functional
map used to compute them are of size 3kM × kM as ad-
vocated in [5]. Parameters for optimization problem (8)
are µdc = 10, µl = 0, and µa = µc = 10−4. All
the terms of Equation (8) have been introduced separately
in previous works [28, 27, 5], and we refer the reader to
these articles or to the supplementary material for a more in
depth discussion on their effect. The low-dimension func-
tional map is a 15 × 15 matrix for complete shape, and a
15×λ15 matrix for partial shape with λ the estimated slope
of the slanted diagonal of the functional map as described



in [33]. We set α = 20% in the case of partial shapes, and
α = 5% in the case of complete shapes were the amount
of noise is reduced. More details about the parameters val-
ues can be found in the supplementary material. The im-
plementation our method and the baselines are available at
https://github.com/RobinMagnet/DWKS.

Cats and Lions. This first experiment uses synthetic data
to evaluate the stability of our method in the standard set-
tings used in [5], and show how our pipeline can handle par-
tiality where the matching technique from [5] might strug-
gle. The two collections consist of 10 similar versions of a
cat and a lion meshes as those displayed on Figure 2. We
also manually create a collection of lions cut in half, as seen
in Figure 6. Using standard parameters and subsampling 1
out of 3 descriptors for faster computation, Figure 5 shows
our method achieves similar accuracy than [5] on complete
shapes without the need for a costly SVD solver. Figure 6
displays our results in the case of partial before and after
the refinement step, compared to those from [5] where we
set µl = 0 in their objective (5) for fairness since the near-
isometry assumption fails. We additionally show results ob-
tained by the standard functional map pipeline [27] using
WKS descriptors, described in Section 3.2.

Synthetic face dataset. We use a similar setting on an-
other synthetic dataset [35] consisting of two collections
with 10 faces with multiple expressions. As we wish to
focus on real noisy scans in the following experiment, we
refer the reader to the supplementary material for illustra-
tions of results on this dataset.

DFaust. We finally tested our pipeline on the DFaust
dataset [3], which consists of multiple similar collections of
real scans of human shapes, which we see as point clouds.
This dataset is especially challenging since real data con-
tains notable holes and outlier vertices, which forces us to
use approximate intra-collection maps. Using a recent for-
mulation of a Laplacian for point clouds [41], we apply
our complete pipeline to collections of complete and par-
tial shapes. Note that the method from [5] can be similarly
adapted to work with point clouds and still serves as a base-
line. In the case of partial shapes, we again do not apply
ICP refinement to results from [5] for fairness. A point-
wise map obtained when matching the two collections of
humans in jumping motion are shown in Figure 1. In Fig-
ure 7 we provide both a qualitative and quantitative evalu-
ation. Our pipeline brings significant improvement to [5]
both in the complete and partial setting even without the
refinement step, which demonstrates its robustness to noise
and applicability to real scenarios. Results from [5], by con-
trast, do not achieve satisfying results even in the isometric
case. Additional quantitative and qualitative results on this

Figure 7. Results on the DFaust dataset. We match two collec-
tions of 6 meshes representing humans in jumping motion. Bottom
row represents accuracy curves of pointwise maps in the complete
(left) and partial (right) cases. Numbers in the legend give the av-
erage accuracy multiplied by 103.

dataset as well as comparisons to other baselines are avail-
able in the supplementary material.

6. Conclusion and future work
In this work we introduced a pointwise descriptor of de-

formation between surfaces, able to efficiently encode infor-
mation about local distortion within a collection at a vertex-
level. Our pipeline enables to leverage the common defor-
mations of meshes and point clouds to compute maps in
challenging scenarios including symmetry and partiality.

Our approach however suffers from some limitations, as
it only focuses on intrinsic deformations of shapes. Fur-
thermore the absence of robust refinement algorithms in the
case of partial shapes makes our method very sensitive to
the parameters of these algorithms. Finally while the pa-
rameters were set as constants across our experiments, they
still might have to be manually set by the user.

In the future it will be interesting to exploit meaningful
extrinsic shape difference operators in the vein of [19], and
to potentially overcome the choice of a base shape through
the introduction of consistent latent spaces [16].
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Sharma, Peter Wonka, and Maks Ovsjanikov. ZoomOut:
spectral upsampling for efficient shape correspondence.
ACM Transactions on Graphics, 38(6):1–14, Nov. 2019. 2,
6, 7

[26] Andy Nguyen, Mirela Ben-Chen, Katarzyna Welnicka,
Yinyu Ye, and Leonidas Guibas. An Optimization Approach
to Improving Collections of Shape Maps. Computer Graph-
ics Forum, 30(5):1481–1491, Aug. 2011. 2

[27] Dorian Nogneng and Maks Ovsjanikov. Informative De-
scriptor Preservation via Commutativity for Shape Matching.
Computer Graphics Forum, 36(2):259–267, May 2017. 2, 3,
7, 8

[28] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian
Butscher, and Leonidas Guibas. Functional maps: a flexible
representation of maps between shapes. ACM Transactions
on Graphics, 31(4):1–11, Aug. 2012. 2, 3, 7



[29] Maks Ovsjanikov, Etienne Corman, Michael Bronstein,
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