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Abstract: A continuously time-varying transmission rate is suggested by many control-theoretic
investigations on non-pharmaceutical interventions for mitigating the COVID-19 pandemic. How-
ever, such a continuously varying rate is impossible to implement in any human society. Here,
we significantly extend a preliminary work (M. Fliess, C. Join, A. d’Onofrio, Feedback control of social
distancing for COVID-19 via elementary formulae, MATHMOD, Vienna, 2022), based on the combi-
nation of flatness-based and model-free controls with respect to the classic parsimonious SIR model.
Indeed, to take into account severe uncertainties and perturbations, we propose a feedback control
where the transmission rate, i.e., the control variable, is piecewise constant. More precisely, the trans-
mission rate remains constant during an appreciable time interval, which is not too large. Strict
extended lockdowns may therefore be avoided. The poor knowledge of fundamental quantities such
as the rate of infection hinders a precise calibration of the transmission rate. Thus, the results of our
approach ought therefore not to be regarded as rules of action to follow accurately but as a guideline
for a wise behaviour.

Keywords: biomedical control; behavioral epidemiology; COVID-19; social distancing; SIR model;
flatness-based control; model-free control; robustness

1. Introduction

The social distancing strategies and in particular the severe lockdown measures due to
the worldwide COVID-19 pandemic (see, e.g., [1]) have stimulated a huge number of math-
ematically oriented investigations among which we select control-theoretic publications:
See, e.g., [2–35]. Most diverse viewpoints have been developed. Those studies however
do not seem to exert any influence on policy-makers (see, e.g., [36] for some explanations).
Our aim is to start drawing a roadmap in order to change this state of affairs.

Like many authors in the above–mentioned works, we select the classic SIR compart-
mental model [37] (see also, e.g., [38–40]). An excellent justification for employing such
a simple model has been presented by Sontag [33]: The social and political use of epidemic mod-
els must take into account their degree of realism. Good models do not incorporate all possible effects,
but rather focus on the basic mechanisms in their simplest possible fashion. Not only it is difficult
to model every detail, but the more details the more the likelihood of making the model sensitive
to parameters and assumptions, and the more difficult it is to understand and interpret the model
as well as to play what-if scenarios to compare alternative containment policies. It turns out that
even simple models help pose important questions about the underlying mechanisms of infection
spread and possible means of control of an epidemic. In addition, the rate of infection and other
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fundamental quantities are difficult, if not impossible, to know precisely (see, e.g., [41–43]).
This epistemological hindrance to mathematical epidemiology provides further legitimacy
for using a parsimonious modeling.

The transmission rate β, which corresponds to the social interactions and infection
probability per contact, is chosen as the control variable, like in most papers which are
quoted above. Thus, our work can be framed in the field of behavioural epidemiology of
the infectious disease (see, e.g., [44]).

The SIR model happens then to be (differentially) flat. This concept [45,46] (see also
the books [47–50]) has given rise, as is commonly known, to numerous concrete applications
mainly in engineering (see, e.g., [51] for a recent excellent publication about cranes), but also
in other domains (see, e.g., [52] in quantum physics). Also of particular interest here is its
use [53] for COVID-19 predictions. Take a flat system with a single control variable u(t) and
a flat output variable y(t). From a suitable reference trajectory y∗(t), i.e., a suitable time-
function, the corresponding open-loop nominal control variable u∗(t) is derived at once
from the flatness property. Severe uncertainties, like model mismatch, poorly known initial
conditions, external disturbances, . . . , prompt us to mimic what has been already done
by [18,54,55], i.e., to close the loop via model-free control in the sense of [56,57]. Among the
numerous remarkable concrete applications of this approach let us cite some recent ones
in different domains (see, e.g., [58–62]), and, especially here, mask ventilators for COVID-19
patients [63]. Take another output variable z(t) and its corresponding reference trajectory
z∗(t). The feedback loop, which relates ∆β = β− β∗ and the tracking error ∆z = z− z∗,
is expressed as an intelligent Proportional, or iP, controller [56]. This is much easier to
implement than traditional PI and PID controllers (see, e.g., [64]) and ensures local stability
around z∗ with a remarkable level of robustness. Inspired by techniques in [65,66], which
were performed in practice for a greenhouse and ramp metering on highways, we close
the loop such that the control variable u = u∗ + ∆u

• takes only a finite number of numerical values,
• remains constant during some time interval, two weeks here, in our computer simula-

tions.

These features, which are new to the best of our knowledge, imply a limited number of
different non-pharmaceutical interventions which moreover are not too severe. They might
therefore be socially acceptable. Only low computing capacity is necessary for conducting
numerous in silico experiments, i.e., computer experiments.

Our paper is organized as follows. The flatness property of the SIR model is shown
in Section 2. An open-loop strategy is easily derived in Section 2.2. Section 3 introduces
closed-loop control via model-free control. Several computer simulations, which consid-
erably improve [18], are displayed in Section 4. Section 5 is devoted to a discussion of
the possible implications of our approach.

2. SIR and Open-Loop Control
2.1. Flatness

The well known SIR model which studies the populations of susceptible, whose fraction
is denoted as S, infectious, whose fraction is denoted as I, and recovered or removed, whose
fraction is denoted as R), reads: 

Ṡ = −βIS
İ = βIS− γI
Ṙ = γI

(1)

The transmission rate β and the recovery/removal rate γ are positive. Equation (1) yields
that S + I + R is constant. We may set

S + I + R = 1
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Straightforward calculations yield:

I =
Ṙ
γ

S = 1− R− I = 1− R− Ṙ
γ

β = − Ṡ
IS

=
γṘ + R̈

Ṙ
(

1− R− Ṙ
γ

)
(2)

The system variables I, S and β may be expressed as rational differential functions of R,
i.e., as rational functions of R and its derivatives up to some finite order. In other words,
System (1) is, as already observed [18], flat, and R is a flat output.

Remark 1. The SEIR (Susceptible-Exposed-Infected-Recovered/Removed) model (see, e.g., [38,39]) is
a rather popular extension of the SIR model:

Ṡ = −βIS
Ė = βIS− αE
İ = αE− γI
Ṙ = γI

(3)

where α > 0 is an additional parameter. Now

S + E + I + R = 1. (4)

Equations (3) and (4) show that the SEIR model is flat and that R is again a flat output:

I =
Ṙ
γ

E =
İ + γI

α
=

R̈ + γṘ
γα

S = 1− R− I − E = 1− R− Ṙ
γ
− R̈ + γṘ

γα

β = − Ṡ
IS

2.2. Elementary Formulae for Open-Loop Control

Select the following decreasing exponential reference trajectory, where

• λ > 0,
• contrarily to [18] we do not start with R∗(0) = 0,

R∗(t) = Λ exp(−λt) + R∗(∞) (5)

The quantities Λ, R∗(∞) = limt→+∞ R∗(t) are given below. Formulae (2) and (5) yield

I∗(t) = −Λλ exp(−λt)
γ

(6)

Formula (6) implies of course that Λ < 0. The fundamental constraint

λ < γ
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follows at once from the obvious differential inequality İ > −γI. Moreover

S∗(t) = 1− R∗(∞)−Λ(1− λ

γ
) exp(−λt) (7)

The corresponding open loop control reads

β∗(t) =
γ(γ− λ)

(1− R∗(∞))γ + Λ(λ− γ) exp(−λt)

Note that β∗(t) > 0. Thus

β∗(∞) = lim
t→+∞

β∗(t) =
γ− λ

1− R(∞)
(8)

The parameter Λ in Equation (5) may be expressed thanks to Equation (6):

Λ = −γ

λ
I∗(0)

Thus
R∗(∞) = R∗(0)− γ

λ
I∗(0)

In order to avoid discontinuities at time t = 0, set R∗(0) = R(0), I∗(0) = I(0).
The following expressions for λ and R∗(∞) will be used:

Λ = −γ

λ
I(0)

R∗(∞) = R(0)− γ

λ
I(0)

β∗(∞) =
λ(γ− λ)

(1 + R(0))λ + γI(0)
(9)

Introduce the more or less precise quantity βaccept: It is the “harshest” social distancing
protocols which is “acceptable” in the long run. Equation (9) yields

βaccept =
λ(γ− λ)

(1 + R(0))λ + γI(0)

and an algebraic equation of degree 2 for determining λ

λ2 − λ
(
(R∗(0)− 1)βaccept + γ

)
− γI∗(0)βaccept = 0 (10)

The two roots of Equation (10) are real. The only positive one

(R(0)− 1)βaccept + γ +
√
[(R(0)− 1)βaccept + γ]2 + 4γI(0)βaccept

2

is the value of λ we are looking for. The corresponding reference trajectory and nominal
open-loop control follow at once.

3. Closed-Loop Control

In order to take into account the poor modeling via Equation (1), introduce the ultra-
local model [56]

d
dt

∆I = F + a∆β (11)

where
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• ∆I = I − I∗, ∆β = β− β∗,
• the constant parameter a, which does not need to be precisely determined, is chosen

such that the three terms in Equation (11) are of the same magnitude.
• F subsumes the poorly known internal structure and the external disturbances.
• An estimate Fest of F is given [56] by the integral

Fest = −
6
τ3

∫ t

t−τ
((t− 2σ)∆I(σ) + aσ(τ − σ)∆β(σ))dσ

which in practice may be computed via a digital filter.

An intelligent proportional, or iP, controller [56] reads

∆β = −Fest + KP∆I
a

(12)

where KP a classic tuning gain andFest an estimate ofF . Combining Equations (11) and (12) yields

d
dt

∆I + KP∆I = F −Fest (13)

If the estimate Fest is “good”, i.e., Fest ≈ F , then Equation (13) shows that we are led
to a pure integrator. Taking KP < 0 yields at once

lim
t→+∞

∆I(t) ≈ 0

Thus local stability around 0 is ensured in spite of mismatches and external disturbances.

4. Computer Simulations

Set in Equation (1) γ = γmodel =
1
7 . The rate I(t) of infected people is assumed to be

counted every 2 h. This time lapse, which is of course too short in practice, has been chosen
in order to have enough points for our numerical analysis. The iP (12) is employed in all
the scenarios below, with a = 0.01 and KP = 15a. Contrarily to [18], the scenarios below do
not necessarily start at the beginning of the epidemic.

4.1. Unrealistic Scenarios

A naïve application of Section 2.2 leads to a continuous evolution of the control
variable β, i.e., of the social distancing. This is impossible to implement in real life.

4.1.1. Scenario 1

Let us first assume that I(0) and R(0) are perfectly known. This initial time 0 is set
after 35 or 45 days of epidemic spreading, where β = 3.6γmodel. Thus I(0) after 35 days is
less than after 45 days. Figures 1 and 2 display excellent results, where βacccept = 0.95γmodel.
Note that, even here, closed-loop control is necessary in order to counteract the unavoidable
rounding errors.
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(a) (b)

Figure 1. Scenario 1: Open-loop control. (a) 35 days later: β, β∗ (- -, blue), γ (- ., green) and βacceptable
(- -, black); (b) 45 days later: β, β∗ (- -, blue), γ (- ., green) and βaccept (- -, black).

(a) (b)

(c) (d)

Figure 2. Scenario 1: States. (a) 35 days later: S and S∗ (- -); (b) 35 days later: I and I∗ (- -); (c) 45 days
later: S and S∗ (- -); (d) 45 days later: I and I∗ (- -).

4.1.2. Scenario 2

The initial time is set after 35 days of epidemic spreading. Introduce some mismatches:

• γreal = 1.05γmodel (Figures 3a and 4a,b),
• γreal = 0.95γmodel (Figures 3b and 4c,d).
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(a) (b)

Figure 3. Scenario 2: Control. (a) 0.95γmodel : β, β∗ (- -,blue), γ (- ., green) and βacceptable (- -, black);
(b) 1.05γmodel : β, β∗ (- -,blue), γ (- ., green) and βacceptable (- -, black).

(a) (b)

(c) (d)

Figure 4. Scenario 2: States. (a) 0.95γmodel : S and S∗ (- -); (b) 0.95γmodel : I and I∗ (- -); (c) 1.05γmodel : S
and S∗ (- -); (d) 1.05γmodel : I and I∗ (- -).

It is obvious then that the tracking of I∗ yields to deviate from R∗ and β∗accept.
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4.2. Less Unrealistic Scenarios

Take the same conditions as in Section 4.1.1: no model mismatch, perfectly known
initial conditions, the initial time 0 is set after 35 or 45 days of epidemic spreading.

4.2.1. Scenario 3

Allow only a finite number of numerical values of the control variable β. The con-
trol variable β takes 50 uniformly distributed values between 0.5γmodel and 1.2γmodel.
Figures 5 and 6 (35 days) and Figures 7 and 8 (45 days) display excellent results.

Figure 5. Scenario 3: Control. β, β∗ (- -,blue), γ (- ., green) and βacceptable (- -, black).

(a) (b)

Figure 6. Scenario 3: States. (a) S and S∗ (- -); (b) I and I∗ (- -).
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Figure 7. Scenario 4: Control. β, β∗ (- -,blue), γ (- ., green) and βacceptable (- -, black).

(a) (b)

Figure 8. Scenario 4: States. (a) S and S∗ (- -); (b) I and I∗ (- -).

4.2.2. Scenario 4

Allow β now to take any value between 0.5γmodel and 1.2γmodel but to change only
every 14 days. Figures 9 and 10 (35 days) and Figures 11 and 12 (45 days) display rather
violent alternations in the social distancing rules. The tracking of I∗ remains good.
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Figure 9. Scenario 5: Control. β, β∗ (- -,blue), γ (- ., green) and βacceptable (- -, black).

(a) (b)

Figure 10. Scenario 5: States. (a) S and S∗ (- -); (b) I and I∗ (- -).

Figure 11. Scenario 5: Control. β, β∗ (- -, blue), γ (- ., green) and βacceptable (- -, black).
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(a) (b)

Figure 12. Scenario 5: States. (a) S and S∗ (- -); (b) I and I∗ (- -).

4.3. Scenarios 5–6: A More Realistic Policy

We follow Section 4.2 and combine the conditions on the control variable β of
Sections 4.2.1 and 4.2.2. Thus β takes only a finite number of values and change every
14 days. Correct results are provided in Figures 13 and 14 (35 days) and Figures 15 and 16
(45 days). The tracking of I∗ is still excellent.

Figure 13. Scenario 6: Control. β, β∗ (- -,blue), γ (- ., green) and βacceptable (- -, black).



Automation 2022, 3 297

(a) (b)

Figure 14. Scenario 6: States. (a) S and S∗ (- -); (b) I and I∗ (- -).

Figure 15. Scenario 6: Control. β, β∗ (- -,blue), γ (- ., green) and βacceptable (- -, black).

(a) (b)

Figure 16. Scenario 6: States. (a) S and S∗ (- -); (b) I and I∗ (- -).
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5. Conclusions

We have designed a disease mitigation strategy, which is based on recent advances
in control synthesis, where

• continuous manipulations of non-pharmaceutical interventions, which are an obstacle
to the implementation of the vast majority of theoretical control strategies in epidemi-
ology, even for the remarkably different problem of vaccination awareness campaigns
(see [67]), are avoided,

• severe and long lockdowns are replaced by more subtle alternations of more or less
strict social distancing measures.

Today empirical control strategies are adopted in practice. However, they are based
on the principle of trial and error, which is very risky in epidemic context. Thus, the in-
troduction of more rigorous but realistically constrained approaches might be of interest
to policymakers. Another point to be stressed is that our overall results are also robust
in presence of uncertainties in key parameters.

Several other questions arise:

• How should one modify the above approach and simulations when vaccinations and
variants are taken into account? See, e.g., [68–73] for some preliminary modeling issues.

• Another interrogation is about the interpretation of the numerical values of the control
variable β. What is, for instance, the influence of closing nightclubs as done in France
and elsewhere? Available estimation techniques would suffer from the poor knowl-
edge of I, and therefore of R and S. This inefficiency includes the techniques employed
in [18], where the assumed knowledge of I is unrealistic.
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