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Abstract

Physics and physical chemistry are an important thread in computational protein design, 
complementary to knowledge-based tools. They provide molecular mechanics scoring 
functions that need little or no ad hoc parameter re-adjustment; methods to thoroughly 
sample equilibrium ensembles, and different levels of approximation for conformational 
flexibility. They led recently to the successful redesign of a small protein using a physics-

based folded-state energy. Adaptive Monte Carlo or molecular dynamics schemes were 
discovered where protein variants are populated according to their ligand binding free 
energy or catalytic efficiency. Molecular dynamics have been used for backbone flexibility. 
Implicit solvent models have been refined, polarizable force fields applied, and many 
physical insights obtained.

1 Introduction

Protein design is by nature pragmatic: success is measured by the hits obtained. The 
main ingredients are the energy or scoring function, the description of conformational 
space, the unfolded state model, and the algorithm to sample sequences and conforma-

tions. Physical chemistry and empiricism can be mixed in whatever proportion is needed. 
Scoring functions can emphasize molecular mechanics or purely empirical terms. The 
search for active variants can carefully mimic the physical behavior of a thermodynamic 
ensemble or simply target high scores with a heuristic search. Once predicted designs 
move into the experimental testing phase, experience shows that experimental firepower 
can rescue many physically-naive prediction models. So how much physical realism is 
enough, which ingredients are most critical, and what are the best ways forward?
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This review focusses more on new methodology than applications, and covers the

period from early 2019 to early 2021. This period has produced many interesting ad-

vances. We first consider the problem of whole protein redesign. Recent work supports

the possibility of a purely “physics-based”, molecular mechanics energy function for the

folded state. Implicit models of nonpolar solvation have been compared. Several studies

explored routes towards physically realistic unfolded state descriptions, which remain ten-

tative, however. Second, we consider methods for the design of protein-ligand complexes,

including the redesign of existing enzymes for new substrates. Many aspects have been

addressed within this broad area. Ligand pose selection and refinement are one important

challenge. Several studies have focussed on tuning active site electric fields. One note-

worthy advance is the use of adaptive landscape flattening to allow the design protocol

to directly target the ligand binding free energy, including transition-state binding. This

strategy is possible when sampling obeys the physically-correct, Boltzmann distribution.

In the third and fourth sections, we consider, respectively, the energy function and

the problem of sampling sequences and structures. Aspects that appeared in the two

previous sections are pursued further. Polarizable energy functions have been applied, not

to protein design but to the closely-related problems of acid/base equilibria and side chain

repacking. Implicit solvent models continue to improve, including their polar and nonpolar

components. An implicit membrane model was applied to membrane protein redesign.

Another element of physical realism is provided when predicted designs are post-processed

with a more accurate model, especially models that use molecular dynamics with a fully

flexible protein and an explicit solvent. Designs can then be rescored using a simplified

free energy function (like MMPBSA) or by full-blown alchemical free energy perturbation

simulations (FEP). The fourth, sampling topic includes work on ligand poses, backbone

flexibility, and multistate design. An emerging theme is the use of molecular dynamics

for conformational sampling during the exploration of sequence space, which is the most

physically-realistic approach.

This review is not exhaustive, even for the period covered. Several related areas are

only touched upon or mentioned. Thus, important experimental advances include high-

throughput assays for whole protein design [1], protein-peptide binding [2], and stability

mutations [3], as well as the new ProtoBank stability mutation database [3]. Many articles

apply machine learning, like the notable Alphafold structure prediction method [4]. A

few are considered below, but most are outside our scope [5, 6]. A journal special issue

covers several design topics beyond our scope [7]. Enzyme design was reviewed in depth
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earlier [8, 9]. Interesting studies not directly tied to physics-based methods are excluded

or only mentioned, including de novo ligand binding-site construction [10] and allostery

design [11]. New methods within the Rosetta software were reviewed recently [12]. More

directly related to the question in our title are advances in the Osprey software package

[13], which implements a sophisticated side chain rotamer treatment as well as methods to

compute ligand-binding free energies. Also related is the recent Proteus software release

[14], which implements physics-based design. Finally, physics-based design methods and

underlying theory were reviewed [14].

2 Protein stability and redesign

2.1 The unfolded state

Whole protein design or redesign depends on an energy function for the unfolded state.

So far, applications have used heavily-parametrized, purely empirical functions. Physics-

based models are an interesting future perspective. Several recent studies are of interest.

Peran et al. provided a high-resolution description of unfolded states of a small pro-

tein from FRET and SAXS experiments, all-atom MC simulations, and polymer theory

[15]. Under refolding conditions, the unfolded state was less compact than the native,

and included some residual, native, helical structure. Local and nonlocal intra-protein

interactions were inferred, both native and nonnative. Sequence-specific interactions in-

troduced significant deviations from idealized homopolymer models. Two groups used

coarse-grained models and mean field theory to study electrostatic interactions and pH

effects in the unfolded state [16, 17]. Interesting observations included the role of the

position of ionized groups within the sequence and the good performance of mean field

theory for a disordered protein structure. The past year has seen several publications

on the structure and dynamics of intrinsically disordered proteins, which could mimic

the unfolded state [18, 19]. For example, extended peptide models have been used in

calculations of stability changes, considered next.

2.2 Computing stability changes

A common test of computational protein design (CPD) is to predict stability changes

associated with point mutations. These depend on a representation of the unfolded state.

Most groups have employed simple, extended peptide models. In CPD, this approxima-
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tion is associated with many others: implicit solvent, side chain rotamers, and so on.

In the context of more realistic physical models, which use all-atom MD and alchemi-

cal free energy perturbation (FEP), there are far fewer approximations and the unfolded

treatment can be expected to limit the overall accuracy (despite other, remaining approx-

imations such as fixed atomic charges). FEP then gives a rough lower bound on what can

be achieved with an extended peptide unfolded model, in the absence of any empirical

parametrization. Two groups reported FEP tests recently. One considered 43 point mu-

tations in lysozyme [20], and used an Ala-X-Ala tripeptide to represent the unfolded state

when mutating a residue X. The mean unsigned error (MUE) was 1.4 kcal/mol and the

correlation was 0.74 compared to experiment. The other group considered 87 mutations

in five proteins [21], and used either a tri-, penta-, or heptapeptide for the unfolded state.

Rosetta gave an MUE of 1.65 kcal/mol for this dataset. With FEP, the MUE was half as

large: 0.85 kcal/mol, with a very small improvement going from a tri- to a heptapeptide

unfolded model. An earlier, even larger FEP study gave similar errors [22].

Nisthal et al. produced an important experimental dataset [3], then used it to bench-

mark several models. Using a novel automated method, they generated stability data for

almost all point mutations of a 56-residue domain from protein G (935 mutants out of

1064). By using a single approach and producing all variants, they avoided flaws inherent

in the largest stability database, ProTherm, such as its predominance of large-to-small

mutations. The same group maintains the new ProtoBank ressource, which includes the

ProTherm data [3]. Most of the protein G single mutations had a small effect on stability.

Several CPD models were tested on the data, including Rosetta. Since Rosetta does not

directly provide energies in physical units, only correlations were measured. Values of

0.5–0.6 were obtained, lower than with all-atom FEP, as expected.

2.3 Whole protein redesign

The most important recent advance in whole protein design was the development a few

years ago of high throughput experimental screens [1]. These allowed thousands of pro-

teins and miniproteins to be redesigned or designed de novo with Rosetta, including

miniproteins with activity against SARS-Cov-2 [23]. This work reported a success rate of

about 6% (designed protein is expressed and correctly folded), although both higher and

lower rates have been found for other templates and datasets. For example, another study

redesigned two small proteins using Rosetta and flexible backbone exploration; a genetic

algorithm was used to enrich the design set in sequences similar to natural ones [24]. 16
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designs were experimentally tested; five could be expressed but none had a native-like

circular dichroism spectrum.

Two computational advances are of interest for the question posed by our title. First,

our group has studied the effect of several implicit solvent models on the ability to recover

native-like sequences in whole protein redesign [14, 25]. We compared two treatments of

nonpolar solvation: a surface area (SA) and a Lazaridis-Karplus (LK) term, and combined

them with two Generalized Born (GB) variants for polar effects: one that maintained the

many-body GB character and one that averaged it out. In all cases, the unfolded model

was empirical and specifically parametrized. The best sequence recovery, comparable to

Rosetta, was obtained with the more rigorous, many-body GB and the LK nonpolar term.

The 2nd publication [25] includes a tutorial and scripts for unfolded model parametriza-

tion, using a well-defined, maximum-likelihood approach.

A second advance was the first successful redesign of a protein (a PDZ domain) using

a nonempirical, physics-based energy function for the folded state [26]. A handful, not

thousands of designs were validated, and those tested were chosen partly based on several

empirical criteria. Nevertheless, all those tested were successful, and it is striking that a

standard, molecular mechanics model was sufficient to produce fully-redesigned proteins.

2.4 Fitness landscapes

To end this section, we mention studies of fitness landscapes, very briefly due to space

constraints. These lead to concepts like designability and evolutionary trajectories. They

can also help produce and optimize designs. Thus, one study used fitness landscape infor-

mation given by a neural network to perform whole protein redesign [27] (with the help of

FoldIt players). The neural network predicted the probability of residue-residue distances

and orientations from sets of aligned sequences, and provided gradients with respect to

sequence mutations. By moving along the gradients, better distance distributions could

be obtained in a series of iteration cycles, which led to an optimized sequence.

Importantly, fitness landscapes provide physical insights. Unlike full redesign cal-

culations, most studies explore the landscape structure close to a native or a designed

sequence: its ruggedness and slope, the magnitude of short- and long-range correlations,

the important degrees of freedom. Chen & Wolynes derived several measures of landscape

frustration and used them to show that a designed protein had a higher frustration than

a natural one [28]. Two groups estimated the intrinsic dimension of sequence space for

several protein families, and quantified the constraints imposed by protein symmetry [29]
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or by phylogenetic relations [30]. Ding et al. introduced a low-dimensional “latent space”

representation, learned using methods from image processing, which allowed them to char-

acterize the dimensionality of sequence space [31]. Finally, Blanco et al. reviewed both

high-throughput experiments and simple theoretical models to probe fitness landscapes

[32].

3 Protein-ligand binding

We focus on the redesign of existing binding pockets to accomodate new ligands, rather

than de novo binding site design [10, 33]. Indeed, new physics-based methods were either

developed for, or can be understood from redesign applications. We distinguish three

subproblems. The first is to refine an initial ligand pose (such as a native pose), before

the design step per se. The second is to post-process designed complexes using more

accurate and costly methods; for example, MD with explicit solvent, combined with a

Poisson-Boltzmann (PB) free energy function. The third and most important subproblem

is to design a complex using the binding affinity as the design target. CPD has produced

impressive successes, like miniproteins that bind the SARS-Cov-2 receptor binding domain

[23]. Most of these successes (and many failures) were obtained by optimizing the total

energy of the complex, rather than its binding affinity. Designing for affinity is a much

harder problem, and the best current solution was discovered only recently, thanks to an

adaptive landscape flattening approach [34–36]. Finally, in a separate subsection, we turn

to the special case of enzyme redesign, where some specific new methodology has been

proposed.

3.1 Pre- and post-processing steps

Protein-ligand redesign applies mutations around a binding pocket, while allowing ligand,

side chains, and possibly backbone to adjust their conformations. The allowed ligand

conformations are an essential input. Often, a few poses are used and, for each one,

internal deformations are allowed, similar to side chain rotamers. Poses can be borrowed

from a native ligand. They can also be obtained by docking methods, which have seen

major advances in speed this year through GPU implementations [37, 38]. Another study

reported a complete molecular mechanics force field for small molecules, optimized to

reproduce crystal structures, then combined it with the Rosetta protein and solvent energy
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functions in a large-scale docking benchmark. Among over 1000 test calculations, over

half recovered the experimental binding mode with sub-Ångstrom accuracy [39].

Gilabert et al. presented a Protein Energy Landscape Exploration, or PELE, to iden-

tify ligand binding poses and calculate absolute binding free energies [40]. They explored

and evaluated different ligand binding poses, generated by random ligand translation and

rotation moves, protein backbone perturbations along normal modes, side chain predic-

tion, and global energy minimization. The energy function combined molecular mechanics

and GB solvent. Mobley et al. developed a hybrid MD/MC method to identify binding

modes or bound conformations of flexible ligands, and to compute their relative popu-

lations [41]. In addition, they proposed a new, “Molecular Darting” MC move, which

allows one to reversibly hop between several, predefined binding modes [42], and could be

incorporated into protein design schemes.

It is also important to post-process designed complexes with more realistic models.

MD simulations can be readily applied to dozens of designs, allowing the rotamer, fixed

backbone, and implicit solvent approximations to be removed. GB or PB or PBSA

rescoring can be applied [43], and alchemical FEP can be used for a few designs. If

the design used a molecular mechanics force field [14], post-processing can use the same

one, facilitating the interpretation. Several recent studies illustrate these ideas. One study

applied 0.5–1 µs of MD to each of 37 designs, to determine the mobility of ligand, solvent,

and protein within the binding pocket [44]. Increased mobility indicated lower quality

designs, and machine learning approaches built from the trajectories could further help

discriminate successful/failed binders. Another study applied a Linear Interaction Energy

(LIE) free energy function to MD trajectories of 28 Cyt P450–ligand complexes, obtaining

mean errors around 1 kcal/mol [45]. No CPD was performed, but the LIE performance

shows it is of use for CPD post-processing. Finally, our own group applied an earlier

LIE model for PDZ–peptide binding to 15 designed peptides [46]. Deviations between

the CPD and LIE affinities were about 1.5 kcal/mol (triple the estimated LIE error) and

negative, with CPD over-binding. In addition, this study surveyed the accuracy of PBSA

and related free energy functions in 15 studies. The reported accuracies appear to be

below the potential of these methods, possibly due to implementation choices.

3.2 A method to design for affinity

Rigorous methods to design for binding affinity are very valuable. For small problems,

so-called partition function methods can enumerate sequences within a given energy win-
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dow of the Global Minimum Energy Conformation (GMEC). Doing this for a protein

and a protein–ligand complex leads to a controlled approximation for the relative binding

free energies of protein variants [47]. Recent work led to improved K* algorithms, with

increased pruning of high energy sequences and conformations [48]. This led to a 10–100

fold speedup for a set of 41 (mostly single) mutations of the Ras–Raf binding interface.

The rank order of mutant affinities was in good agreement with experiment (0.81 Spear-

man correlation), although precise affinity errors were not reported. The method was then

used to redesign two positions in the same complex, for a total of 441 possible sequences.

A point mutant was discovered with a 5-fold increase in the experimentally-measured

affinity.

Despite such complex, powerful algorithms, partition function methods remain ex-

pensive and allow very limited sampling. An important development was the discovery

[34–36] of a new, simpler and more efficient method to design specifically for binding affin-

ity, based instead on adaptive landscape flattening (ALF). It can handle spaces of 100,000

sequence variants while providing relative binding free energies that are well-converged.

Two applications were reported, plus a third that is in the enzyme subsection below. One

application was the PDZ-peptide study above [46]. Peptides were designed to bind the

Tiam1 PDZ domain; 15 designs were predicted to improve binding over a native peptide,

but LIE showed the binding was overestimated and no actual hits were obtained. The

other application redesigned the SARS-Cov-2 receptor domain to enhance ACE2 binding

[49]. Both studies used an MC simulation that adaptively flattened the free energy land-

scape in sequence space of the designed entity (receptor domain, say), by optimizing a

bias function B, in the absence of the ligand (absence of ACE2). Once the landscape is

flattened, B closely approximates the sequence free energy of the apo receptor, up to a

sign change. B was then included in a simulation of the receptor-ACE2 complex (holo

state), where it subtracted out the unbound state. Thus, the biased MC simulation sam-

pled sequences according to their binding free energy [34], and sequences with increased

affinity were exponentially enriched. Notice that since this CPD method yields binding

free energies, comparison to experimental affinities or FEP results is considerably sim-

plified. Importantly, since the method is applicable to an enzyme binding its transition

state, it can allow the design of catalytic efficiency, as shown in the next subsection.
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3.3 Enzyme redesign

Many enzyme studies have sought to optimize the total energy of the enzyme-substrate

complex [8], instead of optimizing catalysis, and this may contribute to the weak activ-

ity of some designs, even though negative or partly-negative results are, unfortunately,

rarely published [50]. Several recent studies have sought to optimize catalysis more di-

rectly, by tuning the electric field in the active site [9, 51]. Beker et al. introduced the

“inverse catalysis problem” for enzyme design: the determination of the catalytic fields

from the transition state and reactant state wavefunctions [52]. This then allowed the

direct extraction of the geometrical characteristics of the optimal catalytic site, as well

as transition-state stabilization and ground-state destabilization effects. The method was

validated by comparing to experimental data for Kemp eliminase mutants. Warshel and

coworkers performed a pilot study of the enzyme haloalkane dehalogenase, using MD with

the Empirical Valence Bond semi-classical model to directly estimate catalytic effects of

several mutations, which were then validated by experiments [53]. One of the mutants

had a higher-than-wildtype efficiency. Bonk et al. used MD and importance sampling to

simulate the reaction pathway of the KARI enzyme, then used machine learning tech-

niques to identify structural and dynamical characteristics that promote catalysis [5].

They noted the existence of a region in conformational space that promotes reactivity

when populated. Its main defining features were the substrate conformation, substrate

bond polarization and metal coordination geometry.

In fact, when designing an enzyme, it is now possible to target directly the binding

affinity of the transition state, also known as the catalytic efficiency, which is equal to the

2nd order rate constant kcat/KM under Michaelis-Menten theory. Indeed, the ALF method

to design for binding affinity applies to transition state binding. The ALF approach

can also be used to design for binding specificity: for example, transition state binding

vs. substrate binding. In that case, one optimizes the catalytic rate kcat, instead of

the efficiency kcat/KM . With these approaches, there is no need to explicitly consider

electric fields. Rather, one acts directly on the rate, either via kcat or kcat/KM . The first

application to an enzyme appeared recently [54]. Methionyl-tRNA synthetase was the

test system and the Proteus software was used. Known variants with activity towards

the unnatural amino acid azidonorleucine were recovered, and new variants with activity

towards the native substrate methionine were predicted, then confirmed experimentally.

In followup work, new variants were obtained with activity towards the unnatural amino

acid β-methionine [14]. Both studies used a physics-based, MMGBLK energy function.
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4 Energy function developments

CPD energy functions often contain empirical terms, and new ones are constantly be-

ing added, tuned, and reparametrized [12, 55, 56]. As machine learning becomes more

widespread and successful, this trend is on the rise. Physics-based energy functions, on

the other hand, are transferable to all biomolecules, can be systematically improved, and

give physical insights. Recent successful CPD applications and simulation work in general

show that physical realism remains a powerful route, where progress continues. Two im-

portant threads are the rapid rise of polarizable molecular mechanics and the continuing

refinement of implicit solvent models.

In CPD, many of the protein degrees of freedom are represented implicitly [14]: elec-

tronic polarization, bond and angle stretching and, in many cases, backbone motions

[14]. As a result, the protein dielectric constant is normally set to a value much greater

than one, like 4 or 8. How then to construct a consistent model that treats electronic

polarization explicitly, but many other protein degrees of freedom implicitly? One study

showed that modeling protein electronic polarization explicitly, in combination with a PB

solvent, led to improved acid/base predictions for several proteins, even though all other

protein degrees of freedom were treated implicitly [57]. Notice that side chain protona-

tion/deprotonation is formally analogous to a mutation, and thus acid/base calculations

are directly of interest to CPD. Another study quantified the effect of the polarizable

Amoeba force field on side chain repacking [58], an important sub-task of CPD. For a

collection of proteins important for hearing pathologies, the authors observed a system-

atically improved agreement with experimental X-ray data. Other polarizable force field

developments have been reviewed [59].

Another important thread is refinement of implicit solvent models. Building on

the Amoeba polarizable protein force field, the Tinker developers reported a new im-

plicit solvent model that was developed and parametrized in combination with Amoeba

[60]. The continuum electrostatic term was based on an analytic generalized Kirkwood

approximation. The nonpolar term was based on novel cavitation and dispersion estima-

tors. The model was completely parametrized and tested, both on small molecules and

proteins. The Generalized Born electrostatic model has often been used for protein de-

sign, and this model continues to progress. A very good analysis of its physical basis was

published recently [61]. An efficient GPU implementation of a combined GBSA model

was provided within the CHARMM/OpenMM software [62]. Such fast implementations
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will be especially valuable for sampling backbone motions in CPD. GB optimization and

benchmarking for protein-ligand binding were also reported [63], with a powerful global

optimization algorithm leading to improved parameters.

In CPD, GB is normally combined with a nonpolar model, with SA models among the

most popular. Our group showed that a Lazaridis-Karplus nonpolar term gave superior

performance for native sequence recovery in whole protein design [14, 25]. In addition,

GBLK gave larger sequence entropies, in much better agreement with natural sequence

diversity. Two semi-empirical implicit membrane models were implemented in Rosetta

[64, 65], and gave good performance for membrane protein prediction and design. While

these models were not derived from first principles, they provide a considerable increase

in realism compared to a simple hydrophobic slab.

Finally, mixed models continue to be explored, where a few water molecules are

represented explicitly, while the bulk of solvent is treated implicitly. Notice that it is

technically straightforward to include a few explicit waters in CPD models, and could

improve accuracy for some problems. One group used Rosetta to include a few explicit

waters at protein-protein and protein-ligand interfaces, and obtained improved native

structure recovery in protein-protein discrimination tests [66]. Another used MC within

the PELE tool to sample explicit waters buried in protein cavities or at interfaces, and

evaluated performance by comparing to crystal water positions [67]. Another group devel-

oped hybrid MD/MC to study the equilibrium between buried and bulk water molecules,

and improve the accuracy of protein-ligand binding free energy calculations [68].

5 Sampling backbone conformations

The importance of backbone flexibility was underlined recently by an enzyme design study,

where CPD with certain backbone conformations led to recovery of the correct side chain

organization in the active site, while most did not [69]. Including backbone flexibility

has a major effect on the structure and complexity of CPD computations. Algorithmic

aspects and methods that provably identify the GMEC were reviewed recently [7].

The simplest strategy to explicitly model backbone flexibility in CPD is to run cal-

culations with a few distinct backbone conformations. It is common to run a design

calculation with a fixed backbone, then relax the side chain and backbone structure with

a fixed sequence (“design-then-relax”), then iterate, as in two recent studies [70, 71]. One

can also run in parallel calculations with a collection of backbone conformations, deter-
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mined in advance. For example, in an MC simulation, one could apply the same mutation

to several backbones, each carrying the same sequence, then accept or reject the mutation

based on an average energy. This multibackbone method was shown to increase sequence

conservation, compared to a series of independent designs, for a protein that undergoes

large backbone rearrangements [72]. It was also applied in a recent successful enzyme

redesign [73]. The authors redesigned the E. coli BCAT enzyme to accept two substrates,

using a total of 300 backbone templates. Experimental validation revealed four variants

with a 200-fold increase in catalytic efficiency.

Multistate design requires only modest changes to MC code. In contrast, another

group reported difficult and impressive algorithmic work to provably obtain the GMEC

in the multibackbone case [74]. This is an example where physics-based sampling of Boltz-

mann ensembles can provide top sequences with tight confidence intervals, using much

simpler algorithms than GMEC proofs. Note also that the GMEC is only determined up

to the typical errors in the energy function.

The second strategy for backbone flexibility is to include backbone deformation moves

directly in the MC scheme. Hops between predefined backbones require a sophisticated

and expensive, hybrid MC move [14]. Local moves, such as “backrub” motions, do not

require such specific machinery, although they do destroy the possibility of a fixed energy

matrix. Loshbaugh and Kortemme quantified the ability of different backrub move sets

to recapitulate observed protein sequence profiles in a set of 21 test proteins [71]. They

also considered Kinetic Closure moves, which are slightly less local. The flexible back-

bone methods performed better than iterations of design-then-relax and better than fixed

backbone design in almost all cases.

A third strategy uses MD simulations to sample backbone and side chain degrees

of freedom. This strategy is picking up speed. MD was initially introduced for two

problems related to CPD: (1) alchemical free energy simulations to asses the effect of

side chain mutations on ligand binding and (2) constant-pH MD to compare side chain

protonation states. The first development used a pseudo-coordinate lambda to weight a

particular side chain. Lambda was propagated through MD, along with the other system

coordinates, a method known as “lambda dynamics” [75]. Constant pH simulations were

proposed around the same time [76]. Lambda dynamics was applied to the redesign of up

to five sites in lysozyme, with 2–5 allowed side chain types each, for a total of up to 240

allowed sequences. Unlike other CPD calculations, these simulations used explicit solvent

and periodic boundary conditions. Folding free energy changes could be estimated from
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side chain type populations, because equilibrium MD naturally explores a Boltzmann

distribution. Mean unsigned errors for 32 single mutations were just 1.2 kcal/mol. More

recently, adaptive landscape flattening was used to estimate protein-ligand binding free

energies; a GPU implementation was developed, and an automatic workflow was set up

[77].

Acid/base calculations are related to CPD: they have the same structure as design

calculations, with (de)protonation playing the role of a mutation. Thus, CPD software

can often do pKa calculations, and these provide a benchmark for the physical model

employed. In addition, during CPD, it is common to allow multiple protonation states

of certain side chain types, like His, Cys, Asp, or Glu. Michael et al. implemented an

MC/MD method in the CPD software Proteus, and tested it using acid/base calculations

on five proteins [78]. Typically, one side chain was allowed to change its protonation

state and another was allowed to change its type. MC moves where a protonation state

or a side chain type were changed alternated with short MD segments where the whole

protein was flexible. A GB implicit solvent was used. With the MC/MD method and

its flexible backbone treatment, the mean pKa error was reduced by almost half. In

addition, an adaptive landscape flattening method was applied in the space of sequences

and protonation states, which improved efficiency. The implementation is still too slow for

routine applications. Other developments in constant-pH MD include a very fast, GPU

implementation in Amber [79] and a replica-exchange MD implementation combined with

Poisson-Boltzmann implicit solvent [80].

6 Conclusions

Physical chemistry’s first main job is to provide CPD with predictive energy functions

[59–61]. The first main development covered here was the application of polarizable energy

functions (Drude, Amoeba) to two CPD sub-problems: side chain repacking and pKa’s

[57, 58]. It is tricky to mix, in the same model, explicit electron rearrangements with an

implicit treatment of, say, backbone motions. With continuum electrostatics, it is more

common to average out the faster motions (electron rearrangements) and treat the slower

ones (backbone) explicitly. While the applications above gave improved performance, it

remains to be seen just how self-consistent and how predictive such models will be in

CPD. The second main development covered above was the continuing improvement of

implicit solvents models, which are one of the factors that limit accuracy in biomolecular

13



simulations.

The second area where physics contributes is sampling. Physics-based sampling that

follows a Boltzmann distribution is an important search strategy. As we extend trajec-

tories, confidence intervals become tighter, until quantities of interest, like the GMEC,

are inferred with an uncertainty below that of the energy function. With Boltzmann

sampling, new design strategies have become possible. We saw above that with the intro-

duction of new, adaptive landscape flattening algorithms, free energies can be obtained,

such as the binding free energy of an enzyme’s transition state, at a modest computational

cost. Designed protein variants that lower the activation free energy or increase catalytic

efficiency are exponentially enriched during the MC or MD trajectory, and the optimal

variants are readily identified.

The third role of physics is to help describe motions. A main development was the

use of MD for conformational sampling. This method remains expensive but has the

potential to dramatically improve the physical model.

Despite its many successes, CPD still has a low success rate and there is considerable

room for improvement. The advances above are complementary to widely-used empiri-

cal ingredients, and should help make CPD much more predictive. Although we mostly

focussed on methodology, several important applications were also convered, including

examples of whole protein design, enzyme design, and design of membrane proteins. Fi-

nally, high throughput experimental assays are incredibly important in CPD and, as they

continue to develop, the whole CPD field will advance.
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