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A short proof of a theorem of Cotti, Dubrovin and Guzzetti

Claude Sabbah

Abstract. We give a short proof of a theorem of G. Cotti, B. Dubrovin and D. Guzzetti
(2019/2021) asserting the vanishing of some entries of the Stokes matrices at coalescing points
of an isomonodromic deformation.

Introduction

A recent work [4] of D. Guzzetti gives another approach to a result of G. Cotti,
B. Dubrovin and D. Guzzetti in [1] that asserts the vanishing of some entries of the
Stokes matrices at coalescing points of an isomonodromic deformation. We recall the
precise context in Section 3. The idea of D. Guzzetti is to exploit the property that the
isomonodromic deformation in question can be obtained by Fourier–Laplace trans-
formation from an isomonodromic deformation of a differential system with regular
singularities.

Starting from this idea, we show how to recover the vanishing result by using the
structure of such Stokes matrices as explained by Malgrange in [8, Chap. XII] and
proved in a topological way in [2]. We emphasize the property of intermediate (also
called minimal, or middle) extension of the differential system with regular singularity
involved. Let us summarize our approach.

• Given a differential system on the complex line with poles at a finite set, and hav-
ing regular singularities including at infinity, we associate its minimal extension
that we regard as a regular holonomic module on the Weyl algebra CŒ��h@�i. Its
Laplace transform is a holonomic module on the complex line, having an irregu-
lar singularity at infinity. The result of Malgrange mentioned above enables one to
compute representatives of Stokes matrices of the latter in terms of monodromies
at finite distance of the former, and to show that the vanishing of some blocks
of the Stokes matrices occurs when some relation between monodromies occurs.
This general result is explained in Section 1.
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• This relation between monodromies has a dynamical interpretation when a uni-
versal isomonodromic deformation exists for the differential system with regular
singularities. The parameter space is an open subset of the space of tuples of
pairwise distinct singularities. Due to the simple geometry of the deformation
space, one can interpret the relation between monodromies considered in the first
point as the constancy of certain vanishing cycle sheaves on the singular set of the
deformed family.

• A stationary phase result with parameter, as shown in [3] (see Appendix B), relates
the formal decomposition at infinity of the Laplace transform of the regular holo-
nomic module considered above with the vanishing cycle sheaves of the latter.

• These results lead to the following criterion, that we will only develop in the
setting of Section 3. Let U be a simply connected open set in Cn with coor-
dinates u1; : : : ; un, and let U o be the complement of the diagonals ui D uj

(i ¤ j 2 ¹1; : : : ; nº). LetX DU � V be a neighborhood of U � ¹z D 0º in U �C

and set Xo D U o � V . Let Ri , for i D 1; : : : ; n, be a locally free OX -module with
a flat logarithmic connection ri having poles along U � ¹z D 0º.

Criterion. Let G be a locally free OX .�U/-module with a flat connection. Assume
that

(1) the formalization .bG;br/ D GbU WD OU ..z//˝OX G decomposes as

nL
iD1

.Ri Œz
�1�;ri C d.ui=z//;

(2) there exists uo2U o such that Gj¹uoº�V is the restriction to ¹uoº � V
of the partial Laplace transform of a regular holonomic module on C�
which is a minimal extension at each of its singularities at finite distance.

If there exists a “coalescing” point uc in U whose coordinates uc
i and uc

j coincide
for some i ¤ j 2 ¹1; : : : ; nº, then for each uo 2 U o, the .i; j /- and .j; i/-entries
of the Stokes matrices of GjuDuo vanish.

The constancy of the vanishing cycle sheaves mentioned in the previous point is
a consequence, via [3], of the constancy, for each i , of the local system on U
attached to the flat residual connection of .Ri ;ri /, as follows from the simple
connectedness of U .

• In the setting of Section 3, according to [1, Prop. 19.3] (see Appendix A) the first
condition is satisfied. That the second one is also satisfied is proved by using the
specific form of the connection matrix (see Lemma 3.3).
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1. A criterion for the vanishing of some entries of the Stokes matrices

Let C� denote the complex line with coordinate � and let uo D .uo1; : : : ; u
o
n/ 2 Cn

having pairwise distinct coordinates. We denote by ¹uoº D ¹uo1; : : : ; u
o
nº the cor-

responding subset of C�. Let Lo be a locally constant sheaf of finite rank r on
C� X ¹u

oº. We will be mainly concerned with the perverse sheaf j�Lo,1 where we
denote by j W C� X ¹uoº ,! C� the open inclusion. This sheaf is called the interme-
diate extension of Lo with respect to j .

Let .V o;ro/ be the meromorphic flat bundle on the affine line C� with poles at uoi
(i D 1; : : : ; n) and regular singularities there and at �D1, whose sheaf of horizontal
sections on C� X u

o is the local systemLo. We can regard it as a meromorphic bundle
on P1 with poles at uo1; : : : ; u

o
n and1, equipped with a connection ro having regular

singularities there. We can also regard it as a regular holonomic (left) module over the
Weyl algebra CŒ��h@�i.

To j�Lo is associated, by the Riemann–Hilbert correspondence, a regular holo-
nomic CŒ��h@�i-module .M o;ro/, that is called the middle extension of .V o;ro/.

Assume we are given a Fuchsian system with poles at ¹uoº, and matrix

Bo D

nX
iD1

Boi
� � uoi

d�: (1.1)

We regard it as the free CŒ��-module Eo D CŒ��r equipped with a logarithmic con-
nection ro whose matrix is given by the formula above. The associated meromorphic
bundle with connection .V o;ro/ is obtained by tensoringEo with the ring of rational
functions CŒ�; ..� � uoi /

�1/iD1;:::;n� having poles at most at ¹uoº, that is,

V o D CŒ�; ..� � uoi /
�1/iD1;:::;n�˝CŒ�� E

o; (1.2)

with connection naturally induced by ro on Eo. We regard .V o;ro/ as a left module
over the Weyl algebra CŒ��h@�i, and .Eo;ro/ is called a logarithmic lattice of it.
Although .Eo; ro/ is not a CŒ��h@�i-module, it generates a CŒ��h@�i-submodule
.M o;ro/ of .V o;ro/ by setting

M o
D

X
k

.ro@�/
kEo � V o:

The following lemma is standard.

Lemma 1.3. Assume that, for each i D 1; : : : ; n, the integral eigenvalues of Boi
are nonnegative. Then .M o;ro/ is the middle extension of .V o;ro/ at each of its
poles.

1One usually shifts this sheaf by one, but we do not for the sake of simplicity.
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We consider the Laplace (also called Fourier) transformation with kernel e�� .
The Laplace transform .LM o;ro/ of .M o;ro/ is the CŒ��h@� i-module obtained as
follows. The C-vector space LM o is equal to M o. The action of � is defined as that
of @�, and the action of @� is defined as that of ��. Classical results show that LM o

is a holonomic CŒ��h@� i-module with a regular singularity at � D 0 and an irregular
singularity at � D1.

Tensoring this Laplace transform LM o with CŒ�; ��1� over CŒ�� and setting z D
��1, we obtain a meromorphic bundle with connection .Go;ro/ on the affine line Cz
with pole at z D 0 and an irregular singularity there (and a regular singularity at
z D 1). In other words, .Go;ro/ is the localized Laplace transform of .M o;ro/

with respect to the Laplace kernel e�=z .
The formal stationary phase formula describes the formalized connection

.bGo;bro/ WD C..z//˝CŒz� .G
o;ro/:

There exists a C..z//-basis of bGo in which the matrix of bro is block-diagonal, with
blocks of the form

uoi Idri d.1=z/C Ci dz=z; i D 1; : : : ; n; (1.4)

where Ci is a constant matrix. Correspondingly, there is a pair .SoC; S
o
�/ of Stokes

matrices that enables one to recover, up to isomorphism, .Go;ro/ from .bGo;bro/.
A topological computation of .SoC; S

o
�/ from a presentation of j�Lo is given in

[2, Th. 5.4], adapting the more analytic approach in [8, Chap. XII]. We recall it here
in the special case of the intermediate extension j�Lo.

We fix an uo-admissible argument �o in C�, in the sense that the closed real half-
lines `i with this direction starting from uoi does not contain uoj for j ¤ i . We set
`o D

S
i `i . We denote by Di the maximal open strip in that direction containing uoi

and no other uoj . See Figure 1.
To j�Lo and the choice of a general argument �o as above (that we omit in the

notation) is attached a quiver consisting of finite-dimensional vector spaces and linear

uoi uoj

`i

uoi uoj

Di X `i C� X `
o

Figure 1
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maps between them. The quiver takes the form .‰o; ˆoiD1;:::;n; ci ; vi / and, due to the
special case we consider here, it is obtained as follows (see [2, Lem. 4.8]):

• ‰o D H 2
c .C� X `

o; Lo/,

• ‰oi D H
1
c .`
�
i ; L

o/, with `�i WD `i X ¹u
o
i º, and monodromy Ti i ,

• hi W ‰
o
i

�
�! ‰o is an isomorphism obtained through .4:6/c in [2], furthermore

Ti D hi ı Ti i ı h�1i W ‰
o ! ‰o is the i -th monodromy on ‰o,

• ˆoi D im.Id�Ti i / � ‰oi , ci i D .Id�Ti i / W ‰oi ! ˆoi and vi i W ˆoi ,! ‰oi is the
natural inclusion,

• last, ci D ci i ı h�1i , vi D hi ı vi i .

We note that vi W ˆoi ! ‰o is injective and its image is identified with im.Id�Ti /.
The quiver is thus isomorphic to the quiver

.‰o; �oiD1;:::;n; ci ; vi /;

8̂̂<̂
:̂
�oi D im.Id�Ti /;

ci D .Id�Ti / W ‰o ! ‰o;

vi D inclusion W �oi ,! ‰o:

With this notation, [2, Th. 5.4] asserts (following [8, Chap. XII]) that there exists
a pair .SoC; S

o
�/ of Stokes matrices for Go which are decomposed into blocks .i; j /

with i; j D 1; : : : ; n, such that the non-diagonal blocks .i; j / and .j; i/ read

• cj ı vi and 0 for SoC,

• 0 and �ci ı vj for So�.

Corollary 1.5. With these assumptions, for i ¤ j 2 ¹1; : : : ; nº, the above represen-
tative .SoC; S

o
�/ of Stokes matrices for Go has vanishing blocks .i; j / and .j; i/ if and

only if
.Id�Tj /jim.Id�Ti / D 0 and .Id�Ti /jim.Id�Tj / D 0:

2. Interpretation in terms of constancy of the vanishing cycle sheaf

If we vary uo 2 Cn along a path u.t/ (t 2 Œ0; 1�), with the condition that ui .t/ remain
pairwise distinct, the local system Lo deforms in a unique way as a family of local
systemsLt on C� X ¹u.t/º: this is obtained by an argument on the fundamental group
(since the path is simply connected). Assume now that the limit point u.1/ has compo-
nents which coincide, a property that the authors of [1] call coalescence. The behavior
near such a point is better seen within a geometric setup.

Let us consider the space Cn �C� with coordinates u1; : : : ; un; � and the projec-
tion p W .u1; : : : ; un; �/ 7! .u1; : : : ; un/. Let us also consider the following hypersur-
faces:
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• the hyperplanes Hi D ¹� � ui D 0º of Cn �C on the one hand,

• the hyperplanes�i;j D ¹ui D uj º (i ¤ j ) of Cn on the other hand, that are lifted
to Cn �C as �i;j �C.

The union of these are respectively denoted by H and � (and � � C). We note
that H is a divisor with normal crossings in Cn � C whose singular set projects
bijectively to �.

Let uc be a fixed coalescing point, that is, a point on �. It defines a partition
¹1; : : : ; nº D

Fm
aD1 I

c
a such that uci D u

c
j if and only if i and j belong to the same

subset I ca and we denote by uca this common value. We decompose correspond-
ingly Cn as

Qm
aD1 CIca .

Let us fix an uc-admissible argument �c and open subsetsDc
a�C� (aD 1; : : : ;m)

as in Figure 1. The open subset Dc
a of CIca consisting of points whose coor-

dinates belong to Dc
a is the product of the open strips Dc

a in each coordinate
plane, hence is homeomorphic to CIca . We then set DcD

Qm
aD1 Dc

a, and we have
DcX�D

Qm
aD1.D

c
aX�a/. The disjoint union

ma
aD1

.Dc
�Dc

a/

is an open neighborhood of .uc ; ¹ucº/ in Dc �C� and

H \ .Dc
�Dc

a/ D Ha �
Y
b¤a

Dc
b;

whereHa �Dc
a �D

c
a is defined by

Q
i2Ica

.�� ui /D 0. We now callHi the intersec-
tion of ¹�D uiºwith Dc �C�. For i D 1; : : : ; n, let vi .u;�/D .�� ui / WDc �C�!

C be the defining function of Hi . Then H D
S
i Hi is a normal crossing divisor in

Dc � C�. We also set X D Dc X � and denote by j W .X � C�/ XH ,! X � C�
the open inclusion. Note that the intersection of H with X � C� is smooth with
components Hi \ .X � C�/, because the singular set of H projects to �. Also, the
complement in Hi of Hi \ .X �C�/ is a normal crossing divisor in Hi .

Let L0 be a locally constant sheaf on .Dc �C�/ XH and let L denote its restric-
tion to .X � C�/ XH . The nearby cycle complex  vi .L

0/ is a complex of sheaves
on Hi equipped with an automorphism Ti . / W  vi .L

0/!  vi .L
0/. By restricting

over X , we obtain a locally constant sheaf  vi .L/ on Hi \ .X �C�/ equipped with
the automorphism Ti . /. For any uo 2 X , we denote by Lo the restriction of L
to uo � .C� X ¹uoº/.

The sheaf j�L on X � C� is a perverse sheaf (up to a shift) and the vanishing
cycle sheaf �vi .j�L/ is a locally constant sheaf on Hi \ .X �C�/: this is the sheaf

im.Id�Ti . // W  vi .L/ �!  vi .L/ (2.1)

equipped with the automorphism Ti .�/ induced by Ti . /.
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Proposition 2.2. With these notations, assume that for each i D 1; : : : ; n, the vanish-
ing cycle local system �vi .j�L/ onHi \ .X �C�/ is constant. Then, for any uo 2X ,
for any a D 1; : : : ; m and for any pair i ¤ j 2 I ca , the Stokes matrices of Go con-
sidered in Section 1 with respect to any argument �o close enough to �c have their
.i; j /- and .j; i/-blocks equal to zero.

Proof. We first notice that, uo being fixed in X , if �c is not uo-admissible, then any
�o¤ �c close enough to �c is uo-admissible. The result does not depend on the choice
of �o.

The question is local at each uca. Recall that vi D � � ui . The open set
.Dc

a �D
c
a/XHa is homeomorphic to .CIca �C�/X ¹

Q
i2Ica

vi D 0ºwith coordinates
.vIca ; �/. We are thus considering a locally constant sheaf L0 on the complement of
coordinate hyperplanes vi D 0 in CIca �C�. Giving L0 is thus equivalent to giving a
vector space L equipped with automorphisms Ti (i 2 I ca ). We can choose .‰o;Ti2Ica /
defined in Section 1 as such data.

With such a representation, the locally constant sheaf �vi .j�L/ onHi \ .X �C�/

is represented by the vector space with automorphisms .im.Id�Ti /;Tj¤i /. Further-
more, the automorphism Ti .�/ of �vi .j�L/ corresponds to the automorphism induced
by Ti . That �vi .j�L/ is constant is equivalent to the property that each Tj¤i is the
identity on im.Id�Ti /. We conclude with Corollary 1.5.

3. A short proof of a theorem of Cotti, Dubrovin and Guzzetti

We keep the setting and notation of Section 2: we fix a coalescing point uc 2 � and a
point uo in Dc X�.

We consider the trivial CŒz�-module F o of rank n equipped with the connec-
tion ro having matrix

Ao D
�ƒo
z
C Ao1

� dz
z
; where ƒo WD diag.uo1; : : : ; u

o
n/: (3.1)

We assume that the only possible integral eigenvalues of Ao1 are > 1 and no diagonal
entry of Ao1 is an integer (this can be achieved by adding c Idn dz=z to Ao1 for
a suitable c 2 C, and Theorem 3.7 is insensitive to this modification). The inverse
Laplace (or Fourier) lattice .Eo; ro/ (see [10, Prop. V.2.10]) is F o regarded as a
CŒ��-module, where � acts as z2@z . By the first assumption on Ao1, it is free of
rank n, with the same canonical basis as F o, and the matrix of ro in this basis is

Bo D .Ao1 � Idn/.� Idn�ƒo/�1 d�; (3.2)

which takes the Fuchsian form (1.1).



C. Sabbah 36

Lemma 3.3. The CŒ��h@�i-submodule of .V o;ro/ generated by Eo is the middle
extension .M o;ro/ of .V o;ro/, whose localized Laplace transform .Go;ro/ is equal
to eGo WD CŒz; z�1�˝CŒz� F

o with connection having matrix Ao.

Proof. Let us decompose Bo as in (1.1). Then each matrix Boi has rank one and
a unique nonzero eigenvalue, which is the i -th diagonal entry of Ao1 � Id and is
non integral by the second assumption on Ao1. Therefore, the matrix Bo satisfies the
assumption of Lemma 1.3. This proves the first point.

Let Go be localized Laplace transform of M o. Then

Eo �M o
) F o � Go; hence eGo � Go:

In order to obtain equality, it is enough to show rkGo D n. By the stationary phase
formula, this rank is equal to

Pn
iD1 ���uoi

M o. Therefore, it is enough to show that,
for each local monodromy Ti of Lo D .V o/r

o
around uoi , we have rk.Idn�Ti / D 1.

Since no two distinct eigenvalues of Boi differ by an integer, the local monodromy
Ti is conjugate to exp.�2� iBoi /, hence Ti � Id has rank one, as desired.

Since the diagonal terms of ƒo are pairwise distinct, we can write

Ao1 D D
o
1 C Œƒ

o; Ro�;

where Do
1 is the diagonal of Ao1, and we can assume that the diagonal terms of Ro

are zero.
A theorem of B. Malgrange [6, 7] asserts that there exists a universal integrable

deformation of this system in the neighborhood of uo (see also [10, §VI.3]). In partic-
ular (see [10, §VI.3.f]), there exists a holomorphic matrixR.u/ on a simply connected
neighborhood nb.uo/ with zeros on the diagonal, such that the system�ƒ.u/

z
C A1.u/

� dz
z
; A1.u/ WD Œƒ.u/; R.u/�CD

o
1 (3.4)

is integrable andR.uo/DRo. The diagonal part ofR.u/ does not show up, so we can
assume that the diagonal terms of R.u/ are zero. The integrable connection (on the
trivial bundle) has the matrix (see [10, VI (3.12)])

�d.ƒ.u/=z/C
�
Œƒ.u/; R.u/�CDo

1

� dz
z
� Œdƒ.u/;R.u/� (3.5)

and is a universal integrable deformation of its restriction at each point of the neigh-
borhood where it exists. Furthermore, on nb.uo/, there exists a z-formal base change
which transforms (3.5) to the system

�d.ƒ.u/=z/CDo
1

dz
z
: (3.6)
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Theorem 3.7 ([1, 4]). Assume that A1.u/, defined on nb.uo/, extends holomorphi-
cally to Dc , and that, for any a D 1; : : : ; m and any i ¤ j belonging to the same
I ca , the .i; j /- and .j; i/-entries of A1.u/ tend to zero when ui � uj ! 0. Then the
corresponding .i; j /- and .j; i/-entries of the Stokes matrices .SoC; S

o
�/ are zero.

Remark 3.8. We may restate the condition on A1.u/ as the condition that R.u/
extends holomorphically to Dc .

Proof. We first note that the integrability property of (3.5) all over Dc immediately
results from that on nb.uo/. Indeed, integrability is equivalent to the property that R
satisfies the following isomonodromy differential system on a neighborhood of uo:´

dŒƒ;R� D �
��
Œƒ;R�CDo

1

�
; Œdƒ;R�

�
;

dŒdƒ;R� D Œdƒ;R� ^ Œdƒ;R�:
(3.9)

These are equalities on nb.uo/ between holomorphic matrices defined on Dc .
Since Dc is connected, these equalities, hence the integrability property, hold all
over Dc .

Let us set

A.u; z/ D
�ƒ.u/

z
C Œƒ.u/; R.u/�CDo

1

� dz
z
;

� D �
dƒ.u/
z
� Œdƒ.u/;R.u/�:

(3.10)

As explained in Lemma 3.3, the meromorphic bundle with connection .Go;ro/
associated with the differential system of matrix Ao given by (3.1) is the localized
Laplace transform of the middle extension .M o;ro/ of the meromorphic bundle with
connection .V o;ro/ defined by the matrixBo given by (3.2). The existence ofA1.u/
on Dc together with integrability of (3.10) implies the existence of a meromorphic
bundle with integrable connection .G;r/ on Dc �C restricting to .Go;ro/ at uo.

Let us consider the formalized connection along z D 0:

.bG;br/ WD ODc ..z//˝ODc Œz�
.G;r/:

Then [1, Prop. 19.3] (see a reminder in Appendix A) extends the formal decomposi-
tion (3.6) for .G;r/ all over Dc :

.bG;br/ ' nL
iD1

�
ODc ..z//; dC d.ui=z/C do1;i dz=z

�
; (3.11)

where do
1;i is the i -th diagonal entry of the diagonal matrix Do

1. The rank-one
ODc ..z//-module with connection .ODc ..z//; d C do1;i dz=z/ has regular singularity
along ¹z D 0º. It is uniquely determined as such by the data of the pair .Li ; Ti /, where
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Li DCDc is the constant local system of rank one on Dc , and Ti is the automorphism
of Li induced by multiplication by exp.�2� ido

1;i /.
Our aim is to apply Proposition 2.2 to a suitable local system L. Before doing so,

we construct the local system L0 on .Dc � C�/ XH by means of the standard result
provided by Lemma 3.12. We then define L as the restriction of L0 to .X �C�/XH ,
and we prove that the local system �vi .L/ as considered in Section 2 is constant by
identifying �vi .L/ with the restriction of Li to X D Dc X�.

Lemma 3.12. Let U be a simply connected complex manifold and let D be a disc of
some positive radius, centered at the origin in C. Let uo 2 U . The restriction functor
at uo induces an equivalence between the category of regular holonomic DU�D-
modules with characteristic variety contained in T �U�D.U �D/ [ T

�
U�¹0º

.U �D/

and the category of regular holonomic D¹uoº�D-modules with singularity at the origin
only. A quasi-inverse functor is given by the pullback by the projection U � D !
¹uoº �D.

Furthermore, we implicitly refer to [3, App. A] for passing from analytic to par-
tially algebraic D-modules.

This being understood, we conclude, by taking U D Dc , that LM o extends in a
unique way as a holonomic DDc Œ��h@� i-module N with regular singularities along
� D 0 and which satisfies (by setting z D ��1)

ODc Œ�; �
�1�˝ODc Œ��

N D .G;r/ and Njuo�C D
LM o:

The inverse partial Laplace transform M of N is a holonomic DDc Œ��h@�i-module,
and we write N D LM (see Appendix B).

Lemma 3.13. The DDc Œ��h@�i-module M is smooth away from H and defines there
a locally constant sheaf L0.

Proof. We can regard .G; r/ as a holonomic DDc Œ��h@� i-module on which �

acts in an invertible way. Let fM denote its inverse Laplace transform. The cok-
ernel of the inclusion N ,! G is a holonomic DDc Œ��h@� i-module supported on
� D 0. Furthermore, since the characteristic variety of N and G is as described in
Lemma 3.12, that of G=N is contained in T �Dc�¹0º.D

c � C� /. As a consequence,
the cokernel of M ,!fM is a holonomic DDc Œ��h@�i-module isomorphic to some
power of .ODc Œ��; d/. It is thus enough to prove the lemma for fM . Recall also (see
Appendix B), that fM is nothing but G as a DDc -module, hence as an ODc -module.
In particular, it is ODc -flat and the restriction functor to any u 2 Dc only produces
one cohomology CŒ��h@�i-module fM u, which is the inverse Laplace transform of
the restriction Gu to u � C�. The formal stationary phase formula (1.4) for u fixed,
together with the restriction of (3.11) at this value of u, implies that the singular set offM u is equal to the finite set ¹uº. Since u was arbitrary, this concludes the proof.
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From now on, we restrict to X D Dc X �. We have Mjp�1.uo/ D M o and M
is regular holonomic, with poles on the smooth hypersurface H � X � C�. By the
uniqueness property of Lemma 3.12 applied to any simply connected open subset ofX
containing uo, we conclude that M is the middle extension of the meromorphic flat
bundle .V;r/ WD OX Œ�; ..� � ui /

�1/iD1;:::;n� along H . Denoting by L the local sys-
tem of horizontal sections of .V;r/, M is the regular holonomic DX Œ��h@�i-module
associated to the (perverse) sheaf j�L via the Riemann–Hilbert correspondence.

The formalized connection .bG; br/ along z D 0 is directly obtained from
.M;r/ by an operation called formal partial microlocalization [3, Prop. 1.18] (the
non-characteristic assumption (NC) in [3] is obviously satisfied here). We write
.bG;br/D p�.M;r/�, with the identification z D @�1

�
and �D z2@z . By the standard

identification recalled in Appendix B (see Remark B.2), the vanishing cycle sheaf
�vi .j�L/ is a rank-one local system on Hi \ .X �C�/, identified with Li jX .

Since Li is constant on Dc , hence on X , we conclude the proof of Theorem 3.7
by applying the criterion of Proposition 2.2.

A. A reminder of [1, Prop. 19.3]

Let us recall the statement and proof of [1, Prop. 19.3] for the sake of completeness.
We use the following notation. Given a square matrix A, we denote by A0 the matrix
formed of its diagonal terms, all off-diagonal terms being zero, and set A00 D A�A0.

Proposition A.1 ([1, Prop. 19.3]). In the setting of (3.10), there exists a unique z-
formal base changebP .u; z/ DX

j>0

.�1/jPj .u/z
j ; P0.u/ � Id; P 001 .u/ D R.u/;

with Pj .u/ holomorphic on Dc , such that

bP�1A.u; z/bP C bP�1@zbP dz D
�ƒ.u/

z
CDo

1

� dz
z
;

bP�1�bP C bP�1 dbP D �dƒ.u/
z

:

(A.1�)

Proof. The existence on nb.uo/ of bP satisfying (A.1�) and with givenP 001 is standard.
Let us first prove that bP is unique on nb.uo/ and given by recursive formulas starting
from P 001 . For that purpose, we will only need to know that bP satisfies the first line of
(A.1�) on nb.uo/.

Setting A001 D Œƒ;P
00
1 �, the Pj ’s are solutions of the following recursive equations

(P0 D Id):
Œƒ; PjC1� D jPj C A

00
1Pj C ŒD

o
1; Pj �: (A.2)
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We have
Œƒ; PjC1� D Œƒ; P

00
jC1� D Œƒ; P

00
jC1�

00;

and similarly ŒDo
1; Pj � D ŒD

o
1; P

00
j �
00. We also have .A001Pj /

0 D .A001P
00
j /
0. Since ƒ

is regular on nb.uo/, P 00jC1 (j > 1) is uniquely determined by Pj and A001, hence P 001 ,
by the relation

Œƒ; P 00jC1� D jP
00
j C .A

00
1Pj /

00
C ŒDo

1; P
00
j �:

On the other hand, the diagonal part of (A.2) for j C 1 (j > 0) reads

P 0jC1 D �.A
00
1P

00
jC1/

0=.j C 1/; (A.3)

hence P 0jC1 is uniquely determined by P 00jC1 and P 001 (through A001), thus by Pj
and P 001 . For P 01 we obtain

P 01 D �.A
00
1R/

0: (A.4)

Let us now show that the Pj ’s extend to Dc . We will use that bP also satisfies
the second line of (A.1�) on nb.uo/. The system of this second line on Dc can be
written as

ŒbP ; dƒ� D �z�dbP C Œdƒ;R�bP �:
Denoting by Ei the matrix having .Ei /ab D 1 if a D b D i and 0 otherwise, so that
dƒ D

P
i Ei dui , these equations are written

ŒPjC1; Ei � D �@Pj =@ui � ŒEi ; R�Pj :

By (A.4), P 01 (hence P1) extends holomorphically to Dc . For j > 1, let us assume
that P1; : : : ; Pj extend holomorphically to Dc . Then so does ŒPjC1; Ei � for each i ,
therefore P 00jC1 also, hence P 0jC1 also, according to (A.3).

B. A reminder on partial Laplace transformation, partial
microlocalization and vanishing cycles

We recall here, following the method of [3, §1], how the formal stationary phase
formula with parameters can be expressed in terms of vanishing cycles, by means of
formal partial microlocalization. We take up the setting and notation of Section 2 with
X D Dc X�.

Let .M;r/ be any regular holonomic DDc Œ��h@�i-module. Recall that the par-
tial Laplace transform LM of M is the DDc Œ��h@� i-module which is equal to M as
a DDc -module and on which � acts as @� and @� as ��. It is holonomic with sin-
gularities along Dc � ¹� D 0º. From LM we recover M by inverse partial Laplace
transformation. Let us set G D ODc Œ�; �

�1�˝ODc Œ��h@�i
LM and z D ��1. Then G is
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a locally free ODc Œz; z
�1�-module of finite rank with connection r having singularity

along z D 0.
Let .bG;br/ denote the formalization ODc ..z//˝ODc Œz;z

�1� .G;r/. We now implic-
itly restrict M to X �C� and G to X �Cz . We will recall the proof of the following
“formal stationary phase formula with parameters”.

Proposition B.1. Assume that the characteristic variety of M is contained in the
union of the zero section of T �.X � C�/ and the conormal bundles of the smooth
hypersurfaces Hi D ¹vi D 0º (vi WD � � ui ). Then .bG;br/ decomposes as

nL
iD1

.Ri Œz
�1�;ri C d.ui=z//; (B.1�)

where .Ri ;ri / is a locally free OXJzK-module of finite rank with logarithmic connec-
tion ri , and the locally free OX -module Ri=zRi , equipped with the residual connec-
tion r res

i , is isomorphic to .�viM;r
res/.

Let V �M denote the Kashiwara–Malgrange filtration ofM alongH , that we con-
sider here as indexed by integers. Due to our assumption on the singularity ofM , each
V kM is a coherent OX Œ��-module. The connection r acts on each V kM with loga-
rithmic poles alongH and its residue has eigenvalues with real parts in Œk;kC 1/. The
vanishing cycle module �HM is by definition the quotient gr�1V M D V

�1M=V 0M .
It is a locally free OH -module equipped with the residual integrable connection that
we denote by r res. Since gr�1V M is supported onH D

`
i Hi , p�gr�1V M decomposes

as
L
i .�viM;r

res/. Since the projection p W X � C� ! X induces an isomorphism
Hi 'X , we can regard each .�viM;r

res/ as a locally free OX -module with integrable
connection. This explains why there can be an identification between .�viM;r

res/ and
.Ri=zRi ;r

res
i /.

Remark B.2. If M is the regular holonomic DX Œ��h@�i-module associated to j�L
by the Riemann–Hilbert correspondence, then, due to the compatibility between tak-
ing vanishing cycles and the Riemann–Hilbert functor (see e.g. [5, 9]), .�viM;r

res/

corresponds to �vi .j�L/, and Proposition B.1 provides the claim in the last part of
the proof of Theorem 3.7.

Proof of Proposition B.1. Let MŒ@�1
�
� be the regular holonomic DX Œ��h@�i-

module whose partial Laplace transform is exactly G (i.e., MŒ@�1
�
� is the inverse

Laplace transform of G) and let V �.MŒ@�1
�
�/ its Kashiwara–Malgrange filtration

along H . We claim that, for any k 2 Z, V k.MŒ@�1
�
�/ D @k

�
V �1.MŒ@�1

�
�/ and that

the natural morphism M ! MŒ@�1
�
� induces an isomorphism .�viM; r

res/
�
�!

.�vi .MŒ@�1
�
�/;r res/ for each i D 1; : : : ; n. Due to the uniqueness of the Kashiwara–

Malgrange filtration, we can work on an analytic neighborhood Ui of Hi in
X � C�, that the flat functor OUi ˝OX Œ�� .�/ preserves the Kashiwara–Malgrange
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filtration. Then the claim follows from the standard properties of this filtration
(see e.g. [5, 9]). As a consequence, we can assume that M D MŒ@�1

�
�, andL

i .�viM; r
res/ ' .gr�1V M; r/ has rank equal to the rank of M which is also

equal to the rank of G.
By [3, Prop. 1.18], .bG; br/ is identified with the partial microlocalized module

p�M
�, as defined in [3], and the microlocalized lattice p�.V �1M /� is a coherent

OXJzK-module which is the direct sum of the components p�.V �1MjUi /
� for i D

1; : : : ; n, since .V �1MjUi /
� is supported on Hi . By definition of the V -filtration,

V �1MjUi is acted on by @� � .� � ui /, @� C @ui and @uj for j ¤ i . This is seen by
changing the variables .ui ; uj¤i ; �/ 7! .vi D � � ui ; uj¤i ; �/.

As for the corresponding actions on the partial Laplace transform, the action of z
on p�M� is that induced by @�1

�
and the action of @z by �2@�. Then p�.V �1MjUi /

�

is acted on by z@z � ui=z, z�1 C @ui and @uj for j ¤ i , operators which also read

e�ui=z � z@z � e
ui=z; e�ui=z � @ui � e

ui=z; e�ui=z � @uj � e
ui=z; for j ¤ i :

In other words, if we twist the connection by e�ui=z , p�.V �1MjUi /
� becomes a cohe-

rent OXJzK-module with logarithmic connection .Ri ;ri / having poles along z D 0
only. As a consequence,Ri is OXJzK-locally free of finite rank. By the computation of
the rank aforementioned, we find

P
i rkRi D rkG, and [3, Prop. 1.20] applies, giving

the decomposition (B.1�).
Last, the quotient Ri=zRi with its residual connection r res

i is identified
with p�.V

�1MjUi =@
�1
�
V �1MjUi /

�. Because V �1MjUi =@
�1
�
V �1MjUi D �viM

is supported on Hi , microlocalization does not change it, and we thus identify
.Ri=zRi ;r

res
i / with .�viM;r

res/.
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