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Aquarius - Enable Fast, Scalable, Data-Driven
Service Management in the Cloud

Zhiyuan Yao , Yoann Desmouceaux , Juan-Antonio Cordero-Fuertes , Mark Townsley , Thomas Clausen

Abstract—In order to dynamically manage and update net-
working policies in cloud data centers, Virtual Network Functions
(VNFs) use, and therefore actively collect, networking state in-
formation - and in the process, incur additional control signaling
and management overhead, especially in larger data centers.
In the meantime, VNFs in production prefer distributed and
straightforward heuristics over advanced learning algorithms
to avoid intractable additional processing latency under high-
performance and low-latency networking constraints. This paper
identifies the challenges of deploying learning algorithms in
the context of cloud data centers, and proposes Aquarius to
bridge the application of machine learning (ML) techniques on
distributed systems and service management. Aquarius passively
yet efficiently gathers reliable observations, and enables the use of
ML techniques to collect, infer, and supply accurate networking
state information – without incurring additional signaling and
management overhead. It offers fine-grained and programmable
visibility to distributed VNFs, and enables both open- and close-
loop control over networking systems. This paper illustrates the
use of Aquarius with a traffic classifier, an auto-scaling system,
and a load balancer – and demonstrates the use of three different
ML paradigms – unsupervised, supervised, and reinforcement
learning, within Aquarius, for network state inference and service
management. Testbed evaluations show that Aquarius suitably
improves network state visibility and brings notable performance
gains for various scenarios with low overhead.

Index Terms—Service management, data-driven, high perfor-
mance network, cloud, performance evaluation

I. INTRODUCTION

Growing demands for responsive, high-available, low-
latency cloud services require content providers and cloud
operators to efficiently manage cloud data centers (DCs) [1],
[2]. To increase network programmability, and balance the
trade-off between capital expenditures and quality of service
(QoS), Virtual Network Functions (VNFs) (e.g., firewalls, load
balancers, and VPN gateways [3], [4]) are deployed in cloud
DCs to provide reliable service management and transpar-
ent operations. Running on commodity computing platforms,
VNFs replace or augment dedicated hardware devices and
play a significant role in large-scale DCs. To dynamically
monitor and configure VNFs, software-defined networking
(SDN) schemes can be applied, dissociating the routing and
decision-making process (control plane) from the network
packets forwarding process (data plane) [5], [6].
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The control plane adaptively manages and updates network-
ing policies in dynamic cloud DC environments to offer high
service availability and QoS. Data-driven mechanisms based
on machine learning (ML) [7], [8] and reinforcement learning
(RL) algorithms [9], [10] are applied and show performance
gains in various network applications. For instance, auto-
scaling systems and load balancers can achieve improved
QoS with reduced cost based on periodically polled resource
utilisation of distributed network devices (e.g., application
servers) [11], [12]. Traffic classification and anomaly detection
help detect security threats with increased accuracy based on
network traffic characteristics extracted from offline-collected
network traces [13], [14]. However, it is challenging to harness
these algorithms to drive management decisions in networking
systems in real-time.

ML and RL algorithms require fine-grained observations
of network and system states [15]: Conventionally, period-
ically polling resource utilisation and system performance
allows for obtaining timely and dedicated observations to
make data-driven management decisions [11], [12], [16]–
[19]. However, the active polling scheme incurs additional
control messages and reduces system scalability, especially
for large-scale distributed systems. Another way to gather a
wide range of fine-grained networking features is to parse and
extract from offline collected network traces or in simulated
environments, which is employed for developing clustering
algorithms and RL algorithms [13], [15], [20]. However, this
scheme assumes a minimal gap between real-time systems and
offline/simulated systems, which does not necessarily hold in
networking systems [19], [21].

The data plane is constrained by low-latency and high-
throughput requirements [22], which makes it challenging to
apply off-the-shelf ML algorithms on networking problems:
Applying advanced ML techniques alongside the data plane on
the fly is computationally intractable [23], [24]. Therefore, in
real-world high-performance and large-scale networking sys-
tems, heuristics – which may not be adaptive to dynamic en-
vironments – prevail over advanced learning alrogithms [16],
[18], [19], [25]–[31].

A. Contribution

This paper proposes Aquarius, a fast and scalable data col-
lection and exploitation mechanism that bridges different re-
quirements for data planes (low-latency and high-throughput)
and control planes (making informed decisions). It enables
learning algorithms to make inferences and open/close-loop
control decisions based on fine-grained observations, and it
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Fig. 1: Linear regression on probing latencies (with and
without background network traffic) and additional response
time collected on clusters of different numbers of servers.

allows the deployment of distributed and intelligent VNFs,
which harness ML algorithms to make data-driven operational
decisions. This paper makes the following contributions.

First, this paper identifies the challenges of gathering
networking features to make valuable inference and informed
operational decisions in high-performance and large-scale
cloud DCs: Experimental evaluations demonstrate that tra-
ditional mechanisms for feature collection (e.g., active prob-
ing [12], [17], [32]–[36] and trace capture [37]–[42]) causes
substantial overhead. Using a real-world testbed, it is shown
that networking features gathered by Aquarius in real time can
provide valuable information for system states inference, with
no additional control message and limited resource consump-
tion.

Second, this paper proposes a fast and configurable
mechanism, Aquarius, that allows collecting a wide range of
fine-grained networking features in a scalable layout, which
is suitable for applying various ML techniques to networking
problems: Aquarius embeds programmable and flexible fea-
ture collection state machines in the data plane. These state
machines are used to extract user-defined networking features.
To efficiently gather observations, Aquarius collects 2 types of
features – counters and samples – using multi-buffering [43]
and reservoir sampling [44], respectively. Networking features
are gathered separately corresponding to different network
applications and types of equipment (e.g., links, servers).
Features are made available in a scalable layout, which offers
high flexibility when aggregating and processing data under
various requirements (e.g., by single equipment or by groups
of equipment).

Third, this paper provides an extensive performance
and overhead evaluation of Aquarius with use cases exper-
imented in a realistic testbed: Within the context of (i)
an unsupervised-ML-powered network traffic classifier, (ii)
a supervised-ML-powered auto-scaling system, and (iii) an
RL-powered Layer-4 load balancer, this paper shows that the
collected features enable:

• unsupervised learning + offline data analysis: creating
benchmark datasets to gain insight into different network-
ing problems with minimal data collection overhead;

• supervised learning + VNF management: embedding
ML techniques to achieve self-aware monitoring and self-
adaptive orchestration in an elastic compute cloud;

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Probing Frequency (/s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Sp
ea

rm
an

's 
Co

rre
la

tio
n

CPU Usage
#Thread
Control Message

0
20
40
60
80
100
120
140
160
180

Kb
ps

 (6
9-

by
te

 p
ac

ke
ts

)
64

12
8 

se
rv

er
s

Fig. 2: Correlation (Spearman) increases when the probing
frequency grows, yet, so do additional control messages.

• reinforcement learning + online policy updates: en-
abling closed-loop control, where collected networking
features help optimise routing policies and improve QoS.

B. Paper Outline

The remainder of this paper is organized as follows. Sec-
tion II describes the challenges of harnessing data-driven algo-
rithms for networking problems and compares this paper with
related work. Section III presents both the rationale and the
design of the feature collection and exploitation mechanism of
Aquarius. Section IV demonstrates the use of Aquarius in the
context of 3 different VNFs on a realistic testbed. Section V
concludes this paper.

II. BACKGROUND

This section presents the challenges of efficient feature
collection and data-driven VNFs in cloud DCs, and, with a
comparison of related work, motivates the design of Aquarius.

A. Challenges

There is a rising trend of embedding intelligence and ap-
plying ML techniques in the cloud and distributed systems to
dynamically monitor and adaptively configure system parame-
ters and characteristics (e.g., server configurations, forwarding
rules) [13], [15], [19], [23], [55], [58]. However, this raises
many challenges and trade-offs that require to be handled to
efficiently collect features and make data-driven decisions.

Online Feature Collection: Datasets with high quality
are essential to ML studies. However, few datasets are avail-
able and considered as a benchmark for ML applications
in networking systems (e.g., traffic analysis and anomaly
detection) [37]–[42]. To collect a wide range of features (e.g.,
traffic rates, packet sizes, TCP congestion window sizes), these
datasets are collected based on logged network traces (e.g.,
by TCPdump). Though log-based feature collection provides
abundant information for various types of applications, it does
not scale in terms of log file size [59]. Log-based feature
collection also incurs performance overhead under heavy
traffic, which leads to inaccurate and irrelevant measurements
and makes it hard to bring ML algorithms “online” (making
inference and management decisions in real-time) [23].
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TABLE I: Comparison of data-driven VNF systems.

Property [32], [33] [45], [46] [47]–[49] [11], [50]–[52] [7], [12], [15]–[18] [9], [53], [54] [55] [34], [35] [56], [57] [24] Aquarius

No Control Message 7 7 7 7 7 3 3 7 3 3 3
Distributed 7 7 7 7 3 3 3 3 3 3 3
Commodity Device 3 7 3 3 3 3 3 3 7 7 3
Use Case Generic Management Protocol Autoscaling Traffic Optimisation Traffic Classification Generic Generic

Scalability vs. Visibility: Active probing is another way
of feature collection to monitor the system state and make
informed decisions [12], [17], [32]–[36]. However, this re-
quires modifications on each node to maintain management
and communication channels. There is also a trade-off between
the communication overhead via probing channels, and the
visibility of VNFs over the system state. As depicted in Fig. 1,
when a controller VM periodically (every 50ms) probes a
cluster of servers1 via TCP sockets, the latency overhead
increases with the number of servers, which diminishes the
QoS. As depicted in Fig. 2, the visibility of VNFs over the
system state correlates with the probing frequency. Additional
management traffic can exceed the 90-th percentile of per-
destination-rack flow rate (100kbps) in production [2].

Flexibility vs. Performance: Developing, prototyping,
and benchmarking ML applications on different networking
problems is hard in high performance networks because of the
low-latency and high-throughput expectation in the data plane.
A general data processing framework has been proposed [24]
to accelerate data-driven network functions on reconfigurable
hardware, which provides line-rate performance. However, in
dynamic and elastic networking environments where additions
and removals of nodes and services happen frequently [27],
hardware devices are scalable in terms of performance (e.g.,
throughput) but not in terms of network topology (e.g., number
of services/nodes). Hardware programming and verification
procedures can also be difficult and time-consuming for the
ML community [60], which thus relies more on simulations
for interdisciplinary research [10], [15], [61], [62]. Yet the
flexibility offered by simulations hinders the real-world de-
ployment of ML algorithms because simulators fail to capture
the complexity of high performance networking systems [19].

B. Requirements

Based on the challenges, this paper summarises the follow-
ing requirements to enable data-driven VNFs in the cloud:

Universality: the feature collection mechanism should
cover a wide range of features and be application-agnostic;

Relevance: the collected features should be represen-
tative, providing useful information to address real-world
applications in different circumstances;

Scalability: the feature collection and exploitation mech-
anism should incur minimal performance overhead and support
large-scale and dynamically changing network topology;

Flexibility: the mechanism should be configurable and
easy to be tailored for various use cases and learning algo-
rithms;

1 In the 69-byte control packet emitted by the server, the 24-byte payload
consists of the server ID, CPU and memory usage, and the number of busy
application threads.

Deployability: the mechanism should be plug-and-play
and require no additional installation or configuration.

C. Related Work

Various mechanisms (summarised in Table I) dynamically
configure and manage VNFs, making data-driven decisions.

ML benefits various networking applications, e.g., conges-
tion control [63], [64], intrusion detection systems [55], [65],
traffic classification [66], [67], and task scheduling [7], [9].
It allows inferring system states from networking features.
To obtain networking features, these ML applications operate
at the Application Layer. However, they are not application-
agnostic and do not generalise to different use cases. Acting as
proxies, they also terminate networking connections, increas-
ing processing latency [68], [69]. Aquarius collects a wide
range of features at the Transport Layer and enables generic
data-driven network functions with minimal overhead.

Management and Orchestration (MANO) frameworks use
centralised controllers to monitor and update VNF config-
urations [32], [33]. Based on active monitoring, MANO
helps provision computing, storage, and networking resources.
Software-Defined Network (SDN) provides programmable
APIs to gather per-flow or application-level features in a
centralised way, to adaptively update configurations, using
network equipment that supports the OpenFlow protocol [45],
[46]. Other management protocols collect and send data
from network equipment to a centralised controller via active
probing, but with high communication overhead [47]–[49].
Aquarius passively extracts networking features from the data
plane and lets VNFs make decisions in a distributed way.

Distributed VNFs also benefit from periodically polled
network states (e.g., packet arrival rates, CPU and memory
usage), to ensure service availability, and improve QoS [12],
[17], or classify networking traffic [34], [35]. Additional
control messages and communication latency limit the system
scalability [14], [36]. In [16], controllers are notified of the
occurrence of malfunctioning nodes to avoid periodic probing.
Some network functions gain more visibility via in-network
telemetry (INT) [53] and covert-channels [70]. However, these
require either deploying agents or modifying the protocol
stack on network nodes, which reduces the deployability
of data-driven mechanisms. Aquarius employs the plug-and-
play design and requires no coordinated modification in the
network.

Learning algorithms incur additional inference and process-
ing latencies. To reduce latency, dedicated hardware, e.g.,
NPU [71] and NetFPGA [57], helps improve data processing
efficiency for in-network ML applications [72]. Taurus [24]
enables in-network distributed data plane intelligence using
a map-reduce abstraction for generic ML algorithms on a
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Fig. 3: Aquarius architecture overview.

coarse-grained reconfigurable array (CGRA) [73]. These hard-
ware solutions boost performance, yet they lack flexibility
when developing ML algorithms for different use cases in
elastic networking systems. MVFST-RL [15] proposes to
asynchronously update networking configurations to benefit
from learning algorithms without inducing additional latency
in the data plane. However, performance gains are shown only
in simulators with a single use case. Aquarius can incorporate
intelligence in a variety of VNFs, requiring no dedicated
device, yet it is ready to be deployed in real-world systems.

III. DESIGN

To meet the 5 requirements summarised in Section II-B,
Aquarius is designed as a 3-layer architecture (Fig. 3). Aquar-
ius embeds a feature collector at the Transport Layer in the
data plane (deployability), to efficiently and passively extract
a wide range of features (universality) with high quality
(relevance), and low latency and performance overhead. It
makes the features available and easily accessible via shared
memory (scalability), for applications of ML algorithms on
various use cases in the control plane (flexibility).

A. Parser Layer

To balance the tradeoff between scalability and visibility,
networking features which indicate system states can be pas-
sively collected from the data plane to avoid active probing and
additional installations and configurations. However, located
within network function chains, VNFs in modern DCs may
observe only 1-way traffic (i.e., half-traffic of each flow)
addressing to their egress equipment (e.g., links and servers),
to reduce additional processing latency [74]. This requires:
(i) careful design of feature collection mechanisms to offer
high scalability and configurability, and (ii) domain knowledge
to extract valuable and representative networking features
and reason their correlations with system states. This paper
illustrates the design using TCP traffic, which is the most
widely used protocol in the cloud [2], [75], [76]. The same
workflow also applies to other network traffic (e.g., UDP).

1) Stateful Feature Collection: Network traffic consists of
flows that traverse different nodes (e.g., edge routers, load
balancers, servers) in the system, whose states can be traced
and retrieved from the flows – along with traffic characteristics.
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Fig. 5: A state machine of feature collector for TCP traffic.

Stateless feature collection mechanisms – e.g., sketch-
ing [20], [77], which is a family of streaming algorithms
for networking measurement summarisations – do not track
the state of network flows, yet they can gather counters as
ordinal features for ML algorithms using hashing functions,
with little performance overhead. However, ordinal features
(counters) contain less information than quantitative features –
time-related features (e.g., round-trip time, inter-arrival time,
flow duration) and throughput information (e.g., congestion
window size, flow size), which are not captured by stateless
mechanisms.

Aquarius tracks flow states in bucket entries with a stateful
table (Fig. 4), which can be configured to collect a wide range
of features using a state machine depicted in Fig. 5. In the
flow table, Aquarius stores the information of each flow into
a bucket entry indexed by hash(fid)%M , where fid is the
flow ID2 and M is the flow table size. An entry in the flow
table can be in one of three states – SYN, CONN and NULL
(Fig. 5). When a new flow arrives (TCP SYN), it is registered
in a bucket entry of the flow table with its fid and state (SYN).
On receipt of its subsequent packets, the state in the entry is
retrieved and updated to CONN (connected) if the flow starts
transmitting data3. On receipt of packets which terminate TCP
flows (or timeout for UDP flows), the flow is evicted and
the entry state returns to NULL, so that the bucket entry is
available for new flows. In the case where the bucket entry is
not available when a new flow appears, the flow is considered
a “miss” and is excluded by the feature collector.

2TCP network flows are identified by their 5-tuples: protocol number,
source and destination IP addresses and port numbers.

3For a TCP flow, if it is well-established (e.g., after 3-way handshakes),
and the first data packet is received, its state will be updated to CONN.
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Fig. 6: Notations, categories, variable dependencies, and space
complexity of all network features.

2) Network Features: Various features can gainfully benefit
the decision making process for different use cases. Counting
the number of ongoing flows helps track instant server load
states, thus helping balance workloads distribution (Sec. IV-C).
Throughput information helps classify whether the network
traffic is IO-intensive (Sec. IV-A). Time-related features help
understand the QoS on servers, thus helping predict resource
utilisation and schedule scaling events (Sec. IV-B).

As a generic feature collection mechanism, Aquarius should
be able to collect as much information as possible with
minimal overhead (e.g., memory space consumption). With the
flow table, Aquarius allows flexible configuration of attributes,
to gather the most significant features and optimise the mem-
ory usage overhead for different applications. Fig. 6 lists all
configurable features that are implemented in this paper4.

Ordinal features are collected as counters, which are in-
cremented either as integer variables or using sketches. For
simplicity, this paper uses accumulative integer variables, e.g.,
when a flow state transits from SYN to CONN, the total number
of received flows n_f is incremented5. Counters for general
network protocols include:

1) Number of packets and flows (n_p, n_f), which quan-
tifies the volume of network traffic addressed to each
egress equipment.

2) Number of hash collisions (n_cls), which evaluates the
amount of untracked connections and can be used to
estimate the coverage of collected features.

4All features depend on the state and timeout attributes in the flow table,
thus these dependencies are omitted for clarity. More attributes can be
potentially added to obtain more features, e.g., to track packet TTL.

5The counter n_fct is incremented only if one flow ends with a previous
connection state as CONN. A similar DDoS mitigation mechanism based on
flow tables is proposed in Prism [76], but it is out of the scope of this paper.

Algorithm 1 Reservoir sampling with no rejection
1: k ← reservoir buffer size
2: buf ← [(0, 0), . . . , (0, 0)] . Size of k
3: for each observed sample v arriving at t do
4: randomId← rand()
5: idx← randomId%N . randomly select one index
6: buf [idx]← (t, v) . register sample in buffer

3) Number of out-of-ordered packets (n_ooo), which in-
dicates the multiple path existence in networks, where
the packet ordering is not necessarily preserved.

For TCP traffic, additional counters can be gathered:
1) Number of completed flows (n_fct), which is incre-

mented when flow terminates. The number of on-going
connections (canonical feature) is derived as #flows =
n_f− n_fct, to estimate instant queue lengths.

2) Number of duplicated ACK packets, retransmissions
(n_dpk, n_rtr), which can be used for diagnostics,
reflecting e.g., the level of congestion on links.

Quantitative features are collected as samples, using reser-
voir sampling [78] (Algorithm 1). To capture the system
dynamic, besides feature values, it is also important to trace
the timestamps of different events, e.g., for sequential ML
algorithms. Reservoir sampling gathers a representative group
of samples in fix-sized buffer from a stream with the sampling
timestamps. For a Poisson stream of events with rate λ, the
expectation of the amount of samples that are preserved in
buffer after n steps is E = λ

(
k−1
k

)λn
, where k is the size

of reservoir buffer. Based on the characteristics of different
system dynamics, e.g., long-term distribution shifts or short-
term oscillations, the reservoir sampling mechanism can to
be tuned (e.g., number of buffers) to collect representative
statistical distributions of the states over time, since both the
sampling timestamps and exponentially-distributed numbers of
samples are captured over a time window. Periodic queries to
the reservoir sampling buffers can generate generic time-series
data which is suitable for sequential pattern analysis.

For general network flows, the following features can be
sampled in reservoir buffers:

1) Bytes transmitted per packet (byte_p) and bytes trans-
mitted per flow (byte_f_on), which help estimate
overall IO occupation in the networks. Bytes transmitted
per flow keep increasing as more data packets are
received, until the flow ends or times out.

2) Flows and packets inter-arrival time (iat_f, iat_p),
which reflect the arrival rates of flows thus the burst
of network requests. The values of iat_f are updated
when new flows arrive while iat_p requires no stateful
tracking of connections.

3) Flow duration (tau), which helps characterize the type
of network traffic, e.g., long-lived flows or short queries.
This feature is updated on receipt of each data packet
of the flow.

For TCP traffic, additional features can be collected:
1) Congestion window size (win, d_win), which embed

the congestion states of networking systems. Their val-
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Fig. 7: Calculation of egress (e.g., application server) process-
ing time with TCP timestamp options.
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Client VNF
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Edge Router
DIP0 DIP1 DIP2 DIP3 DIP4

Fig. 8: Cloud service topology.

ues are updated on receipt of new ACK packets, after
3-way handshakes.

2) Flow completion time (fct and flow byte size
(byte_f), which are collected when flows terminate.
Their values indicate the characteristics of the managed
services.

3) SYN to first ACK latency (lat_sa), which estimates the
3-way handshakes latency for TCP traffic. When a SYN
packet is received on one host, SYN cookies statelessly
generate a immediate SYNACK response. Their values
help estimate and calibrate the baseline RTT between
two end hosts of the connections.

4) Data packet processing time (pt_1st and pt_gen),
which can be derived from TCP timestamp options
tsecr. Intuitively, the time difference between the
reception and the response of a data packet indicates
the processing time and resource usage on the egress
network equipment. However, given the constraint of
observing only 1-way traffic on VNFs (e.g., DSR mode
for layer-4 LBs), this information is hard to obtain.
Using the TCP option fields, the timestamp of the egress
equipment’s response (tsval) is recovered from the
ACK packets sent by the client (tsecr). The procedure
of rebuilding the processing time on the egress side
is illustrated in figure 7. With respect to Web appli-
cations, the processing time is further distinguished by
the first data packet (pt_1st) and the subsequent ones
(pt_gen).

In-Network Telemetry (INT) features can also be collected
as samples and stored in reservoir buffers [31], [79]. For
simplicity, these features are omitted in this paper.

B. Partitioner Layer

Cloud services have different characteristics and they are
identified by virtual IPs (VIPs) (Fig. 8), which correspond to
clusters of provisioned resources – e.g., servers, identified by a
unique direct IP (DIP). In production, cloud DCs are subject to
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Fig. 9: Aquarius shm layout and data flow pipeline.

high traffic rates and their environments and topologies change
dynamically. This requires to organise collected features in a
generic yet scalable format, and make features available for
ML algorithms without disrupting the data plane.

Different cloud services should be separated to (i) avoid
multimodal distributions in collected features and (ii) allow
dynamically adding or removing services. Based on use cases,
features collected of a given service should be further parti-
tioned – by ingress or egress equipment, e.g., links, servers –
to have higher granularity for learning algorithms. Even under
heavy traffic and high access rates, features should be reliable
and easy to access.

Aquarius organises observations of each VIP in independent
POSIX shared memory (shm) files, to provide scalable and
dynamic service management. In each shm file, collected
features are further partitioned by egress equipment6. Fig. 9
exemplifies the shm layout and workflow.

1) Bit-Index and Masking: The first byte in the shm file
of a VIP defines the max number of egress equipment N ,
which determines the number of “columns” to be reserved for
feature collection. It is determined a priori by the scale of the
cloud service, so that N equipment suffice the requirement in
all circumstances. The N -bit bit-index header helps quickly
identify activated egress and its corresponding “column” –
the i-th bit is set to 1 if the i-th egress is active and 0
otherwise. With minimal memory space, this design informs
ML algorithms to skip features of inactive equipment, gather
features (e.g., also in separated shm files) and update policies
only for active equipment, reducing processing latency.

2) Multi-Buffering and Asynchronous I/O: While quantita-
tive features are collected using reservoir sampling, counters
are directly incremented by the data plane in the cache, and

6Depending on different applications, observations for each VIP can also
be organised in different ways, e.g., by ingress ports.
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Figure 10: Notations, categories, variable dependencies, and
space complexity of all network features.

a packet is received, statistics will be updated and stored de-
pending on their types, as discussed in section 3.1. To avoid
I/O conflicts, sampled features are collected using reservoir
sampling over the latest time window and counters are col-
lected atomically and made available to the data processing
agent using multi-buffering. The bit-index binary header is
memcpy-ed along with the counters since it helps efficiently
identify active egress equipments.

Independent data processing agents, which conduct offline
data analysis and online policy updates, pull the latest observa-
tions from AC buffer and reservoir buffer with no disruption in
the data plane. Using the same multi-buffering scheme, action
buffer and AR allow to modify online policies by updating
policies, such as forwarding rules, load balancing weights,
and sampling frequencies for feature collection, which can be
defined specific to different applications and therefore are not
detailed. This shm-based mechanism offers an asynchronous
2-way data collection interface, which allows to exchange
fine-grained network observations extracted from the data
plane and data-driven decisions made by the control plane
with low latency.

3.2.2 Implementation

Aquarius is implemented in this paper as a plugin in Vec-
tor Packet Processing (VPP) [63], a high-performance pro-
grammable packet-processing stack for commodity CPUs. All
features implemented in this paper are listed in Figure 10, in-
cluding their notations, categories, variable dependencies and
memory complexity7. Additional attributes in the flow table

7All features depend on the state and timeout attributes in the flow ta-
ble, thus these dependencies are omitted for clarity. More attributes can be
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Figure 11: Network topology for applying Aquarius on traffic
classification.

helps gather more features, but it requires additional memory
proportional to the size of the flow tables M. Similarly, the
space complexity for adding registers, counters, or reservoir
sampling buffers are shown in Figure 10, as a reference to the
balance between the visibility on the data plane and memory
usage overhead based on specific applications.

The value of #egress is set to N = 64 since it suffices for
the typical configuration in production (48-64 equipments
per VIP) [20] and the corresponding 64-bit bit-index header
fits in the cache line for modern computer processors. The
flow table size for tracking connection states is configured as
M = 65536. To reduce hash collision probability, each bucket
in the flow table is configured with 4 entries8. The 3-buffer
mechanism9 is used to offer atomic data collection and policy
updates between the data plane and the control plane. The
buffers draw the latest counters from AC every 200ms to bal-
ance the trade-off between high-granular observations and
performance overhead as in [3]. Each sampled network fea-
ture is a 64-bit 2-tuple of a 32-bit float as timestamp and a
32-bit value, so that the sample can be stored within a single
cache line. The size of the reservoir buffer is set to k = 128
for each feature of an egress equipment. All observed sam-
ples are gathered with probability p = 1 to further reduce
performance overhead. In these conditions, to collect all the
features listed in Figure 10, the flow table occupies 10.24MB
of memory space and the registers occupy 750B. Within each
VIP’s shm file, the counters occupy 6KB considering the 3-
level multi-buffering mechanism, and the reservoir sampling
buffers occupy 832KB of memory space.

4 Application

This section demonstrates three application examples of
Aquarius in DC networks, i.e., traffic classification, autoscal-
ing, and load balancing.

potentially added to obtain more features, e.g., , to track packet TTL.
8When a new connection is mapped into a bucket, an available entry can

be found using Timeout attribute with O(1) computational complexity.
9The level of multi-buffering can be modified by changing rows of buffers.
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Fig. 10: Network topology for traffic classification.

then periodically drawn from cache to buffers with incremental
sequence ID. The bit-index binary header is copied with
the counters, to efficiently identify active equipment. When
copying data between cache and buffer, the sequence ID is
set to 0 to avoid I/O conflicts. ML algorithms can pull the
latest observations from the buffers with no disruption in the
data plane. Similarly, new network policies (e.g., forwarding
rules) can be updated via action buffers. This design offers
an asynchronous 2-way communication interface to exchange
fine-grained features extracted from data planes and data-
driven decisions made by control planes with low latency.

C. Implementation

Aquarius is implemented as a plugin to the Vector Packet
Processor (VPP) [80], a programmable network stack for
commodity hardware. This paper sets N = 64 since it suffices
for the typical configuration in production [81] and the 64-bit
bit-index header fits in the cache line for modern computer
processors. The flow table size is configured as M = 65536.
The level of multi-buffering is set to 3 (same as in Fig. 9). The
buffers draw the latest counters from the cache every 200ms
(same as the active probing frequency in [12]). Each sampled
network feature is a 2-tuple of a 32-bit float timestamp and a
32-bit value – fit in a single cache line. The reservoir buffer
size is set to k = 128 for each feature per egress equipment.
In these conditions, to collect all features listed in Fig. 6, the
flow table takes 10.24MB of memory space. The shm file of
each VIP consists of 6KB 3-level multi-buffering counters and
832KB reservoir sampling buffers.

IV. APPLICATIONS

This section shows 3 applications of Aquarius in cloud DCs
in the context of 3 key VNFs – traffic classification, resource
prediction, and auto-scaling, and Layer-4 load balancing, along
with 3 different ML paradigms.

A. Traffic Classification

As one of the key VNFs in the cloud, traffic classification
allows distinguishing different types of traffic [34], [35], [55]–
[57], to allocate appropriate resources and achieve service
level agreements [34], [56]. It also helps detect anomalies and
security threats to prevent potential damages or losses [55].
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Fig. 11: Aquarius feature collection overhead.

Configuration 0 Feature 11 Features 73 Features PCAP

Fi
rs

t
Pa

ck
et CPU Cycles 938.232 1635.838 2609.019 1295.284

Delay (µs) 0.361 0.629 1.003 0.498
Difference 1.000× 1.744× 2.781× 1.381×

D
at

a
Pa

ck
et CPU Cycles 576.357 1583.798 2602.684 885.041

Delay (µs) 0.222 0.609 1.001 0.340
Difference 1.000× 2.748× 4.516× 1.536×

CPU Usage (%) 26.687 40.858 49.716 31.480
CPU Difference 1.000× 1.376× 1.675× 1.060×
RAM Usage (GiB) 2.652 2.719 2.744 3.305
RAM Difference 1.000× 1.025× 1.034× 1.246×

TABLE II: Per-packet processing overhead (on 2.6GHz CPU)
and system resource consumptions (avg.) comparison.

1) Task Description and Testbed Configuration: This sec-
tion shows the capability of Aquarius to collect reliable
features and conduct traffic classification with unsupervised
ML algorithms. A testbed is implemented using Kernel-based
Virtual Machine (KVM), where a virtual router embedded with
Aquarius forwards different types of traffic to 4 VIPs (Fig. 10).
In VIP0, a simple PHP for-loop script on each server takes
requests for given number of iterations (#iter) and replies
with proportional sizes. The flow duration (200ms on aver-
age) and number of transmitted bytes follow an exponential
distribution as in [2]. In VIP1, static files of different sizes
are served on each server7 as in [17], to represent IO-bound
applications. In VIP2 and VIP3, each application server is
an independent replica of an Apache HTTP server [82] that
serves Wikipedia databases. Two samples of 600s duration are
extracted and replayed from a real-world 24-hour replay [83].
In VIP3, an additional 5000 queries per second SYN flooding
traffic is applied to simulate a DoS attack. Server clusters are
scaled to be able to serve all the queries under heavy traffic
rates – when no attack happens – with reasonable FCT (under
400ms) as in [18].

2) Feature Engineering: The features are fetched every
250ms from counter buffers and reservoir buffers. This paper
demonstrates the flexibility of feature engineering offered by
samples collected in reservoir buffers, by reducing each feature
channel to 5 scalars, i.e., average, standard deviation, 90-

7The sizes of files are 100KB, 200KB, 500KB, 750KB, 1MB, 2MB, and
5MB. 50 files are generated for each size.
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Fig. 12: Variance contribution of each feature in top-3 principal components (PCs).

TABLE III: Comparison of (unsupervised) clustering algorithms for traffic classification.

Algorithm KMeans MeanShift Spectral Ward Agglomerative DBSCAN OPTICS BIRCH Gaussian
Clustering Clustering Mixture

Adjusted Rand Index 0.674 0.863 0.715 0.689 −0.002 0.696 0.757 0.742 0.687
Mutual Info Score 0.941 1.160 0.948 0.992 0.031 0.914 0.968 0.953 0.965
Adjusted Mutual Info Score 0.709 0.820 0.718 0.731 0.023 0.692 0.733 0.721 0.731
Homogeneity 0.713 0.878 0.718 0.752 0.024 0.692 0.733 0.722 0.731
Completeness 0.709 0.820 0.811 0.732 0.241 0.736 0.914 0.811 0.798
Fowlkes-Mallows Score 0.765 0.901 0.805 0.774 0.513 0.785 0.840 0.824 0.786
Fit Time (ms) 75.689 541.594 991.382 4806.554 2785.787 45.249 2769.734 52.959 18.505
Require Cluster Number 3 3 3 3 3 7 7 3 3

percentile, and exponential moving average (decay) of average
and 90-percentile. The moving average is a sequential feature
calculated, whose weight is computed as, 0.9t

′−t, where t is
the timestamp of each sample and t′ is the moment when the
reduced sample is calculated. This yields in total 8 ordinal
features (counters) and 13 × 5 quantitative features8.

3) Overhead Analysis: To study the feature collection
overhead, Aquarius is compared with a vanilla router which
collects 0 features and a router logging packet information
in the memory using pcap. Under 500 queries/s PHP for-
loop traffic towards a 176-CPU server cluster, when collecting
11 features9 or collecting all 73 features10, Aquarius incurs
different overhead (Table II and Fig. 11a). On a 2.6GHz
CPU, the additional per-packet processing delays are trivial
compared with the typical round trip time (higher than 200µs)
between network equipment [85]. The mean CPU usage of
Aquarius is 1.376× and 1.675× higher than the vanilla router
when collecting 11 and 73 features respectively (Fig. 11b). As
expected, the log-based feature collection mechanism does not
scale in terms of memory consumption11.

4) Feature Selection with PCA: More features give multi-
dimensional observations, yet at the cost of higher computation
and memory overhead. Principal Component Analysis (PCA)
is thus conducted to understand the relative importance of
the feature and reduce dimensionality while preserving data

8The collected dataset is preprocessed and converted to have zero mean and
unit standard deviation. Outlier data-points (value beyond 99th-percentile) are
dropped. The data preparation procedure is done using scikit-learn [84]
and it is the same throughout the whole paper.

91 counter (n flow on) and 2×5 sampled features (flow duration, FCT).
108 counters and 13× 5 quantitative features.
11The results can be machine-dependent. This paper aims at showing the

order of magnitudes, rather than providing a precise quantification.
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Fig. 13: PCA analysis and 2D visualisation.

representation. As depicted in Fig. 13a, 90% of the data
variance can be explained with 4 principal components (PCs).
Fig. 12 shows that multiple features share similar contributions
(cosine similarity) to top-3 PCs, especially features reduced
from the same reservoir buffer. Therefore, the number of
features can be decreased by using only 2 (standard deviation
and decay-ed average) out of the 5 reduced scalars. Also by
removing sampled data that has low contribution to the top-4
PCs (i.e., iat_synack), 25 features are selected out of all
73 features.

As depicted in Fig. 13b, 4 clusters for the 4 traces are
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Fig. 15: Network topology for autoscaling system.

visualised in a 2D representation. Among the 4 traces, PHP
for-loop is pure CPU-bound and PHP file is pure IO-bound.
The Wiki trace consists of both queries for SQL database
(CPU-bound) and static files (IO-bound), thus its cluster is
located between the former 2 traces. The Wiki trace under
DoS attack, however, can be clearly noticed as an independent
cluster. As depicted in Fig. 13c, using the 25 selected features
12 still gives clear clustering results, yet it reduces data
processing time from 30.90ms to 5.56ms.

5) Unsupervised Learning: 9 clustering algorithms are ap-
plied and compared over the obtained dataset. As in Table III,
mean shift has the best overall performance, yet at the cost
of relatively high fit time. As depicted in Fig. 14, when
applying unsupervised learning algorithms, K-Means [86] and
Gaussian Mixture [87] are able to generate clusters similar to
the ground truth, while they require the number of expected
clusters (4) as input. Gaussian Mixture model has the shortest
fit time and can be an interesting candidate for online traffic
classification. In case where the number of clusters is not
known a priori, DBSCAN [88] can distinguish the potential
security threat, based only on a predefined distance (0.1).
With a training latency lower than 100ms, these algorithms
can be interesting candidates for online traffic classification
and anomaly detection systems. OPTICS [89] also achieves
the highest completeness – all members of a given trace type
are assigned to the same cluster, though with a much higher
processing latency than DBSCAN.

Take-Away: Aquarius gathers fine-grained and reliable
datasets, which allow feature engineering and conducting in-
depth data analysis. Its fast and configurable design help
achieve the right balance between visibility and performance.

12The input 25 networking features are: byte f std, byte f avg decay,
byte p std, byte p avg decay, win std, win avg decay, d win std,
d win avg decay, fct std, fct avg decay, flow duration std,
flow duration avg decay, iat f std, iat f avg decay, iat p std,
iat p avg decay, iat ppf std, iat ppf avg decay, n flow on, n flow,
n fct, n packet, n rtr, n dpk, n ooo.
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Fig. 16: Comparison of ground truth distributions.

B. Resource Prediction and Auto-Scaling

To minimize operational costs while guaranteeing QoS,
cloud operators need to elastically provision server capacities.
With growing interests in intelligent server capacity config-
urations [11], [50]–[52], this section shows the capability of
Aquarius as a platform to systematically develop and adapt
supervised ML algorithms to infer resource utilisation and
performance with no actively signaling.

1) Task Description and Testbed Configuration: This sec-
tion studies networking features and system utilisation under
different levels of workloads, to avoid additional control mes-
sages in existing auto-scaling mechanisms [52]. 600s samples
extracted from each hour of the real-world 24-hour Wikipedia
trace are replayed on the network topology depicted in Fig. 15.
Workloads are randomly distributed among running servers
(2-CPU each) by way of Equal-Cost Multi-Path (ECMP). The
server cluster requires 8 ∼ 14 servers to provide reasonable
QoS (median FCT ≤ 400ms [18]). A learning task can be
framed as predicting server load states (CPU usage13) on each
server with the same set of features as in section IV-A. The
predicted utilisation can be then used to plan and re-scale
server clusters to guarantee QoS with reduced operational cost.
This task consists of 2 steps – offline model training and online
prediction. The first 23-hour samples are applied on 10 2-
CPU servers to gather datasets for offline model training. The
last-hour sample, which is not seen by any trained model, is
synthesized to have 5 different levels of traffic rates for online
prediction and real-time auto-scaling.

2) Offline Model Training: To predict the resource utilisa-
tion of server clusters using networking features, 12 widely
used ML algorithms are selected to cover different families of
ML algorithms, e.g., sequential and non-sequential, parametric
and non-parametric, linear and non-linear [19]. The dataset is
pre-processed in the same way as described in section IV-A2.
To adapt the dataset for sequential models, the sequence length
(time steps) of input features is set as 32 and the stride as
16, which gives 50k data-points in total. These data-points
are sequentially split 70 : 20 : 10 into training, validation,
and testing sets. The distribution of the ground truth CPU
usages in the training set covers the other two datasets so
that the prediction task is feasible, yet the ML models have
not seen the datasets for evaluations (Fig. 16). Sequential
models are created and trained using Keras with TensorFlow as
backend [90]. Non-sequential models (built using scikit-learn)

13This paper uses CPU usage as the metric to evaluate and plan server
cluster capacity for demonstration. The same methodology can be applied to
problems using multi-variate metrics.
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TABLE IV: Comparison of supervised ML algorithms for resource prediction (using selected non-sequential features to predict
8 steps ahead).

Algorithm Linear Ridge Decision Random SVR SVR XGBoost RNN LSTM GRU GRU+ WaveNet Active
Regression Regression Tree Forest (Linear) (RBF) 1dConv Probing

First Step MAE 9.216 9.232 12.135 8.717 9.255 9.040 8.544 7.629 7.433 7.488 7.492 7.830 3.504
First Step RMSE 11.779 11.763 15.558 11.125 11.876 11.395 10.871 9.591 9.403 9.478 9.481 9.770 4.593
Last Step MAE 10.640 10.638 15.043 11.009 10.683 11.206 10.797 9.774 9.855 9.798 10.001 9.652 11.892
Last Step RMSE 13.266 13.261 18.965 13.794 13.327 13.994 13.557 12.285 12.496 12.427 12.653 12.194 14.935
All Step Avg. MAE 10.038 10.044 14.109 10.090 10.063 10.335 9.891 8.986 9.046 9.022 9.123 9.010 8.334
All Step Avg. RMSE 12.575 12.575 17.866 12.742 12.616 12.963 12.512 11.331 11.505 11.464 11.594 11.390 11.057
Avg. Predict Time (ms) 1.429 1.375 1.765 152.558 629.212 1462.446 5.315 115.179 117.146 113.117 87.831 106.475 0.026
Predict Time Stdev. (ms) 0.380 0.294 0.013 0.305 0.093 2.015 0.288 1.961 4.100 3.592 1.680 1.968 0.001

TABLE V: Comparison of supervised ML algorithms for resource prediction (using selected non-sequential features to predict
16 steps ahead).

Algorithm Linear Ridge Decision Random SVR SVR XGBoost RNN LSTM GRU GRU+ WaveNet Active
Regression Regression Tree Forest (Linear) (RBF) 1dConv Probing

First Step MAE 9.186 9.206 12.134 8.697 9.232 8.999 8.486 7.577 7.379 7.458 7.496 7.527 3.505
First Step RMSE 11.715 11.723 15.538 10.991 11.838 11.302 10.716 9.515 9.414 9.559 9.578 9.595 4.593
Last Step MAE 10.858 10.861 14.976 11.129 10.897 11.322 10.964 9.794 9.935 9.579 9.786 9.504 12.238
Last Step RMSE 13.666 13.673 19.000 13.995 13.716 14.266 13.810 12.476 12.657 12.231 12.435 12.130 15.470
All Step Avg. MAE 10.399 10.404 14.587 10.555 10.424 10.776 10.362 9.342 9.478 9.165 9.374 9.146 10.216
All Step Avg. RMSE 13.039 13.046 18.393 13.262 13.077 13.525 13.035 11.852 12.069 11.700 11.933 11.625 13.335
Avg. Predict Time (ms) 2.689 2.659 3.557 304.490 1281.118 3026.451 10.445 96.102 120.756 111.489 89.297 105.831 0.033
Predict Time Stdev. (ms) 0.285 0.292 0.016 0.458 1.617 0.871 0.093 1.882 5.700 5.829 3.774 3.756 0.014

TABLE VI: Comparison of supervised ML algorithms for resource prediction (using selected sequential features to predict 8
steps ahead).

Algorithm Linear Ridge Decision Random SVR SVR XGBoost RNN LSTM GRU GRU+ WaveNet Active
Regression Regression Tree Forest (Linear) (RBF) 1dConv Probing

First Step MAE 9.219 9.223 12.419 8.892 9.241 8.953 8.758 8.205 7.842 7.622 7.785 8.040 3.504
First Step RMSE 11.543 11.553 15.745 11.328 11.582 11.288 11.141 10.370 10.012 9.716 10.005 10.207 4.593
Last Step MAE 10.658 10.662 15.023 10.840 10.689 10.855 10.704 9.787 9.627 9.442 9.566 9.550 11.892
Last Step RMSE 13.240 13.244 18.829 13.639 13.277 13.600 13.449 12.253 12.239 11.933 12.110 12.061 14.935
All Step Avg. MAE 10.059 10.063 14.077 10.073 10.074 10.056 9.950 9.272 9.091 8.855 8.949 9.027 8.334
All Step Avg. RMSE 12.528 12.534 17.772 12.743 12.552 12.647 12.585 11.646 11.564 11.225 11.379 11.433 11.057
Avg. Predict Time (ms) 1.394 1.390 1.727 150.036 604.762 1377.609 5.579 115.887 118.995 109.009 89.465 104.772 0.022
Predict Time Stdev. (ms) 0.301 0.316 0.009 0.186 0.023 0.056 0.243 3.537 2.673 4.954 3.413 2.584 0.008

TABLE VII: Comparison of supervised ML algorithms for resource prediction (using selected sequential features to predict
16 steps ahead).

Algorithm Linear Ridge Decision Random SVR SVR XGBoost RNN LSTM GRU GRU+ WaveNet Active
Regression Regression Tree Forest (Linear) (RBF) 1dConv Probing

First Step MAE 9.205 9.210 12.514 8.841 9.229 8.911 8.712 8.339 7.889 7.863 7.855 8.149 3.505
First Step RMSE 11.527 11.537 15.799 11.158 11.567 11.162 10.964 10.375 9.990 10.115 10.014 10.353 4.593
Last Step MAE 10.823 10.828 15.019 11.064 10.856 11.054 10.895 9.993 9.699 9.394 9.564 9.447 12.238
Last Step RMSE 13.605 13.612 18.834 13.884 13.645 13.916 13.706 12.634 12.303 12.020 12.200 12.002 15.470
All Step Avg. MAE 10.412 10.417 14.576 10.478 10.431 10.444 10.337 9.711 9.220 9.143 9.316 9.148 10.216
All Step Avg. RMSE 13.003 13.010 18.328 13.177 13.029 13.103 12.998 12.181 11.661 11.668 11.852 11.576 13.335
Avg. Predict Time (ms) 2.547 2.522 3.464 298.758 1228.016 2832.406 10.699 95.248 114.952 111.944 89.810 105.492 0.028
Predict Time Stdev. (ms) 0.310 0.164 0.011 0.319 0.051 70.800 0.419 1.787 4.793 2.463 3.843 3.036 0.007

use the last time step features as input data. Each model is
trained to predict the CPU usage multiple steps ahead.

ML Models: 6 non-sequential models are implemented
using scikit-learn with their default hyperparameters, i.e., lin-
ear regression, ridge regression, decision tree, random forest,
SVM regression (SVR) with both linear and RBF kernel,
and XGBoost. 5 sequential models are implemented using
Keras, i.e., RNN, LSTM, GRU, GRU with a 1-dimensional
convolutional layer, and WaveNet. RNN has 2 20-hidden-unit
SimpleRNN layers (first layer with return sequence=True) and
1 output layer. LSTM replaces the SimpleRNN in the RNN
model with LSTM layers and GRU replaces with GRU layers.
GRU with 1d convolutional layer adds 1 1-dimentional CNN
(as in textCNN) before the GRU model. Wavenet stacks 4

stacked dilated 1D convolutional layers with 1 layer of 20-
hidden-unit GRU and 1 fully connected layers (output layer).
As a benchmark, a naive model is implemented to simulate
active probing by using the last observed CPU usage as
predictions.

Feature Selection: To reduce input size, features are
selected using sklearn.feature selection.f regression, in two
different procedures, namely in a non-sequential and a se-
quential manner. In the non-sequential manner, the top 20-
percentile features with the highest correlation with the CPU
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Fig. 17: Prediction results of 7 selected models using sequential features to predict 8 steps ahead.

Algorithm 2 Auto-scaling Rule
1: n servers min, n servers max← 8, 14 . Server number range
2: S← Initial set of running servers
3: cpu lo, cpu hi← 0.7, 0.8 . Desired CPU usage range
4: for each time step do . ∆t = 250ms
5: δ ← 0 . Initialize server state counter
6: y(S)← CPU usage prediction of 16 steps ahead
7: threshold← d |S|

3
e . Threshold that triggers scaling actions

8: for s ∈ S do
9: if y(s) < cpu lo then

10: δ + + . Increment δ if s is under-loaded
11: else if y(s) > cpu hi then
12: δ −− . Decrement δ if s is over-loaded
13: if δ > threshold and |S| > n servers min then
14: S← downscale(S)
15: skip 8 time steps . Cool-down period
16: else if δ < −threshold and |S| < n servers max then
17: S← upscale(S)
18: skip 8 time steps . Cool-down period

usage are selected14. In the sequential manner, networking
features are first re-arranged by 32 time steps, then the features
that appear more than 3 time steps in the top 20-percentile
features with the highest correlation with the CPU usage, are
selected15.

Different Prediction Steps Ahead: The further in the
future that one can predict, the better configuration plans can
be made. Therefore, tasks are created to predict the different
number of time steps ahead, namely 8 or 16 steps, to study
the capabilities of predicting the future among different ML
models.

Results: Instances of the prediction results from a subset
of ML models are visualised as in Fig. 17. The scores
achieved by each predicting model using test set is shown in
Table IV-VII. The prediction time for each model is evaluated
using 256 datapoints (as predicting resource utilisation on
256 servers). The results show that sequential models achieve
better performance when using sequential features as input
data than using non-sequential features. Simple and non-
sequential ML models perform worse that sequential models,
especially when predicting 16 steps ahead as sequential models
has more visibility on the history. WaveNet has the best overall
performance and robustness across all 4 different tasks among
all ML models, therefore it is chosen in this paper to be applied

14The 21 “non-sequential features” consist of: fct 90 decay, fct avg decay,
fct std, flow duration 90, flow duration 90 decay, flow duration avg,
flow duration avg decay, flow duration std, iat f avg, iat f avg decay,
iat p std, iat ppf 90 decay, iat ppf avg, iat ppf avg decay, iat ppf std,
n flow on, pt 1st 90, pt 1st 90 decay, pt 1st avg decay, pt 1st std,
pt gen 90 decay.

15The 15 “sequential features” consist of: n flow, n packet,
iat f avg, iat f 90, iat f std, iat f avg decay, iat f 90 decay, iat p avg,
iat p std, iat p avg decay, pt 1st std, lat synack avg, lat synack 90,
lat synack 90 decay, flow duration std.

400
550
700
850

#q
ue

rie
s/

s

#Servers Avg. CPU Usage Desired CPU Range

8
10
12
14

#S
er

ve
rs

Over Provision

8
10
12
14

#S
er

ve
rs

Active Probing

8
10
12
14

#S
er

ve
rs

Linear Regression

0 60 120 180 240 300
Time (s)

8
10
12
14

#S
er

ve
rs

Wavenet

20
40
60
80
100

CP
U 

(%
)

20
40
60
80
100

CP
U 

(%
)

20
40
60
80
100

CP
U 

(%
)

20
40
60
80
100

CP
U 

(%
)

Fig. 18: Comparison of online auto-scaling performance using
different algorithms. The (discrete) numbers of running servers
are plotted for each run in dashed lines, while CPU usage is
summarised as avg. ± stddev across 30 runs.

online. Linear regression, on the other hand, is the simplest
ML model and has the shortest processing latency overhead
when making prediction, therefore it is chosen to be applied
online as well.

3) Online Auto-Scaling: To test the online performance
of offline-trained ML models, a 300s Wikipedia replay trace
sample of the last hour (unseen by the ML models) is
synthesized to have scheduled changing traffic rates every
60s. Based on the 16-step-ahead CPU usage predictions of
running servers y(S), a simple heuristic is proposed (Algo-
rithm 2) to keep the CPU usage of 2

3 servers within the
desired range (70 ∼ 80%). Using the same counter ∆ for
over- and under-loaded servers reduce the variance induced by
imbalanced workload distributions. As a reference, an active
probing mechanism is implemented, whose predicted CPU
usage for running servers y(S) comes from periodic polling
(every 250ms, same as the prediction interval of ML methods).
An “oracle” benchmark is implemented to over-provision the
number of servers proportional to the scheduled traffic rates.

4) Results: As depicted in Fig. 18, active probing keeps
the average CPU usage within the desired range, however, it
requires frequent scaling events and leads to oscillating CPU
usage with high variance. Linear regression is simple yet not
robust when applied for an online auto-scaling system. Its
under-estimated server load states lead to over-loaded servers.
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toscaling mechanisms.

WaveNet takes sequential features as input and is more robust
when applied online. It keeps the average CPU usage close to
the desired range with less oscillations.

As depicted in Fig. 19, WaveNet is able to provide better
QoS than active probing – 78.37ms less page load time
(26.04%) at 90th percentile and 35.70ms less (30.45%) on
average – with 3.99% additional server-second cost, and
42.44% less scaling events. When over-provisioning the server
cluster, the page load time is shorter than using WaveNet
by 67.13ms at 90th percentile and 28.55ms average, though
it requires 11.86% more server-second operational cost than
WaveNet.

5) Overhead Analysis: As depicted in Fig. 20, ML models
incur additional memory usage and predicting delay. Active
probing also incurs additional CPU usage. WaveNet, as a
more sophisticated ML model, incurs 1.844% additional CPU
usage and 322.61MiB additional memory usage than active
probing. However, Aquarius parses features stored in the local
shared memory with no control messages, achieving more than
94.18µs less median latency than typical VM- and container-
based probing mechanisms (Fig. 21).

Take-Away: Aquarius enables agile development, offline
model selection, and online deployment of learning algorithms
to improve network performance. It makes features quickly
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Fig. 21: Feature collection latency comparison between Aquar-
ius and active probing techniques.
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Aggregations

Fig. 22: Overview of the RLB algorithm [10].

accessible while saving management bandwidth for data trans-
mission.

C. Traffic Optimisation and Load Balancing

As a key component in cloud DCs, Layer-4 load balancers
(LBs) distribute workloads across servers to provide scalable
services. This section shows that Aquarius can apply RL
algorithms to optimise load balancing performance.

1) Task Description and Testbed Configuration: In cloud
DCs, servers can be virtualised on infrastructures with dif-
ferent processing speeds [91]. This section inherits the con-
figuration of VIP2 (Fig. 10) – replaying the Wiki trace and
load balancing on 2 groups of servers of different processing
capacities. The task is to extract and infer server processing
capacity information from networking features and make in-
formed load balancing decisions. 3 benchmark LB algorithms
are implemented – (i) ECMP [27] randomly distributes work-
loads regardless of server processing speed differences; (ii)
WCMP [74], [92] statically assigns weights to servers based
on their provisioned capacities; (iii) active WCMP [12], [16],
[17] polls server job queue lengths and updates weights every
200ms based on probed utilisation information.

2) RL Algorithm: RLB [10] is an RL-based LB algorithm
implemented and evaluated in simulators, similar to many
RL algorithms for networking [15], [58]. In this paper, RLB
is implemented and evaluated in a realistic testbed using
Aquarius. As depicted in Fig. 22, with Aquarius, RLB (i)
counts ongoing flows l̃i on servers and (ii) asynchronously
updates (every 250ms) server weights w̃i (actions) for each
application server as server load state estimations, derived
from flow durations τi sampled in reservoir buffers as input
features. The same architecture with a Soft Actor-Critic model
as in [10] is implemented. However, the actor and critic
networks take the batch-normalised features only based on
locally observed per-server states. On receipt of new requests,
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Fig. 23: Correlation between networking features and server states.

RLB assigns servers based on scores that estimate the time
to finish all the workloads for each server using the short-
est expected delay algorithm [93], i.e., arg mini

l̃i+1
w̃i

, which
prioritizes servers with higher processing speed and shorter
queue lengths. Different from [10], which uses actively probed
ground truth information, this paper derives the reward from
features collected by Aquarius. The reward is chosen as τ̃

2

τ̃2
−1,

where τ̃ is a list of discounted average of flow duration on each
server, which is also collected by Aquarius.

3) Feature Validation: RLB uses the number of ongoing
connections to indicate server queue occupation and it uses
flow duration as an input feature to infer server processing
capacity. To verify the feature selection of RLB and study the
correlation of network features with server load states in real-
world networking systems, moderate and heavy network traces
of both Wikipedia replay (VIP2 in Fig. 10)16 and PHP for-loop

16Using ECMP, which does not distinguish the server processing capacity
difference, an average FCT of 45ms and 836ms is achieved respectively under
light and heavy traffic.

(VIP0 in Fig. 10) are applied on the testbed. The correlation
between all the features and server states under different traffic
rates is depicted in Fig. 23.

As expected, one intuitive feature among the counters that
helps infer server load state is the number of ongoing flows
(n flow on). For VIP2, since the replayed trace is not IO-
intensive – SQL queries with small file sizes whose average
and standard deviation are both 12KiB, throughput-related fea-
tures are indicative of the different provisioned server process-
ing capacities (the number of CPUs #cpu). However, for both
VIP0 (requests are CPU-intensive) and VIP2, latency-related
features (e.g., FCT, flow duration) show a higher correlation
than achieved using active probing (Fig. 2), since they capture
the fact that heavily loaded or less powerful servers have
slow processing speeds. This effectively shows that networking
features passively gathered by Aquarius are reliable and the
selected input features of RLB are representative.

4) Results: RLB is trained using the first hour of Wiki
trace sample for 20 runs (episodes). As depicted in Fig. 24,
RLB learns server capacity differences. The rewards of RLB
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Fig. 25: Wikipedia trace replayed using different LBs.

during training grow higher and less variant, and the FCT
becomes lower. The trained RLB model is then tested on un-
seen traffic and compared with other LB algorithms (Fig. 25a).
During off-peak hours, servers are under-utilised and all algo-
rithms show similar performances. As traffic rates grow, RLB
achieves lower FCT for both static pages and Wikipedia pages
when compared with other LB algorithms (Fig. 25b). RLB is
trained to learn server processing speed differences and assigns
higher weights, thus more queries, to more powerful servers
(Fig. 26). When using RLB, 4-CPU servers handle respectively
1.258× and 1.523× more tasks than 2-CPU servers under
676.92 and 372.01 queries/s traffic.

5) Overhead Analysis: As depicted in Fig. 27a, throughout
all test runs, RLB consumes on average 692.89 more CPU
cycles (0.26µs on 2.6GHz CPU) than ECMP, as it computes
and compares the server scores when making load balancing
decisions. Fig. 27b depicts CPU and memory consumptions
of all LBs. RLB incurs 0.22× additional CPU usage and
45.99MiB memory usage on average.

6) Partial Observation: Though RLB achieves better per-
formance than heuristic load balancing methods, it relies on
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Fig. 26: Query distribution (number of busy Apache threads)
on 2 groups of application servers.
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Fig. 27: Overhead comparisons.

ordinal features, which, collected in a distributed system, risk
reflecting only partial system states. For instance, when traffic
is split across multiple load balancers, the locally counted
number of ongoing flows does not reflect the actual queue
length on the application server. As is depicted in Fig. 29, in
presence of 2 load balancers, the ratio of the locally observed
number of flows over actual queue length #thread has a
standard deviation of 22.49%. However, RLB relies also on
latency-related features (flow duration), which can be gainfully
used to infer server load states and compensate for the impacts
of partially observed ordinal features.

Take-Away: Aquarius enables closed-loop control (RL)
to dynamically adapt to networking systems and optimise per-
formance. It empowers real-world deployment and evaluation
of learning algorithms developed in simulated environments.

V. CONCLUSION

Networking features and system state information help
VNFs make informed decisions, and intelligently manage and
update networking policies in cloud DCs. Actively collect-
ing features and system state information entails substantial
control signaling and management overhead, in particular in
large-scale DC networks. This paper has proposed Aquarius, a
framework that collects, infers, and supplies accurate network-
ing state information with little additional processing latency,
in a scalable buffer layout. By using multi-buffering and reser-
voir sampling, Aquarius extracts representative features from
network traffic, and allows VNFs – in particular ML-based
VNFs – to exploit these features. Aquarius can be deployed
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feature engineering and selection process to prune unrelated features (reduce additional feature processing overhead) and to pick
a minimally viable set of features that can be gainfully used for solving the target problem. The selected features can be passed
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+ load balancing in Section IV-C). Offline trained ML models can also be brought online to evaluate their performance in real-
time (e.g., supervised learning + autoscaling in Secion IV-B). As a platform that helps harness reliable networking features and
learning algorithms, Aquarius allows iteratively investigating networking features, developing models, and designing algorithms.
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Fig. 29: Partial observations happen when traffic is split across
2 VNFs.

in the network on commodity CPU, empowering real-world
learning algorithm deployments and evaluations. Following
the methodology blueprint summarised in Fig. 28, this paper
has illustrated the use of Aquarius for various ML-based
VNFs: traffic classification (offline, unsupervised learning),
autoscaling (online, supervised learning), and load-balancing
(reinforcement learning) purposes, and evaluates experimen-
tally the impact of Aquarius in the system performance. The
application of ML techniques to networking problems starts
from understanding the target problem to solve. Aquarius
improves the visibility on the data plane and allows collecting
a wide range of networking features for feature engineering,
which iteratively prunes unrelated features to reduce additional
feature collection processing latencies and selects the minimal
set of viable features that can be gainfully used for the
task. The selected features can be passed to both offline
and online applications for data analysis, model training, and
benchmark evaluations. Aquarius provides a reliable feature
collection and experimenting platform in real-world systems
that allows iteratively studying model selection, parameter

tuning, and algorithm design for various use cases. Both
open-loop (e.g., supervised learning + autoscaling system)
and close-loop (e.g., RL + load balancer) control can be
achieved based on Aquarius to improve resource orchestration
and utilisation. Extensive evaluations show that Aquarius helps
bring significant performance gains (reduced FCT, improved
resource utilisation) in the three considered cases of data-
driven VNFs.
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