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Efficient Data-Driven Network Functions
Zhiyuan Yao , Yoann Desmouceaux , Juan-Antonio Cordero-Fuertes , Mark Townsley , Thomas Clausen

Abstract—Cloud environments require dynamic and adaptive
networking policies. It is preferred to use heuristics over ad-
vanced learning algorithms in Virtual Network Functions (VNFs)
in production becuase of high-performance constraints. This pa-
per proposes Aquarius to passively yet efficiently gather observa-
tions and enable the use of machine learning to collect, infer, and
supply accurate networking state information – without incurring
additional signalling and management overhead. This paper
illustrates the use of Aquarius with a traffic classifier, an auto-
scaling system, and a load balancer – and demonstrates the use
of three different machine learning paradigms – unsupervised,
supervised, and reinforcement learning, within Aquarius, for
inferring network state. Testbed evaluations show that Aquarius
increases network state visibility and brings notable performance
gains with low overhead.

Index Terms—Virtual Network Functions, high performance
network, data-driven, cloud, performance evaluation

I. INTRODUCTION

To increase network programmability, and balance the trade-
off between capital expenditures and quality of service (QoS),
Virtual Network Functions (VNFs) (e.g., firewalls, load bal-
ancers) replace or augment dedicated hardware devices and
play a significant role in large-scale data centers (DCs),
running on commodity computing platforms. To dynamically
monitor and configure VNFs, the routing and decision-making
process (control plane) is dissociated from the network packets
forwarding process (data plane).

Data-driven mechanisms based on machine learning (ML)
and reinforcement learning (RL) algorithms are applied in the
control plane to adaptively manage networking policies [1]–
[3]. For instance, auto-scaling systems and load balancers can
achieve improved QoS with reduced cost based on periodically
polled resource utilisation of distributed nodes [4]. However, it
is challenging to apply these algorithms in networking systems
in real-time, since they require fine-grained observations of
network and system states [5].

Reactive polling resource utilisation and system perfor-
mance incur additional control messages [4], [6]–[8] and
reduce system scalability. Fine-grained networking features are
extracted offline or in simulated environments for clustering
and RL algorithm development [5], [9]. Since the data plane
is constrained by low-latency and high-throughput require-
ments [10], heuristics–which may not be adaptive to dynamic
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environments–prevail over advanced learning alrogithms in
real-world high performance networks [7], [8], [11]–[14].

This paper proposes Aquarius, a fast and scalable data col-
lection and exploitation mechanism that bridges different re-
quirements for data planes (low-latency and high-throughput)
and control planes (making informed decisions). Extensive
performance and overhead evaluations of Aquarius in a re-
alistic testbed show that Aquarius enable:

• unsupervised learning + offline data analysis: creating
benchmark datasets to gain insight in different networking
problems with minimal data collection overhead;

• supervised learning + VNF management: embedding
ML techniques to achieve self-aware monitoring and self-
adaptive orchestration in an elastic compute cloud;

• reinforcement learning + online policy updates: en-
abling closed-loop control to optimise routing policies
and improve QoS, with no human intervention.

II. BACKGROUND

This section presents the challenges of effective feature
collection and data-driven VNFs in cloud DCs, and, with a
comparison of related work, motivates the design of Aquarius.

A. Challenges

There is a rising trend of embedding intelligence and
applying ML techniques in cloud and distributed systems to
dynamically monitor and adaptively configure system parame-
ters and characteristics (e.g., server configurations, forwarding
rules) [5], [8], [23], [27]. However, this raises a number of
challenges and trade-offs:

Online and Reliable Feature Collection: Few reliable
datasets are available and considered as benchmark for ML
applications in VNFs and networking systems (e.g., traffic
analysis and anomaly detection) [28]–[31]. Though log-based
feature collection provides abundant information for various
types of applications, it incurs high overhead under heavy
traffic, which leads to inaccurate and unreliable measurements
and makes it hard to bring ML algorithms “online” (making
inference in real time) [27].

Scalability vs. Visibility: Active probing is another way
of feature collection for VNFs to monitor the system state
and make informed decisions [6], [15], [16], [24]. However,
this incurs additional communication overhead and requires
modifications on each node to maintain management and
communication channels.

B. Requirements

Based on the challenges, this paper summarizes the follow-
ing requirements to enable data-driven VNFs in the cloud:
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TABLE I: Comparison of data-driven VNF systems.

Property/Work [15], [16] [17]–[19] [20] [4], [21] [1], [5]–[7] [2], [22] [23] [24] [25] [26] Aquarius

No Control Message 7 7 7 7 7 3 3 7 3 3 3
Distributed 7 7 7 7 3 3 3 3 3 3 3
Commodity Device 3 7 3 3 3 3 3 3 7 7 3
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Fig. 1: Aquarius architecture overview.

Universality: the feature collection mechanism should
cover a wide range of features and be application-agnostic;

Reliability: the collected features should be representative,
and have high usability and granularity;

Scalability: the feature collection and exploitation mecha-
nism should incur minimal performance overhead and support
large-scale and dynamically changing network topology;

Deployability: the mechanism should be plug-and-play and
require no additional installation or configuration.

C. Related Work

Various mechanisms (summarised in Table I) dynamically
configure and manage VNFs, making data-driven decisions.

ML allows inferring system states from networking features,
for, e.g., intrusion detection systems [23], traffic classifi-
cation [32], [33], and task scheduling [1], [2]. To obtain
networking features, these ML applications operate at the
Application Layer. However, they are not application-agnostic
and do not generalise to different use cases. Aquarius collects
a wide range of features at the Transport Layer and enables
generic data-driven network functions with minimal overhead.

Management and Orchestration (MANO) frameworks use
centralised controllers to monitor and update VNF configura-
tions [15], [16]. Software-Defined Network (SDN) provides
programmable APIs to gather per-flow or application-level
features in a centralised way, to adaptively update configura-
tions, using network equipments that supports the OpenFlow
protocol [19]. Smart Network Interface Cards (sNICs) [17]
and Nitro [18] offload VNFs from host processors to dedicated
hardware devices to boost performance and reduce operational
cost with centralised management. Aquarius passively extracts
networking features from the data plane and let VNFs make
decisions in a distributed way.

Distributed VNFs also benefit from periodically polled
network states (e.g., CPU and memory usage), to ensure
service availability, improve QoS [6], or classify networking

…

#1

StateHash Timeout

CONN

#0 SYN

NULL#2

Flow Table
Feature 

Collector

Bucket

EncapsulateRX TX

H
it

Miss

New Connection Established Connection Hash Collision

Fig. 2: Flow table data structure and workflow.

traffic [24]. Some network functions gain more visibility via
in-network telemetry (INT) [22]. However, these methods
require to either deploy agents, or to modify protocol stack
on network nodes, which reduce the deployability. Aquarius
employs the plug-and-play design and requires no coordinated
modification in the network.

Learning algorithms incurs additional inference and pro-
cessing latencies. To reduce latency, dedicated hardware,
e.g., CGRA [26], and NetFPGA [25], helps accelerate data
processing for in-network ML applications. Yet they lack
flexibility when developing ML algorithms for different use
cases in elastic networking systems. MVFST-RL [5] proposes–
in simulators–to asynchronously update networking configu-
rations from learning algorithms to reduce additional latency
in the data plane. Aquarius can incorperate intelligence in a
variety of VNFs, requiring no dedicated device, yet it is ready
to be deployed in real-world systems.

III. DESIGN

To meet the 4 requirements summarised in Section II-B,
Aquarius is designed as a 3-layer architecture (Fig. 1). Aquar-
ius embeds a feature collector at the Transport Layer in
the data plane, to efficiently and passively extracts a wide
range of features with high granularity and low performance
overhead. It makes the features available via shared memory,
for applications of ML algorithms on various use cases. This
paper illustrates the design using TCP traffic, which prevails
in the cloud of Content Delivery Networks (CDNs) [34].

A. Parser Layer

To balance the tradeoff between scalability and visibility,
networking features which indicate system states can be pas-
sively collected from the data plane to avoid active probing
and additional installations and configurations.

1) Stateful Feature Collection: Network traffic consists of
flows that traverse different nodes (e.g., edge routers, load
balancers, servers) in the system, whose states can be traced
and retrieved from the flows–along with traffic characteristics.
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Fig. 3: A state machine of feature collector for TCP traffic.

Rationale: Stateless feature collection mechanisms (e.g.,
sketches [9]) do not track the state of network flows, yet they
can gather counters as ordinal features for ML algorithms
using hashing functions, with little performance overhead.
However, ordinal features contains less information than quan-
titative features–time-related features (e.g., round-trip time,
inter-arrival time, flow duration) and throughput information
(e.g., congestion window size, flow size), which are not
captured by stateless mechanisms.

Design: Aquarius tracks flow states in bucket entries with
a stateful table (Fig. 2), which can be configured to collect a
wide range of features using a state machine depicted in Fig. 3.
In the flow table, Aquarius stores the information of each flow
into a bucket entry indexed by hash(fid)%M , where fid is
the flow ID (e.g., the 5-tuple of TCP flows) and M is the
flow table size. An entry in the flow table can be in one of
three states–SYN, CONN and NULL (Fig. 3). The flow state
transitions trigger the networking feature updates, which are
described in the next subsection. In case where the bucket
entry is not available when a new flow arrives, the flow is
considered as a “miss” and is excluded by the feature collector.

2) Network Features: Various features can gainfully benefit
decision making process for different use cases.

Rationale: As a generic feature collection mechanism,
Aquarius should be able to collect as much information as
possible with minimal overhead (e.g., memory space con-
sumption). Other than ordinal and quantitative features, to
capture the system dynamic, it is also important to trace the
timestamps of different events, for sequential ML algorithms.

Design: With the flow table, Aquarius allows flexible con-
figuration of attributes, to gather the most significant fea-
tures and optimise the memory usage overhead for different
applications. Quantitative features are collected as samples,
using reservoir sampling (Algorithm 1). Since networking
environments are dynamic, it is important to capture not only
the features, but also the sequential information of the system.
Reservoir sampling gathers a representative group of samples
in fix-sized buffer from a stream. It captures both the sampling
timestamps and exponentially-distributed numbers of samples
over a time window, which help analyse patterns sequentially.

B. Partitioner Layer

Cloud services have different characteristics and they are
identified by virtual IPs (VIPs) (Fig. 4), corresponding to

Algorithm 1 Reservoir sampling with no rejection
1: k ← reservoir buffer size
2: buf ← [(0, 0), . . . , (0, 0)] . Size of k
3: for each observed sample v arriving at t do
4: randomId← rand()
5: idx← randomId%N . randomly select one index
6: buf [idx]← (t, v) . register sample in buffer

Service 1 [VIP0]

Client VNF

Service 2 [VIP1]

Edge Router
DIP0 DIP1 DIP2 DIP3 DIP4

Fig. 4: Cloud service topology.

clusters of provisioned resources–e.g., servers, identified by
unique direct IPs (DIPs). In production, cloud DCs are subject
to high traffic rates and their environments and topologies
change dynamically.

Rationale: Different cloud services should be separated to
(i) avoid multimodal distributions in collected features and to
(ii) allow dynamically adding or removing services. Features
should be made available so that both spatial and sequential
information can be easily partitioned and accessed. Even with
heavy traffic and dynamically changing network topology,
features should be reliable and easy to access with low latency.

Design: Aquarius organises observations of each VIP in
independent POSIX shared memory (shm) files, to provide
scalable and dynamic service management. In each shm file,
collected features are further partitioned by egress equipments
so that spatial information can be distinguished. Fig. 5 exem-
plifies the shm layout and data flow.

1) Bit-Index and Masking: The first byte in the shm file of
a VIP defines the max number of egress equipments N (64
in Fig. 5). The N -bit bit-index header helps quickly identify
activated egress and its corresponding memory space–the i-
th bit is set to 1 if the i-th egress is active and 0 otherwise.
Adding an activated egress to the system requires only to set
the corresponding bit to 1 after initialising its memory space.
It suffices to simply flip the bit from 1 to 0 to deactivate an
egress node.

2) Independent Egress Memory Space: Each egress node
has its own independent memory space, storing counters, reser-
voir samples, and data plane policies (actions). As depicted
in Fig. 5, on receipt of the first ACK from the client to a
specific egress node i, VNF increments the number of flows
in the counters cache of node i. Quatitative features (e.g., flow
duration t3 − t0 gathered at t3 in Fig. 5) can be stored in the
reservoir buffer of node i using Alg. 1. Obtained features for
all active egress nodes can then be aggregated and processed
to make further inferences or data-driven decisions, which can
be written back to the memory space of each egress node.

3) Multi-Buffering and Asynchronous I/O: Counters and
actions are exchanged between cache and buffer using m-level
multi-buffering with incremental sequence ID. When copying
data, the sequence ID is set to 0 to avoid I/O conflicts. ML
algorithms can pull the latest observations and push the latest
data-driven decisions using multi-buffering with no disruption
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Operation / Complexity Computation Memory
Add / Remove VIP O(1) O(kN +mN)
Add egress node O(1) O(k +m)
Remove egress node O(1) O(1)
Register reservoir sample
Update counter (cache) O(1) O(1)

Update counters / actions
(multi-buffering) O(1) O(N)

Get the latest
observation

1 node O(m)
O(k +m)

All nodes O(kN +mN)
Update action in
the data plane

1 node O(m)
O(1)

All nodes O(N)

TABLE II: Computation and memory complexity of different
operations, where k is the size of reservoir buffer, N is the
number of egress nodes, and m is the level of multi-buffering.

in the data plane. This design offers an asynchronous 2-way
communication interface to exchange fine-grained features and
data-driven decisions with low latency.

Both computation and memory space complexity is pre-
sented in Table II. The whole dataflow is asynchronous and
avoid stalling in the data exchange process in both the data
plane and the control plane.

C. Implementation

This paper implements Aquarius as a plugin to the Vector
Packet Processor (VPP) [10]. The flow table size is configured
as M = 65536. Each sampled network feature is a 2-tuple of a
32-bit float timestamp and a 32-bit value. The reservoir buffer
size is k = 128 for each feature per egress equipment. The
shm file of each VIP consists of 6KB 3-level multi-buffering
counters and 832KB reservoir sampling buffers. In this paper,
Aquarius is implemented to be able to collect 8 ordinal features
(counters) and 65 quantitative features in total.

IV. APPLICATIONS

This section shows 3 applications of Aquarius in cloud DCs
in the context of 3 key VNFs–traffic classification, resource
prediction and auto-scaling, and Layer-4 load balancing, along
with 3 different ML paradigms.
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Figure 10: Notations, categories, variable dependencies, and
space complexity of all network features.

a packet is received, statistics will be updated and stored de-
pending on their types, as discussed in section 3.1. To avoid
I/O conflicts, sampled features are collected using reservoir
sampling over the latest time window and counters are col-
lected atomically and made available to the data processing
agent using multi-buffering. The bit-index binary header is
memcpy-ed along with the counters since it helps efficiently
identify active egress equipments.

Independent data processing agents, which conduct offline
data analysis and online policy updates, pull the latest observa-
tions from AC buffer and reservoir buffer with no disruption in
the data plane. Using the same multi-buffering scheme, action
buffer and AR allow to modify online policies by updating
policies, such as forwarding rules, load balancing weights,
and sampling frequencies for feature collection, which can be
defined specific to different applications and therefore are not
detailed. This shm-based mechanism offers an asynchronous
2-way data collection interface, which allows to exchange
fine-grained network observations extracted from the data
plane and data-driven decisions made by the control plane
with low latency.

3.2.2 Implementation

Aquarius is implemented in this paper as a plugin in Vec-
tor Packet Processing (VPP) [63], a high-performance pro-
grammable packet-processing stack for commodity CPUs. All
features implemented in this paper are listed in Figure 10, in-
cluding their notations, categories, variable dependencies and
memory complexity7. Additional attributes in the flow table

7All features depend on the state and timeout attributes in the flow ta-
ble, thus these dependencies are omitted for clarity. More attributes can be
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Figure 11: Network topology for applying Aquarius on traffic
classification.

helps gather more features, but it requires additional memory
proportional to the size of the flow tables M. Similarly, the
space complexity for adding registers, counters, or reservoir
sampling buffers are shown in Figure 10, as a reference to the
balance between the visibility on the data plane and memory
usage overhead based on specific applications.

The value of #egress is set to N = 64 since it suffices for
the typical configuration in production (48-64 equipments
per VIP) [20] and the corresponding 64-bit bit-index header
fits in the cache line for modern computer processors. The
flow table size for tracking connection states is configured as
M = 65536. To reduce hash collision probability, each bucket
in the flow table is configured with 4 entries8. The 3-buffer
mechanism9 is used to offer atomic data collection and policy
updates between the data plane and the control plane. The
buffers draw the latest counters from AC every 200ms to bal-
ance the trade-off between high-granular observations and
performance overhead as in [3]. Each sampled network fea-
ture is a 64-bit 2-tuple of a 32-bit float as timestamp and a
32-bit value, so that the sample can be stored within a single
cache line. The size of the reservoir buffer is set to k = 128
for each feature of an egress equipment. All observed sam-
ples are gathered with probability p = 1 to further reduce
performance overhead. In these conditions, to collect all the
features listed in Figure 10, the flow table occupies 10.24MB
of memory space and the registers occupy 750B. Within each
VIP’s shm file, the counters occupy 6KB considering the 3-
level multi-buffering mechanism, and the reservoir sampling
buffers occupy 832KB of memory space.

4 Application

This section demonstrates three application examples of
Aquarius in DC networks, i.e., traffic classification, autoscal-
ing, and load balancing.

potentially added to obtain more features, e.g., , to track packet TTL.
8When a new connection is mapped into a bucket, an available entry can

be found using Timeout attribute with O(1) computational complexity.
9The level of multi-buffering can be modified by changing rows of buffers.
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Fig. 6: Network topology for traffic classification.
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Fig. 7: PCA analysis and 2D visualisation.

A. Traffic Classification

As one of the key VNFs in the cloud, traffic classification
allows distinguishing different types of traffic [23]–[25], to
allocate appropriate resources and achieve service level agree-
ments. It also helps detect anomalies and security threats to
prevent potential damages or losses [23].

1) Task Description and Testbed Configuration: This sec-
tion shows the capability of Aquarius to collect reliable
features and conduct traffic classification with unsupervised
ML algorithms. A testbed is implemented using Kernel-based
Virtual Machine (KVM), where a virtual router embedded
with Aquarius forwards different types of traffic to 4 VIPs
(Fig. 6). In VIP0, a simple PHP for-loop script on each
server takes requests for given number of iterations and replies
with proportional sizes. The flow duration and size follow
an exponential distribution as in [34]. In VIP1, static files
of different sizes are served on each server1 as in [6], to
represent IO-bound applications. In VIP2 and VIP3, each
application server is an independent replica of an Apache
HTTP server that serves Wikipedia databases. Two samples
of 600s duration are extracted and replayed from a real-world
24-hour replay [35]. In VIP3, an additional 5000 queries per
second SYN flooding traffic is applied to simulate a DoS
attack.

2) Principal Component Analysis (PCA) and Clustering:
PCA is conducted to visualise the 4 clusters for the 4 different
types of network traces in a 2D projection (Fig. 7a). Among
the 4 traces, PHP for-loop is pure CPU-bound and PHP file
is pure IO-bound. The Wiki trace consists of both queries for
SQL database (CPU-bound) and static files (IO-bound), thus
its cluster is located between the former 2 traces. The Wiki

1The sizes of files are 100KB, 200KB, 500KB, 750KB, 1MB, 2MB, and
5MB. 50 files are generated for each size.
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Delay (µs) 0.361 0.629 1.003 0.498
Difference 1.000× 1.744× 2.781× 1.381×
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Delay (µs) 0.222 0.609 1.001 0.340
Difference 1.000× 2.748× 4.516× 1.536×

CPU Usage (%) 26.687 40.858 49.716 31.480
CPU Difference 1.000× 1.376× 1.675× 1.060×
RAM Usage (GiB) 2.652 2.719 2.744 3.305
RAM Difference 1.000× 1.025× 1.034× 1.246×

TABLE III: Per-packet processing overhead (on 2.6GHz CPU)
and system resource consumptions (avg.) comparison.

trace under DoS attack, however, can be clearly noticed as
an independent cluster. More features give multi-dimensional
observations, yet at the cost of higher computation and mem-
ory overhead. PCA helps reduce feature dimensionality from
73 to 25, while preserving data representation. As depicted in
Fig. 7b, using 25 features still gives clear clustering results,
yet it reduces data processing time from 30.90ms to 5.56ms.

3) Unsupervised Learning: As depicted in Fig. 8, when ap-
plying unsupervised learning algorithms, K-Means and Gaus-
sian Misture are able to generate clusters similar to the ground
truth, while they require the number of expected clusters (4)
as input. Gaussian Mixture model has the shortest fit time and
can be an interesting candidate for online traffic classification.
In case where the number of clusters is not known a priori,
DBSCAN [36] can distinguish the potential security threat,
based only on a predefined distance of 0.1.

4) Overhead Analysis: To study the feature collection
overhead, Aquarius is compared with a vanilla router which
collects 0 feature and a router logging packet information in
the memory using pcap. Under 500 queries/s PHP for-loop
traffic towards a 176-CPU server cluster, when collecting 11
features or collecting all 73 features, Aquarius incurs different
overhead (Table III and Fig. 9a). On a 2.6GHz CPU, the
additional per-packet processing delays are trivial comparing
with the typical round trip time (higher than 200µs) between
network equipments. The mean CPU usage of Aquarius is
1.376× and 1.675× higher than the vanilla router when col-
lecting 11 and 73 features respectively (Fig. 9b). As expected,
log-based feature collection mechanism does not scale in terms
of memory consumption2. As depicted in Fig. 9c, the system
performance of Aquarius shows advantages over RX interface

2The results can be machine-dependent. This paper aims at showing the
order of magnitudes, rather than providing a precise quantification.

300 500 1000 2000 40000.0

0.5

1.0

CD
F

(F
irs

t P
ac

ke
t)

0 Feature 11 Features 73 features PCAP Log

300 500 1000 2000 4000

CD
F

(D
at

a 
Pa

ck
et

)

Number of CPU Cycles Per Packet

(a) Per-packet processing latency comparison.

20 30 40 50 60
CPU Usage (%)

0.0

0.5

1.0

CD
F

0 Feature 11 Features 73 features PCAP Log

2.75 3.00 3.25 3.50 3.75
Used RAM (GiB)

CD
F

(b) System resource consumption.

DPDK
500

Aquarius
500

DPDK
1000

Aquarius
1000

DPDK
1500

Aquarius
1500

DPDK
2000

Aquarius
2000

Node | Queries/s

100

102

104

Co
un

ts
/P

kt
s

branch-misses
bus-cycles

ref-cpu-cycles
page-faults

cache-misses
branches

instructions
cache-references

(c) System performance metric comparison
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Fig. 10: Network topology for autoscaling system.

driven by DPDK on various metrics when using different
traffic rates.

Take-Away: Aquarius gathers fine-grained and reliable
datasets, which allow feature engineering and conducting in-
depth data analysis. Its fast and configurable design help
achieve the right balance between visibility and performance.

B. Resource Prediction and Auto-Scaling

To minimize operational cost while guaranteeing QoS, cloud
operators [11]) need to elastically provision server capacities.

1) Task Description and Testbed Configuration: This sec-
tion shows the capability of Aquarius as a platform to adapt
supervised ML algorithms to infer resource utilisation with no
actively signaling. 600s samples extracted from the real-world
24-hour Wikipedia trace are replayed on the network topology
depicted in Fig. 10. Workloads are randomly distributed among
running servers (2-CPU each) by way of ECMP. A learning
task can be framed as predicting server load states (CPU
usage) on each server with the same set of features as in
Sec. IV-A. The predicted utilisation can be then used to plan
and re-scale server cluster to guarantee QoS with reduced
operational cost. This task consists of 2 steps–offline model
training and online prediction.



Algorithm 2 Auto-scaling Rule
1: n servers min, n servers max← 8, 14 . Server number range
2: S← Initial set of running servers
3: cpu lo, cpu hi← 0.7, 0.8 . Desired CPU usage range
4: for each time step do . ∆t = 250ms
5: δ ← 0 . Initialize server state counter
6: y(S)← CPU usage prediction of 16 steps ahead
7: threshold← d |S|

3
e . Threshold that triggers scaling actions

8: for s ∈ S do
9: if y(s) < cpu lo then

10: δ + + . Increment δ if s is under-loaded
11: else if y(s) > cpu hi then
12: δ −− . Decrement δ if s is over-loaded
13: if δ > threshold and |S| > n servers min then
14: S← downscale(S)
15: skip 8 time steps . Cool-down period
16: else if δ < −threshold and |S| < n servers max then
17: S← upscale(S)
18: skip 8 time steps . Cool-down period
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Fig. 11: Comparison of online auto-scaling performance using
different algorithms. The (discrete) numbers of running servers
are plotted for each run in dashed lines, while CPU usage is
summarised as avg. ± stddev across 30 runs.

2) Offline Model Training: To predict the resource utilisa-
tion of server clusters using networking features, 12 widely
used ML algorithms are selected to cover different families of
ML algorithms, e.g., sequential and non-sequential, parametric
and non-parametric, linear and non-linear [8]. The first 23-
hour samples are applied on 10 servers to gather datasets for
offline model training. The distribution of the ground truth
CPU usages in the training set covers the other two datasets so
that the prediction task is feasible, yet the ML models have not
seen the datasets for evaluations. Based on the offline training
performance evaluation, 1 non-sequential model (linear regres-
sion) and 1 sequential model (WaveNet [37]) are selected to
be applied for online auto-scaling3.

3) Online Auto-Scaling: To test the online performance of
offline-trained ML models, a 300s Wikipedia replay trace sam-
ple of the last hour (unseen by the ML models) is synthesized

3The whole comparison among all 12 models and additional experimental
results will be included supplementary details.

10 3 10 2 10 1 100

Page Load Time (s)
0.00

0.25

0.50

0.75

1.00

CD
F

Wavenet
Linear Regression

Active Probing
Over Provision (Oracle)

(a) QoS.

0 1000 2000 3000
Server-Second

Wavenet

Linear
Regression

Active
Probing

Over Provision

0 10 20 30
Number of Scaling Actions

(b) Operational cost and complexity.

Fig. 12: Trade-off between QoS and cost using different
autoscaling mechanisms.

0 100 200 300 400 500 600 700 800
Latency ( s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

NetFPGA
Aquarius
Container (local)
Container (remote)
VM (local)
VM (remote)

Fig. 13: Feature collection latency comparison between Aquar-
ius and active probing techniques.

to have scheduled changing traffic rates every 60s. Based on
the CPU usage predictions of running servers y(S), a simple
heuristic (Alg. 2), which approximate the threshold-based
autoscaling policy as in [11], is proposed to keep the CPU
usage of 2

3 servers within the desired range (70 ∼ 80%). Using
the same counter ∆ for over- and under-loaded servers reduces
the variance induced by imbalanced workload distributions.
As a comparison to [11], a threshold-based active probing
mechanism is implemented, whose predicted CPU usage for
running servers y(S) come from periodic polling. An “oracle”
benchmark is implemented to over-provision the number of
servers proportional to the scheduled traffic rates.

4) Results: As depicted in Fig. 11, active probing keeps
the average CPU usage within the desired range, however, it
requires frequent scaling events and leads to oscillating CPU
usage with high variance. Linear regression is simple yet not
robust when applied for an online auto-scaling system. Its
under-estimated server load states lead to over-loaded servers.
WaveNet takes sequential features as input and is more robust
when applied online. It keeps the average CPU usage close to
the desired range with less oscillations.

As depicted in Fig. 12, WaveNet is able to provide bet-
ter QoS than active probing–78.37ms less page load time
(26.04%) at 90th percentile and 35.70ms less (30.45%)
on average–with 3.99% additional server-second cost, and
42.44% less scaling events. When over-provisioning the server
cluster, the page load time is lower than using WaveNet by
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Fig. 14: Wikipedia trace replayed using different LBs.

67.13ms at 90th percentile and 28.55ms average, though it
requires 11.86% more server-second operational cost than
WaveNet.

Aquarius parses features stored in the local shared memory
with no control messages, achieving more than 94.18µs less
median latency than typical VM- and container-based probing
mechanisms (Fig. 13).

Take-Away: Aquarius enables agile development and on-
line deployment of learning algorithms to improve network
performance. It makes features quickly accessible while saving
management bandwidth for data transmission.

C. Traffic Optimisation and Load Balancing
As a key component in cloud DCs, Layer-4 load balancers

(LBs) distribute workloads across servers to provide scalable
services. Yet, in-production LBs requires human intervention
which can lead to server weights mis-configurations.

1) Task Description and Testbed Configuration: This sec-
tion shows that Aquarius can apply RL algorithms to self-
configure server weights and optimise load balancing per-
formance with no-prior knowledge of the system. The con-
figuration of VIP2 (Fig. 6) is applied–replaying the Wiki
trace and load balancing on 2 groups of servers of different
processing capacities. The task is to extract and infer server
processing capacity information from networking features and
make informed load balancing decisions. 3 benchmark LB
algorithms are implemented–(i) ECMP [13], (ii) statically
configured WCMP [38], and (iii) active WCMP [6] based on
polled server job queue lengths. Both ECMP and WCMP are
based on the kernel-bypassing implementation of Maglev [12]
in VPP, which is the state-of-the-art LB.

2) RL Algorithm: This paper implements and evaluate
RLB [3]–implemented and evaluated in simulators–in a re-
alistic testbed using Aquarius. With Aquarius, RLB (i) counts
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Fig. 15: Query distribution (number of busy Apache threads)
on 2 groups of application servers.
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Fig. 16: Overhead comparisons.

ongoing flows l̃i on servers and (ii) asynchronously updates
(every 250ms) server weights w̃i derived from flow durations
τi sampled in reservoir buffers. On receipt of new requests,
RLB assigns servers based on arg mini

l̃i+1
w̃i

, which priori-
tizes servers with higher processing speed and shorter queue
lengths. Different from [3], which uses actively probed ground
truth information, this paper derives the reward from locally
observed features (FCT) collected by Aquarius, which requires
no active signalling between LBs and servers. RLB is trained
using the first hour of Wiki trace sample for 20 episodes.
The trained RLB model is then tested on unseen traffic and
compared with other LB algorithms.

3) Results: As depicted in Fig. 14a, during off-peak hours,
servers are under-utilised and all algorithms show similar
performances in terms of QoS. As traffic rates grow, RLB
achieves lower FCT for both static pages and Wikipedia pages
when compared with other LB algorithms (Fig. 14b), since
RLB is able to dynamically adjust server weights. As depicted
in Fig. 14b, for Wikipedia pages the 90-th percentile FCT
of RLB (0.292s) is 18.15x shorter than Maglev ECMP and
8.56x shorter than Maglev WCMP, and the 95-th percentile
FCT of RLB (0.552s) is 17.82x shorter than Maglev ECMP
and 7.82x shorter than Maglev WCMP. For static pages, the
90-th percentile FCT of RLB (0.013s) is 351.15x shorter
than ECMP and 124.43x shorter than WCMP, and the 95-
th percentile FCT of RLB (0.088s) is 109.09x shorter than
ECMP and 37.50x shorter than WCMP. RLB is trained to
learn server processing speed differences and assigns higher
weights, thus more queries, to more powerful servers (Fig. 15).
When using RLB, 4-CPU servers handle respectively 1.258×
and 1.523× more tasks than 2-CPU servers under 676.92 and
372.01 queries/s traffic.



4) Overhead Analysis: As depicted in Fig. 16a, throughout
all test runs, RLB consume on average 692.89 more CPU
cycles (0.26µs on 2.6GHz CPU) than ECMP, as it computes
and compares the server scores when making load balancing
decisions. Fig. 16b depicts CPU and memory consumptions
of all LBs. On average, RLB incurs 0.22× additional CPU
usage, and 45.99MiB memory usage, and achieves 87.38%
throughput of ECMP.

Take-Away: Aquarius enables closed-loop control (RL) to
dynamically adapt to networking systems and optimise perfor-
mance. It empowers real-world deployment and evaluation of
learning algorithms developed in simulated environments.

V. CONCLUSION

Networking features and system state information help
VNFs make informed decisions, and intelligently manage and
update networking policies in cloud DCs. Actively collect-
ing features and system state information entails substantial
control signalling and management overhead, in particular in
large-scale DC networks. This paper has proposed Aquarius, a
framework that collects, infers and supplies accurate network-
ing state information with little additional processing latency,
in a scalable buffer layout. The paper has illustrated significant
performance gains of using of Aquarius for various ML-based
VNFs and evaluated experimentally the impact of Aquarius in
the system performance.
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