
HAL Id: hal-03761765
https://polytechnique.hal.science/hal-03761765

Submitted on 26 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mechanically-grown morphogenesis of Voronoi-type
materials: Computer design, 3D-printing and

experiments
Z. Hooshmand-Ahoor, M.G. Tarantino, K. Danas

To cite this version:
Z. Hooshmand-Ahoor, M.G. Tarantino, K. Danas. Mechanically-grown morphogenesis of Voronoi-type
materials: Computer design, 3D-printing and experiments. Mechanics of Materials, 2022, pp.104432.
�10.1016/j.mechmat.2022.104432�. �hal-03761765�

https://polytechnique.hal.science/hal-03761765
https://hal.archives-ouvertes.fr


Mechanically-grown morphogenesis of Voronoi-type materials: computer
design, 3D-printing and experiments

Z. Hooshmand-Ahoora, M. G. Tarantinob, K. Danasa,∗

aLMS, C.N.R.S., École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
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Abstract

The present work introduces a novel and versatile computer-design and experimental strategy to

obtain random Voronoi-type geometries, called M-Voronoi (from mechanically grown), with smooth

void shapes and variable intervoid ligament sizes that can reach very low relative densities. This is

achieved via a numerical, large strain, nonlinear elastic, void growth mechanical process. Originally

small circular voids embedded in a cell of arbitrary shape (triangle, circle, rectangle, trapezoid)

grow when subjected to displacement (Dirichlet) boundary conditions. The deformed voids evolve

into smooth Voronoi-type geometrical shapes leading to macroscopic isotropy or anisotropy depend-

ing on the prescribed boundary conditions. The void growth process is a direct consequence of

mass conservation and the incompressibility of the surrounding nonlinear elastic matrix phase and

the final achieved relative density may be analytically estimated in terms of the determinant of the

applied deformation gradient. In order to study the mechanical properties of the M-Voronoi mate-

rials, we focus on two-dimensional porous polymer square representative isotropic and anisotropic

geometries in terms of void size and realization, which are 3D-printed and experimentally tested

under uniaxial compression. For comparison, we also test random polydisperse porous materials

with circular voids, standard eroded Voronoi geometries and hexagonal honeycombs. The first two

are also isotropic while the latter are only isotropic in the linear elastic regime. We show that the

randomness of the M-Voronoi geometry and their non-uniform intervoid ligament size leads to en-

hanced mechanical properties at large compressive strains with no apparent peak-stress and strong

hardening well before densification. By comparing them with the hexagonal geometries, which tend

to exhibit a peak-stress and a plateau-type response, we show that the hardening response of the

M-Voronoi is mainly due to their geometrical characteristics and less due to the polymer hardening

response. Anisotropic M-Voronoi are also produced and tested indicating that anisotropy only
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enhances the initial stiffness along the longitudinal direction but instead leads to lower buckling

loads and hardening rates than the corresponding isotropic M-Voronoi in the nonlinear regime.

Key words: Voronoi materials, Porous materials, Architected materials, Computational

morphogenesis, Void growth, 3D-printing

1. Introduction

Numerous living organisms, from plants to animals, possess a distinctive internal architecture

that evolves during ontogeny. Morphological evolution in natural systems underpins a variety of

life functions, including growth, locomotion and predation. For example, plants transport water

and other minerals through an intricate network of hollow channels, the aerenchyma, whose size

and shape change during plant growth (Corson et al., 2009; Zhao et al., 2018). Likewise, skeletal

muscles enable us to run and walk via the contraction of multiply innervated (randomly distributed)

fibers whose surrounding connective tissue, the extracellular matrix, thickens during motoneuron

lesions (Tidball and Wehling-Henricks, 2004; Spyrou et al., 2019). These are only a few enticing

examples that show the functional diversity enabled in living organisms by morphogenesis.

Unlike nature where morphogenesis occurs naturally via multiple actuation mechanisms (chem-

ical, mechanical, electrical, thermal, etc.), synthetic systems require robust computational algo-

rithms or man-made processing methods to evolve. Over the past two decades, significant efforts

have been made to harness computational morphogenesis in synthetic structures. Examples are

numerous and can be found in many areas of research including materials science (Portela et al.,

2020; Tarantino et al., 2019; Zerhouni et al., 2019; Kumar et al., 2020), mechanobiology (Spyrou

et al., 2019; Zhao et al., 2018; Ma et al., 2021), design (Mart́ınez et al., 2016, 2018; Aage et al.,

2017; Baandrup et al., 2020) and architecture (Menges, 2012; Roudavski, 2009). In particular, in

the context of materials science and mechanics, today one is able to mimic complex heterogeneous

structures that are reminiscent of bone (Portela et al., 2020; Kumar et al., 2020; Mart́ınez et al.,

2016, 2018; Aage et al., 2017; Wu et al., 2017), skeletal muscles (Spyrou et al., 2019), plants (Faisal

et al., 2012; Zhao et al., 2018) and even particle-reinforced polymers (Segurado and Llorca, 2002;
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Lopez-Pamies et al., 2013) and geomaterials (Roberts and Teubner, 1995; Roberts and Garboczi,

2001). Traditionally, computational morphogenesis has relied on voxel-based algorithms that en-

able generating complex distributions of Voronoi polyhedra. The latter typically consist of beam

elements with uniform thickness and variable length, which are arranged in a disordered manner to

form either a 2D (Spyrou et al., 2019; Tekoglu et al., 2011) or a 3D structure (Mart́ınez et al., 2016,

2018; Aage et al., 2017; Baandrup et al., 2020). In the context of additive manufacturing, Voronoi

polyhedra generated by tessellation enable the design of multi-phase composite structures and can

feature very low solid densities, if the inclusion phase is taken as void. On the other hand, tessel-

lated Voronoi cellular materials contain points of high stress concentration thereby proving highly

sensitive to geometrical and fabrication defects like many truss- and shell-based lattices (Ashby

and Gibson, 1997; Onck et al., 2001; Papka and Kyriakides, 1994, 1998; Deshpande et al., 2001;

Symons and Fleck, 2008; O’Masta et al., 2017; Liu et al., 2017; Bonatti and Mohr, 2019). They

may thus be further optimized especially for use in applications where large nonlinear deformations,

buckling loads and fractures are involved (e.g. energy , bending stiffness). To overcome this issue,

in very recent years novel periodic plate-based cellular materials (see for instance Tancogne-Dejean

et al. (2018); Wang and Sigmund (2021)) as well as non-periodic porous architectures have been

designed, optimized and studied experimentally. Notable examples include double gyroid nanolat-

tices (Crossland et al., 2008; Prusty et al., 2020) and microlattices (Maskery et al., 2017) very

recently extended to stochastic geometries (Al-Ketan et al., 2021), as well as spinoidal Gaussian

architectures using both threshold and phase-field methods (Teubner, 1991; Roberts and Teubner,

1995; Roberts and Garboczi, 2001; Hsieh et al., 2019; Khristenko et al., 2020) and machine-learning

techniques (Kumar et al., 2020). Another random geometry is that of polydisperse (i.e. multiple

size) particulate microstructures designed via a random adsorption algorithm (RSA) combined

with computational homogenization (Torquato, 2002; Segurado and Llorca, 2002; Lopez-Pamies

et al., 2013; Anoukou et al., 2018; Tarantino et al., 2019; Zerhouni et al., 2019). Of course a large

class of low-density random porous solids involves foams (see for instance Deshpande and Fleck

(2000) and Gong and Kyriakides (2005)). In the present study, we will include a two-dimensional

equivalent of the foam geometry, that of standard Voronoi to be discussed later.

Specifically, solid model spinodal topologies can feature a density range between 0.7 and 0.2

(Maskery et al., 2017; Hsieh et al., 2019), whereas corresponding shell models can achieve ultra-
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low densities but usually lead to anisotropic response beyond the linear elastic response, while due

to their perfect periodicity, they are susceptible to long wavelength instabilities and localization

bands that span the entire specimen. In turn, Gaussian type topologies have only a limited range

of mechanical responses and are known to be non-optimal (Roberts and Garboczi, 2001; Zerhouni

et al., 2021) when compared with rigorous mathematical bounds in linear elasticity but can be

versatile in obtaining isotropic and anisotropic responses by design (Kumar et al., 2020). By

contrast, random polydisperse distributions of spherical voided inclusions dispersed into a dense

matrix (Zerhouni et al., 2019; Tarantino et al., 2019) are mechanically nearly optimal in the linear

regime as their moduli have been shown (both numerically and experimentally) to lie very close

to the Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963). Yet, they require an increasingly

large smallest-to-largest void size ratio to reach low relative densities. This in turn leads to practical

difficulties in realizing representative – especially in the nonlinear regime – material response that

can be produced with high accuracy by current additive manufacturing technologies, both metallic

and polymeric, as we will show in the present study.

More generally, most lightweight porous materials are great candidates for energy absorption

and structural applications because of their particular compressive response which may be divided

into three regimes: (i) an initial almost linear regime up to a peak-stress, (ii) a stress-oscillating

plateau or very low hardening regime and finally (iii) a strongly hardening regime, called as densi-

fication. Without giving the most general discussion here for the sake of brevity, one may attribute

the peak-stress and subsequent plateau to a combination of an elastic buckling instability and/or

plastic localization or even secondary bifurcations (see for instance discussions in Ashby and Gibson

(1997), Triantafyllidis and Schraad (1998) and Schaedler and Carter (2016)). In brittle polymers,

fracture of ligaments occurs before or immediately after elastic instabilities following the peak-stress

(Thornton and Magee, 1975; Ashby and Gibson, 1997; Triantafillou and Gibson, 1990; Bi et al.,

2020). In turn, the recent study of Luan et al. (2022) has focused on the compressive response

of flexible elastomers, where the effect of smoothness of the intervoid ligaments and polydisper-

sity of void size has been addressed numerically. Therein, those two geometrical characteristics

were shown to affect both the initial stiffness of foams (which is in qualitative agreement with the

experimental work of Zerhouni et al. (2019)) as well as the level of the peak-stress.
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1.1. Scope of the study

In this regard, the present work proposes a novel computational morphogenesis process allow-

ing to design random (i.e., non-periodic) composite materials that contain smooth, polydisperse

Voronoi-type inclusions with non-uniform intervoid ligament thicknesses randomly embedded into

a base matrix phase. This process is developed drawing inspiration from prior studies on epithelial

cell remodeling (Liu et al., 2010; Kasza et al., 2014) and is implemented using a finite-element (FE)

framework. The response of the resulting geometries is studied experimentally using 3D-printing.

Specifically, it consists in deforming numerically – under uniform displacement (Dirichlet) boundary

conditions – an arbitrarily-shaped convex cell that contains a discrete number of circular void inclu-

sions. The latter are randomly dispersed into a non-linear elastic matrix phase and are generated

via the general-purpose RSA algorithm developed in Segurado and Llorca (2002) and Lopez-Pamies

et al. (2013). Countless composites architectures can be generated with this process depending on

the type of the inclusion phase, which may be void, solid or fluid-like and can potentially span rela-

tive densities from zero to unity. For illustrative purposes, this study will focus on two-dimensional

porous inclusions embedded in a semi-brittle polymer solid. We will then thoroughly investigate

experimentally the mechanical response of the porous architectures at various relative densities.

The new void geometries resemble closely the polyhedra obtained by standard Voronoi tessellations

but differ in two ways; they comprise non-uniform intervoid ligament thickness and have smooth

void boundaries. Due to the mechanically-grown origin of the void geometry, we call these mate-

rials M-Voronoi throughout the study. We note that the heart of the process, which is based on a

numerical nonlinear elastic energy minimization and uniform displacement boundary conditions, is

independent of dimension and shape of the primary cell (provided it is convex). The latter allows

the seamless assembly of the individual cells (of any porosity) in macro-geometries of any shape

and variable spatial stiffness. We will show in particular that the M-Voronoi exhibit continuous

strong hardening (and thus no apparent peak-stress) well before densification.

This paper is organized as follows. In Section 2, the numerical construction process of the

M-Voronoi geometry is presented. Various representative numerical realizations of the porous

topologies obtained by this method are presented and compared with other existing random porous

geometries. The experimental methods including the 3D-printing strategy and the protocol for the

mechanical tests are described in Section 3. In Section 4, we show experimental uniaxial compres-
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sion results corresponding to the aforementioned geometries. First, we analyze the representativity

of the M-Voronoi response in terms of different realizations and the size of voids. Subsequently,

we compare first the M-Voronoi with two additional random porous geometries. The first com-

prises random distributions of circular voids of various sizes (i.e. polydisperse), termed as RSA

from the random adsorption algorithm (Lopez-Pamies et al., 2013; Anoukou et al., 2018)), and the

second is obtained by a recently proposed uniformly eroded Voronoi tessellation algorithm, named

E-Voronoi, that has been used to model muscles (Spyrou et al., 2019). Subsequently, in order

to make contact with literature and further clarify the origin of the hardening response, we also

compare in the same section the M-Voronoi with honeycomb materials. We close the experimen-

tal section with selected anisotropic M-Voronoi results. In Section 5, triangular, trapezoidal and

rectangular M-Voronoi cells are seamlessly assembled to design a complex structure with variable

porosity at different regions. The conclusions are drawn in Section 6.

2. Material methods

This section describes the computational morphogenesis process and its major steps to obtain

the M-Voronoi porous materials. As a first attempt, we focus on voided materials that exhibit a

two-dimensional random geometry. Those are then extruded in the third (out-of-plane) dimension

for subsequent 3D-printing and mechanical experiments.

2.1. M-Voronoi morphogenesis method

The proposed process consists of four main steps, which are discussed in the following and are

also summarized in Fig. 1.

Step 1: Construction of the initial porous cell. The proposed void growth process begins with the

construction of an initial porous unit-cell (Fig.1). We note that the unit dimensions of the cell

are inconsequential and are only chosen for simplicity. It is noted here that the choice of the

initial void distribution and cell geometry affects, in general, the final porous geometry obtained

via this process, as it will be shown below. For illustration purposes at this stage, a square unit-cell

occupying the volume V0 in the undeformed (reference) configuration is considered. The unit-cell

comprises a random distribution of voids at initial volume fraction c0, or equivalently at initial

relative density ρ0 ≡ 1 − c0 (see A). The voids may be of any shape, size or orientation (e.g.,
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Figure 1: Computational process for the generation of the M-Voronoi material. For illustration purposes, the diagram

shows the five steps required to obtain a virtual M-Voronoi geometry starting from a square unit cell containing a

discrete number of mono-sized circular pores. Step 1: Random distribution of circular holes in a square domain.

Step 2: Application of uniform displacement boundary conditions. Step 3: Numerical FE simulation at large strains

using nonlinear elastic energy minimization and incompressible matrix behavior. The zoom image shows locally the

deformed mesh. The color bar indicates the maximum principal logarithmic strain. Step 4: Uniform re-scaling of

the deformed geometry to the desired size. Remeshing (as shown in the zoomed image), 3D extrusion and STL

generation of the final geometry used for 3D-printing. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

ellipsoidal or even non-convex). Here, for simplicity and numerical efficiency, the RSA algorithm

developed in Segurado and Llorca (2002) and Lopez-Pamies et al. (2013) is used to embed, randomly

and uniformly (in the sense of Torquato (1997, 2002)), circular holes of equal size in the square

domain. Nevertheless, the proposed morphogenesis approach is general and thus any initial void

geometry may be used to increase the final inclusion volume fraction (e.g. one may start with

spinodal geometries at small volume fraction (Maskery et al., 2017; Portela et al., 2020; Zerhouni

et al., 2021)).
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Step 2: Uniform displacement boundary conditions. The unit-cell is subsequently subjected to

uniform Dirichlet (affine) displacement boundary conditions over the entire cell boundary ∂V0

(Fig.1). For clarity, the most important finite strain kinematics and constitutive laws used in this

work are hereinafter recalled. The deformable unit-cell occupies a volume V0 in the undeformed

(Lagrangian) configuration with boundary ∂V0. We use X ∈ V0 to denote the reference position

vector of a material point in V0. The deformed position vector x(X) of any material point is related

to X via x(X) = X + u(X), where u(X) denotes the displacement vector of any material point.

The deformation gradient is defined then as F = ∂x/∂X = I + Gradu, where Grad denotes the

gradient operator with respect to X. We then impose the Dirichlet boundary conditions

u = (Fapp − I)X, ∀X ∈ ∂V0, (1)

where Fapp is a prescribed, constant, non-symmetric second-order tensor with four and nine in-

dependent components in 2D and 3D, respectively. By virtue of the divergence theorem, one

may easily show that Fapp corresponds to the average deformation gradient in the entire cell,

i.e., Fapp = |V0|−1
∫
V0 F(X)dX (Hill, 1963). It is further noted that the deformed volume of the

unit-cell, V, is entirely defined in terms of the average deformation gradient Fapp from the purely

kinematic relation V = detFapp V0. Given that the initial unit-cell is porous and thus compressible,

a detFapp > 1 readily leads to an increase of V. A second condition for the growth of voids is

provided next.

Step 3: Nonlinear elastic energy minimization. Subsequently, we trigger the mechanical growth of

the voids by solving numerically a finite-strain (Fig.1), nonlinear elastic boundary value problem

(BVP), whose geometry is defined in Step 1 and applied boundary conditions in Step 2. For this,

we use the finite element (FE) method since the geometry is extremely complex and involves large

deformations leading to a non-analytical BVP. In this study, the commercial FE solver ABAQUS

(Dassault Systems) is used and finite strains are enabled by the option NLGEOM. Moreover, quadratic

six-node, plane-strain (2D) hybrid elements (CPE6H) are used to deal with incompressibility.

Specifically, the void phase has zero energy density and thus is simply modeled as empty with

traction-free boundaries and is not meshed, while the solid phase (blue in Fig. 1) is assumed to

follow an incompressible, neo-Hookean law described formally by the Helmholtz free energy density

W (F) =
µ

2
(F · F− d), such that C(F) = detF− 1 = 0, (2)
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with d = 2, 3 depending on the dimensionality of the problem. In this last expression, µ denotes

the shear modulus and its value may be set equal to unity for the purposes of this study, while the

incompressibility constraint C(F) needs to be imposed everywhere in the solid phase. Then, the

solution of the BVP is formally defined in terms of the optimization problem

{u, p} = arg

{
min

u∗∈K(Fapp)
max
p∗

∫
V0
W (F(u∗))dX

}
(3)

where K(Fapp) = {u : regular,u = (Fapp−I)X, ∀X ∈ ∂V0} and p is a scalar pressure field (acting

as a Lagrange multiplier to impose the incompressibility constraint detF = 1). The corresponding

first Piola-Kirchhoff stress is given by

S =
∂W

∂F
− p∂C

∂F
= µF− pF−T . (4)

Even though the solid phase is incompressible, the embedded voids are fully compressible and

can grow or shrink under large deformations. By prescribing detFapp > 1, the volume of the unit-

cell is forced to grow, which can only occur via void growth. Specifically, using the incompressibility

of the solid matrix phase, mass conservation and the applied Dirichlet boundary conditions, one

may readily show that the current relative density of the deformed unit-cell ρ is simply given in

terms of the overall initial relative density ρ0 via the purely kinematic relation (see A)

ρ =
ρ0

detFapp
. (5)

Equivalently, this last relation allows to estimate directly the detFapp that needs to be prescribed

to the unit-cell to reach the desired final relative density ρ. Note that detFapp does not define

the entire tensor Fapp. Thus, one has countless choices for the remaining components allowing to

obtain a multitude of void-grown geometries and deformed cell shapes. As can be easily observed

in the example problem in Fig. 1, the voids grow substantially exhibiting convex, polygonized but

smooth shapes. Their exact growth rate and final shape are a complex outcome of interactions with

neighboring voids and the boundary of the cell. The thickness of the intervoid ligaments is highly

variable, while dense pockets of solid phase are observed across the cell, as shown by the blue spot

regions in Step 3 of Fig. 1). It is also important to note that at such large strains the underlying

mesh may be significantly distorted at various regions (see the zoom image in Step 3 of Fig. 1)).

In order to avoid such problems, one may remesh the geometry (see remeshed figure) without the

need to transfer the stress and displacement fields and re-start the calculation from that point on.
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This is obviously allowed here since we are solely interested in the geometrical features and not

in the calculated stresses themselves. Such an operation will allow us to reach very low relative

densities as is discussed in Section 2.3.

Step 4: Void geometry extraction, rescaling, remeshing and 3D-printing. The deformed unit-cell

is then uniformly rescaled back to any desired size (see Fig. 1). By doing so, the relative density

is preserved. For this re-scaling step and for subsequent accuracy in 3D-printing, the following

strategy is proposed, without that being neither unique nor optimal in the sense of speed. Specif-

ically, the nodal coordinates of the external and internal void boundaries of the unit-cell are first

extracted and then rescaled uniformly. The deformed mesh is exported using an Abaqus python

script and the geometrical entities, such as void boundaries and cell boundaries, are read by a cus-

tom made code. It is also remarked at this point that one could use an intermediate deformation

state as the initial geometry. In this case, every rescaled geometry resulting from Step 4 could be

plugged in back to Step 2 to apply a new deformation history. The various options are countless.

The rescaled unit-cell obtained in Step 4 is then remeshed and extruded in the third dimension.

This step is conducted using the open-source meshing software Gmsh. It is further noted that

during the remeshing operation, we do not transfer the computed displacement and stress fields,

instead only the deformed cell and void boundaries are retained. Finally, the extruded geometry

is exported in stereolithography (STL) format for 3D-printing. The experimental methods used to

fabricate and test the samples are discussed in detail in Section 3.

2.2. M-Voronoi morphogenesis in convex cell domains

The discussed morphogenesis process is employed to obtain M-Voronoi geometries in rectan-

gular, circular and triangular domains (Fig. 2). For simplicity in presentation, we specialize to

diagonal deformation loads, i.e., Fapp = diag(λ
app
1 , λ

app
2 ) (with λ

app
1 , λ

app
2 denoting the applied prin-

cipal stretches).

In Fig. 2a, we begin with a large number of initially circular voids (ρ0 = 0.9), and subject the

unit-cell to equi-biaxial tension with λ
app
1 = λ

app
2 = λapp > 1. Three rescaled contours show the

maximum local principal logarithmic strain at current relative density ρ = 0.7, 0.5, 0.3 (Fig. 2b-

d). The circular voids gradually polygonize, albeit remaining smooth. This smoothness is a

key feature of these newly obtained inclusion geometries. In particular, the complex interactions

resulting from the disordered distributions of the voids and the underlying nonlinear large elastic
10



deformations lead to convex and non-canonical Voronoi-type shapes. Most of these shapes resemble

a pentagon and are of fairly similar size. By contrast, due to the random distance of the centers

of the original circular voids, the deformed intervoid ligaments exhibit a rather random thickness

variation. Pockets of almost undeformed solid regions (indicated by the blue spots in e.g., Fig. 2c)

are formed. Those pockets gradually shrink with further increase of the applied strains (Fig. 2d).

As a second representative example, the proposed morphogenesis process is employed to design

M-Voronoi geometries with anisotropy. Specifically, as shown Fig. 2e-h, we apply a biaxial tension

with 2λ
app
2 = λ

app
1 = λapp > 1. Such a load transforms the initial square to a rectangle and the

initially circular voids to elongated Voronoi-type shapes. Similar to the previous equi-biaxial case,

the intervoid ligaments are again non-uniform. The possibilities for designing such M-Voronoi

obviously are limitless since any combinations of the Fapp components can lead to different void

formations and anisotropies. A selected set of such anisotropic M-Voronoi are discussed later in

Section 4.4. This case of anisotropic M-Voronoi reveals the versatility of the method. This allows

for a more tunable response by employing an inverse design protocol, albeit in a large nonlinear

strain framework.

Finally, the simplicity of the process and the prescribed boundary conditions allows to grow

M-Voronoi geometries in initially circular (Fig. 2i,j), triangular (Fig. 2k,l) or any other type of

convex domain cells1. The applied stretches may be chosen to be equi-biaxial retaining the original

shape of the domain or simply biaxial leading to anisotropic responses. Interestingly, the grown

voids exhibit similar polygonal (pentagon) type features except for a few ones that lie very close

to the boundaries. For instance, the voids lying near the circle periphery or the corners of the

triangle take a rather triangular shape (Fig. 2l). The use of equi-biaxial loads tends to lead to a

more isotropic growth even in anisotropic domains such as the triangular one. In turn, the use of

non-equi-biaxial loads triggers a direction-dependent (i.e. anisotropic) void growth. In all cases,

the only constraint that needs to be imposed for positive void growth is simply detFapp > 1,

while the remaining components of Fapp may be arbitrarily chosen. It is important to note, that

the randomness of void distributions allows to “fill” efficiently and uniformly those domains with

voids/inclusions, a process that would be extremely difficult to achieve with periodic geometries

1Even though it is not shown rigorously, it is rather intuitive to see that a non-convex initial geometry of the

unit-cell would lead to contact of the exterior faces of the cell and subsequent cease of the simulation under uniform

affine loads. Thus a convex cell geometry, albeit of arbitrary shape is essential at the initial stage.
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Figure 2: Representative M-Voronoi porous geometries for porous domains with different shapes: (a-d) isotropic

geometries obtained using a rectangular cell subjected to equi-biaxial tension (λapp1 = λapp2 = λapp > 1); (e-h)

anisotropic geometries obtained using a rectangular cell subjected to biaxial tension (2λapp2 = λapp1 = λapp > 1) and

isotropic geometries obtained using respectively a (i-j) circular and a (k-l) triangular cell subjected to equi-biaxial

load. The initial geometries in (a), (e), (i) and (k) are obtained using the RSA algorithm and monodisperse circular

voids at relative density ρ0 = 0.9. All deformed cells are scaled for visualization reasons. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

(such as honeycombs, periodic lattices, etc.).

12



2.3. E-Voronoi and RSA versus M-Voronoi

For later use, we examine now the differences between the M-Voronoi geometries proposed in

the present work versus the E-Voronoi and RSA polydisperse geometries (Fig. 3). The (eroded)

E-Voronoi geometries (Fig. 3a) are constructed by use of the algorithms presented in Spyrou et al.

(2019) for the modeling of human muscles. In that study, a standard Voronoi tessellation is

first created and subsequently the walls of each Voronoi inclusion are eroded in a uniform manner

leading to constant-thickness intervoid ligaments. The amplitude of erosion defines the final relative

density, while the intervoid ligaments are meshed in two-dimensions to reach arbitrary values of

ρ (as opposed to earlier studies such as in Tekoglu et al. (2011) where beam elements were used).

By construction, the E-Voronoi void boundaries exhibit sharp corners, while the process may lead

to locally more elongated inclusions of large aspect ratio towards an arbitrary direction. The E-

Voronoi geometries can span the entire range of practical relative densities from 0 to very low

(e.g., 0.01) and are isotropic as a direct consequence of the random Voronoi tessellation process

(but see the recent extension to anisotropic ones by van Nuland et al. (2021)). The random

adsorption algorithm (RSA) geometries (Lopez-Pamies et al., 2013) contain multiple sized (i.e.

polydisperse) circular voids that are embedded randomly in the square domain (Fig. 3b). Similar

to the M-Voronoi, the RSA geometries exhibit non-uniform intervoid ligament thickness, while

being extensively polydisperse with decreasing relative density. The main challenge in constructing

the RSA geometries lies in the fact that it becomes increasingly difficult to reach representative

specimens in the nonlinear finite-strain regime with very low relative densities (less than 0.2 in

2D and less than 0.3 in 3D) that are realizable numerically (for instance, no geometry has been

achieved for ρ = 0.01 as shown in Fig. 3b) as well as with 3D-printing technology. This is due to

the extremely large difference between the largest and the smallest voids necessary to achieve such

low densities. In turn, the RSA geometries may be isotropic or anisotropic depending on the void

shapes (Anoukou et al., 2018) (e.g. ellipsoidal shape) and their distribution. In the present work,

we focus on circular voids distributed randomly and uniformly in the square cell leading to a fairly

isotropic response.

By contrast, the proposed M-Voronoi geometries are numerically and experimentally realizable

at solid densities spanning the full spectrum from 1 to very low (e.g., 0.01) (Fig. 3c-e). For

conciseness, we report M-Voronoi geometries obtained via an equi-biaxial loading history. We
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Figure 3: (a) E-Voronoi. (b) RSA polydisperse circles. (c-e) M-Voronoi obtained by using a RSA geometry with

initial relative density (c) ρ0 = 0.9, (d) ρ0 = 0.7 and (e) ρ0 = 0.5 as shown in the insets of the first row. The ρ = 0.01

geometries in (c-e), are obtained by using the corresponding ρ = 0.1 as an initial geometry after remeshing it. The

top color bar indicates the final relative density ρ. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

show that the initial relative density, ρ0, affects strongly the final M-Voronoi geometry. A higher

initial ρ0 = 0.9 (Fig. 3c) leads to substantially more uniform and equi-sized Voronoi inclusions
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contrary to a lower initial ρ0 = 0.7, 0.5 (Fig. 3d,e). The latter tend to create disordered clustering

of smaller and larger voids randomly distributed in the cell. It is important to note at this point

that in order to achieve very low relative densities such as ρ = 0.01 while avoiding excessive mesh

distortions, it is preferable to stop the simulation at an intermediate value of ρ, e.g. ρ = 0.1,

extract the geometrical characteristics, remesh and re-launch the simulation to reach the final

relative density desired. This last process implies re-launching Steps 1-3 discussed in Fig. 1, but

using an intermediate M-Voronoi geometry as an initial one. Obviously this process can be repeated

whenever necessary to avoid severe mesh distortion or numerical convergence issues.

3. 3D-printing and experimental methods

3.1. 3D-printing interruption strategy

The present porous test specimens with increasing porosity are 3D-printed via a PolyJet technol-

ogy, using an EDEN 260VS printer from Stratasys and a rubber-like UV-curable resin (commercial

name TangoBlack FLX 930 from Stratasys). Although not required in the present work, we have

performed independent uniaxial tension tests of TangoBlack specimens at very slow strain-rates

(7 · 10−4s−1) leading to a neo-Hookean response up to fracture (occurring at strains less than 20%)

with an initial Young’s modulus of 3.92MPa and Poisson’s ratio 0.49.

Prior to the manufacturing of the porous specimens, a straightforward 3D-printing test (not

shown here for brevity) using isolated and closely packed aligned circular, cylindrical voids was

conducted to quantify the size of the pore features that could be manufactured with sufficient

geometrical accuracy. Therein, we find that the minimum pore diameter and intervoid thickness

ligament that may be 3D-printed once-off with acceptable accuracy are respectively, ∼ 300 µm

and ∼ 600 µm. These numbers are slightly larger than those reported in a study considering RSA

geometries with VeroWhite material (Tarantino et al., 2019).

For the experimental study, and in order to attain with our 3D-printer the minimum ligament

thicknesses required for representativity of the results discussed in detail in Section 4.1, we consider

porous test specimens with in-plane dimensions 100× 100 mm2 and out-of-plane thickness 10 mm.

In the M-Voronoi materials, we do not control entirely the thickness of the intervoid ligaments.

In fact, those are highly variable at different positions. As a result, as one reaches lower relative

densities, the intervoid ligament thickness may become less than the minimum that can be accu-
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rately 3D-printed (i.e., < 300 µm) resulting to a rather low quality reproduction of the numerically

obtained geometrical features, especially along the out-of-plane direction, as shown Fig. 4a. In or-

der to improve further upon this limitation directly related to the specific 3D-printing technology

used, we propose here an interruption strategy. In the present case of a commercial 3D-printer, this

simply consists in manually interrupting the 3D-printing process for a few minutes thus allowing

the existing polymer layer to solidify partially before additional layers with additional weight are

positioned atop. As clearly shown in Fig. 4b, this interruption strategy allows to improve substan-

tially on the quality of the 3D-printed specimen, even though some imperfections are still present

in these extreme relative densities. For completeness, we also include in Fig. 4c,d, corresponding

E-Voronoi geometries. Even in this case of uniform intervoid ligament thickness, we observe that

an once-off 3D-printing approach still leads to imperfections, albeit of smaller amplitude than those

observed for the M-Voronoi geometries.

Figure 4: (a,b) M-Voronoi and (c,d) E-Voronoi 3D-printed specimens with relative density ρ = 0.1. The specimens

are obtained in (a,c) without and (b,d) with the interruption strategy.

More precisely, the interruption period depends on the in-plane dimensions of the specimen

and the number of specimens laid on the 3D-printer tray. The reason for this is simply related

to the time that the 3D-printer heads require to return to exactly the same printing point. As

a rule of thumb in our work, we use the following time steps. For one specimen of in-plane

dimensions 100 × 100 mm2, we 3D-print for 10 min and interrupt for another 10 min. Given that
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the total estimated time for a single-step 3D-printing of the given specimen with out-of-plane

thickness of 10 mm is about 1 hour, the interruption delay time is taking place every about 10/6 mm

intermediate layers. If additional specimens are added in the tray, the 3D-printing time before

applying an interruption should be calculated accordingly. Obviously, the proposed time scales do

not constitute a universal protocol expected to work for any arbitrary geometry. Nevertheless, the

idea itself of interruption clearly allowed us to improve the quality of the 3D-printed specimens

especially at low relative densities.

Figure 5: (a) M-Voronoi, (b) E-Voronoi and (c) RSA 3D-printed specimens with no interruption strategy and ρ = 0.2.

For completeness, we show in Fig. 5, 3D-printed specimens for ρ = 0.2 for all three geometries,

i.e., (a) M-Voronoi, (b) E-Voronoi and (c) RSA. In this case, no interruption during the 3D-printing

is necessary to achieve sufficient specimen quality. Even so, one may observe at the boundaries of

the cell a few regions where the 3D-printing has not been entirely complete. Nevertheless, those

regions are only a very minor proportion of the specimen and they do not affect the overall response,

as we will show in the representativity study in Section 4.1.

3.2. Testing protocol

The 3D-printed test specimens are subjected to quasi-static uniaxial compression using a servo-

hydraulic testing machine and their deformation history is tracked by means of a CCD camera.

Experiments are carried out under displacement control with a constant strain rate of 0.001 s−1.

For the measurement of the force signal, two different load transducers with capacity 200±0.002 N

and 10± 0.001 N are employed depending on the relative density of the test specimen. Specifically,

the 200 N transducer was mounted onto the fixed platen of the testing machine, whereas the 10 N

transducer (mounted onto the movable platen of the crosshead) is designed to double as a piston.

To this end, a dedicated testing set-up proposed in Tarantino and Danas (2019) is re-adapted

and used. Finally, during experiments all specimens are enclosed between two transparent PMMA
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plates of 10 mm thickness in order to avoid out-of-plane-buckling of the test specimens. The two

plates are lubricated with teflon at the inner side to reduce contact friction with the test specimen.

4. Experimental results and discussion

In this section, we quantify experimentally the response of the M-Voronoi, E-Voronoi and RSA

geometries when subjected to uniaxial compression loads. First, we study the representativity and

isotropy of response of the M-Voronoi (the E-Voronoi have a similar response to the M-Voronoi

in terms of representativity) and RSA specimens in terms of number of voids as well as direction

of loading (in order to probe isotropy even partially). Subsequently, we carry out a comparison

analysis between the M-Voronoi, E-Voronoi and RSA geometries for isotropic and anisotropic

geometries.

4.1. Representativity and isotropy of M-Voronoi

Considering the previously-mentioned fabrication constraints, we choose the overall size to be

100× 100× 10 mm3 for all 3D-printed specimens. These dimensions allow to reach a large enough

number of voids (∼ 250) leading to a sufficiently representative response (i.e., scattering of the

response as a function of realization and number of voids) and low relative density realizability2.

By considering 200 voids (or ∼ 14 per each direction) in the M-Voronoi, we obtain a minimum void

diameter size of ∼ 5 mm. Note that since the void distribution and size are random, these numbers

should only be considered in an average sense. Decreasing the number of voids leads gradually to

a more “structural” (i.e. with larger scatter) response that is strongly dependent on realization.

In order to assess the effect of the number of voids in the cell (or equivalently void size) effect on

the representativity of the response, we carry out experiments for six different numbers of voids,

Np = 30, 50, 100, 150, 200, 250 with ρ = 0.3 in M-Voronoi specimens, as shown Figure 6.

Specifically, Fig. 6a shows the overall “engineering” stress-strain response of the relevant M-

Voronoi geometries. At this stage, only one realization is considered. As easily observed in Fig. 6a,

convergence of the stress-strain response is achieved as we increase Np ≥ 200 voids3. The cross-plot

2It is noted here that experimental realizability of the geometries is directly tight to the accuracy of the 3D-printer.

The resulting representative geometries are, in turn, scalable and independent of the size of the specimen itself.
3Convergence should be thought in a less strict manner here given that in experiments scatter is also due to

small fabrication variations as discussed already in Section 3.1 as well as small testing uncertainties ranging from

one experiment to the other.
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Figure 6: Experimental representativity study for M-Voronoi with ρ = 0.3 in terms of number of voids Np. (a)

Stress-strain response of the M-Voronoi with different number of voids and (b) engineering stress as a function of Np

for different levels of the overall strain. (c) Optical images of the corresponding realizations for different Np.

in Fig. 6b shows the engineering stress as a function of Np at different levels of the strain. We

conclude that beyond Np ≥ 200 a sufficiently converged response is obtained, as this is revealed

by the saturation of the stress measures with increasing Np. This average number of voids is used

in the next sections to compare the various geometries. It is further pointed out that even in

fully periodic systems such an analysis is necessary to assess the representativity of the results

as a function of the specimen size. Such an analysis is even more critical at large strains where

nonlinear phenomena such as buckling or fracture are involved (Michel et al., 2007).

In order to complete the study of representativity as well as obtain a rough measure of the

isotropy of the M-Voronoi geometries, we analyze in Fig. 7 the scatter in the stress-strain response

due to different realizations but for a fixed number of voids. Figures 7a,b correspond to Np = 30

and 200 with ρ = 0.3. For each Np, we consider two different realizations subjected to two different

loading directions thus effectively studying four realizations, shown in Figs. 7c,d. One readily

observes that increasing the number of Np leads to a decrease of the apparent scatter. The rough
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Figure 7: Experimental representativity study for M-Voronoi with ρ = 0.3 in terms of number of realizations

and number of voids. Stress-strain response for four different realizations for (a) Np = 30 and (b) Np = 200.

Corresponding optical images of the realizations for (c) Np = 30 and (d) Np = 200.

convergence of the results for Np ≥ 200 indicates that the M-Voronoi geometries behave similarly

in the two main directions of the square cell. This invariance to directionality is a strong evidence

of isotropy at large strains, albeit not entirely complete. Nevertheless, a more complete isotropy

analysis is not possible with our current experimental setup. Yet, considering the randomness of

the geometry and the different realizations, the present results imply a sufficient isotropic response

even at large strains, a feature usually ignored in many recent studies of plates, trusses and more

generally periodic cellular materials. We recall here that isotropy in linear elasticity and small

strains does not imply4 isotropy at large strains as we show clearly in Section 4.3. It is also noted

that additional geometries (not shown here for brevity) and tests were performed with open voids

reaching the lateral boundaries. The latter did not change the converged response observed in

Fig. 7b.

4Perhaps the most straightforward example is that of two-dimensional hexagonal trusses which are studied further

below. At small strains, they are exactly isotropic (Francfort and Murat, 1986), but become highly anisotropic in

the post-buckling regime and finite strains (Spyrou et al., 2019).
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By contrast, for Np = 30, while at small strains all four realizations exhibit very similar response

(up to an acceptable scatter discussed in the following), their scatter increases substantially leading

to a different initial buckling as well as post-bifurcated response. This observation reveals the

extremely complex local mechanisms that enter in the response of the post-bifurcation regime, as

well as the fact that representativity of response is strongly dependent on realization, void sizes as

well as the consideration or not of large strains.

Next, we analyze the scatter induced by the different realizations discussed previously. The

scatter of a quantity A is defined as

Realization scatter % =
Amax −Amin

Aave
× 100. (6)

where Amax, Amin and Aave correspond to the maximum, minimum and average value of the

quantity among different realizations.

In Table 1, we show the average and scatter values for the apparent Young’s modulus obtained

at very small strains (0 − 0.2%). We observe that increase of Np leads effectively to a stiffer and

less scattered response as expected.

Np Eave(kPa) Scatter (%)

30 206 11.2

200 267 5

Table 1: Average and scatter values of the Young’s modulus.

In turn, in Fig. 8, we show the scatter of the stress values in the strain range 0.05−0.6. Therein,

the M-Voronoi with Np = 30 are found to be highly dependent upon realization exhibiting a large

scatter in the order of 40% (reaching a maximum of 90% and a minimum of 10%) while the ones

for Np = 200 are substantially more representative showing an average scatter in the order of

10% (reaching a maximum of 20% and a minimum of 1%) throughout the entire strain history.

We should mention here that fabrication imperfections (see Section 3.1) as well as uncontrollable

experimental uncertainties always lead to a certain level of scatter from sample to sample. It is

clear, however, that the scatter substantially decreases with increasing number of Np.

We close this section by noting that the RSA and E-Voronoi geometries exhibit similar behavior

in terms of representativity with the M-Voronoi ones at relative densities ρ = 0.3, 0.4. Neverthe-

less, it is substantially more difficult to reach low relative densities (ρ ≤ 0.2) and simultaneously
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Figure 8: The scatter in the stress-strain response induced by four different realizations of M-Voronoi geometries

with ρ = 0.3 and number of voids Np = 30, 200. The straight dotted lines indicate the average value over the strain

range considered in the figure.
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Figure 9: Experimental representativity study for RSA with ρ = 0.1 in terms of number of realizations. (a) Stress-

strain response for four different realizations. (b) Stress-strain realization scatter. The straight dotted line indicates

the average value over the strain range considered in the figure. (c) Corresponding optical images of the realizations

considered.
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representative responses at large strains with the RSA approach. This is a direct consequence of

the necessity for a very large polydispersity ratio (i.e. difference between the largest and smallest

void added in the cell) to reach low densities below ρ = 0.2. The difficulty is mainly linked to the

limitations of our 3D-printer (e.g. the minimum ligament size that can be printed) and less of the

numerical scheme itself.

In order to show this clearly, Fig. 9a,b shows compression tests for RSA geometries with ρ = 0.1

using two different realizations subjected to two different loading directions (see Fig. 9c). Given

the 3D-printing and realization constraints discussed in the previous section, we can only reach

low relative densities by considering 3-4 “large” voids per-direction (with approximate size ∼

15− 20 mm) and many smaller ones with a polydispersity ratio in the order of ∼ 50/1 (Tarantino

et al., 2019). Fig. 9a represents the engineering stress-strain response, while the corresponding

realization scatter is shown in Fig. 9b. In agreement with earlier studies by Zerhouni et al. (2018),

Zerhouni et al. (2019) and Tarantino et al. (2019), at small strains, the response is rather converged

and representative. Nonetheless, the initial buckling and post-buckling response becomes highly

scattered at large strains. It can be observed in Fig. 9b that the amplitude of this scatter reaches

very large values (∼ 100% at maximum). Similar representativity limitations are in general true

for ρ ≤ 0.2, and therefore their use in the next section is only done for completeness purposes.

4.2. Comparisons among the three geometries

In order to compare the three geometries considered in this study, we show in Figs. 10 and

11 quasi-static, uniaxial compression experiments for relative densities ρ = 0.4, 0.3, 0.2, 0.1. The

representativity analysis carried out in the previous section allows to consider only one realization

for the M-Voronoi geometries. In order for the comparison to be meaningful, the corresponding

E-Voronoi geometries also contain a similar number of voids with the corresponding M-Voronoi

ones. For a better understanding, we also include optical images of the three geometries selected

at three intermediate strains levels, denoted with (1), (2) and (3).

In Fig. 10 corresponding to relative densities ρ = 0.3, 0.4, the initial response for all tested

geometries has a net linear behavior. The range of the initial linearity decreases with decreasing

relative density, as shown in Fig. 11 corresponding to ρ = 0.1, 0.2. In all cases however, this initial

linear response remains free of oscillations. After this initial smooth behavior, initial buckling, de-

formation localization and fracture occur at different regions in the specimen (see green lines on the
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optical images). Since the tested samples are random, ligaments bend, buckle and rupture at dif-

ferent positions inducing an oscillatory overall response. Rather remarkably, the M-Voronoi exhibit

the strongest hardening response with no apparent major peak-stress up to complete densification

and for all relative densities considered here. This leads to overall the stiffest response at large

strains, even if initially the M-Voronoi may exhibit a lower modulus than the corresponding RSA

geometries in some cases (e.g., ρ = 0.3). In particular, for ρ = 0.3, the RSA geometries show an

Figure 10: Compression experiments and corresponding optical images for the M-Voronoi, E-Voronoi and RSA

geometries for relative densities (a) ρ = 0.4 and (b) ρ = 0.3. For all cases, snapshots are shown of the three

geometries selected at three intermediate strains levels, denoted with (1), (2) and (3). The green lines indicate zones

of strong localization and fracturing of the intervoid ligaments. The in-plane dimensions of the undeformed specimens

are 100 × 100 mm2. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

initially stiffer response than the M-Voronoi which however becomes softer at larger strains leading
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Figure 11: Compression experiments and corresponding optical images for the M-Voronoi, E-Voronoi and RSA

geometries for different relative densities (a) ρ = 0.2 and (b) ρ = 0.1. For all cases, snapshots are shown of the three

geometries selected at three intermediate strains levels, denoted with (1), (2) and (3). The green lines indicate zones

of strong localization and fracturing of the intervoid ligaments. The RSA for ρ = 0.2, 0.1 are non-representative

due to fabrication limitations. The in-plane dimensions of the undeformed specimens are 100 × 100 mm2. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

to a lower hardening modulus than that of the M-Voronoi at moderate and large strains. Note that

in general, the RSA geometries exhibit similar trends with the M-Voronoi ones, except at lower

ρ = 0.1, 0.2 (Fig. 11), where the response becomes non-representative for the reasons discussed in

Section 4.1. As consequence, at low densities ρ = 0.1, 0.2, the RSA depict a more flat, plateau-type,

response beyond the occurrence of the first peak-stress. Such plateau type responses are very usual

in lattice, truss and plate-type models (Symons and Fleck, 2008) as well as in stochastic porous
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composites (Jang et al., 2008; Gong and Kyriakides, 2005). A few exceptions have been reported

for random foams produced by replication processing (San Marchi and Mortensen, 2001) though.

By contrast, the E-Voronoi, even though they exhibit no major peak-stress, their stress-strain

response and overall hardening rate lies always lower than that of the M-Voronoi for all relative

densities considered here. To explain this further, we focus on the corresponding optical images.

It is clear that the non-uniform intervoid ligament thickness of the M-Voronoi geometry leads to

a diffuse distribution of buckled, bended and fractured unconnected zones throughout the entire

specimen (see for instance the corresponding image in Fig. 10b for the M-Voronoi). The RSA

exhibit a similar distribution of disordered and disconnected pockets of localized deformation. By

contrast, the E-Voronoi cells, despite being random too, very early form a localization/fracture band

that spans the entire specimen for all relative densities considered here. This is a direct consequence

of the uniform intervoid ligament thickness. Again, such responses are also representative in

periodic geometries including trusses, lattices and plate-based architected materials (Symons and

Fleck, 2008). Interestingly, the E-Voronoi response approaches the M-Voronoi one at lower relative

density ρ = 0.1. This is somehow expected since at such low relative densities the M-Voronoi

samples exhibit a gradually more uniform intervoid ligament thickness, but somehow the M-Voronoi

still remains superior, especially at larger strains. Note however, that at such low densities, the

differences are in the order of the realization scatter. We note further that as ρ decreases, fracture

becomes less dominant and the thin ligaments mainly deform by bending and stretching and less by

shearing. Even so, the long-wavelength localization bands in E-Voronoi persist for all ρ considered

here, while the M-Voronoi continue to exhibit more disconnected and diffuse deformation modes.

Finally, it is important to note that overall the higher hardening modulus of the M-Voronoi leads

to a lower densification strain than the corresponding E-Voronoi one.

4.3. Comparisons with honeycomb geometries

In this section, we compare the M-Voronoi geometries with the widely used honeycomb or

hexagonal void geometries. While honeycombs are exactly isotropic in the linear elastic regime,

they become highly anisotropic beyond buckling exhibiting a peak-stress, a pronounced plateau and

subsequent densification. For this reason, the honeycombs constitute a perfect case study in the

present work allowing to clarify whether the corresponding M-Voronoi hardening response at large

strains is due to geometry or is strongly affected by the constitutive response of the 3D-printed
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polymer itself.

Figure 12: Compression experiments and corresponding optical images for the M-Voronoi, Honeycombs along the

longitudinal and transverse direction for two relative densities (a) ρ = 0.4 and (b) ρ = 0.1. For all cases, snapshots

are shown of the three relevant geometries selected at three intermediate strains levels, denoted with (1), (2) and

(3). The green lines indicate zones of strong localization and fracturing of the intervoid ligaments. The in-plane

dimensions of the undeformed specimens are 100 × 100 mm2. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

In Fig. 12a, corresponding to relative density ρ = 0.4, we observe that both the longitudinal

and transverse response of the hexagonal geometries is initially linear. This linearity changes

abruptly at strains of about 0.15 where the longitudinal geometry exhibits a clear peak-stress and

subsequent softening due to the appearance of a localization band spanning the entire specimen

(see the corresponding optical image). Beyond that peak-stress the response is oscillatory due
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to fracturing and the occurrence of additional localization bands. As a result, the longitudinal

honeycomb response exhibits no apparent hardening, except much later near the densification

regime. By contrast, the response of the transverse honeycomb sample does not exhibit a clear

peak-stress but still shows a much lower apparent hardening than the corresponding M-Voronoi

geometry. Interestingly, the transverse hexagon geometry shows localization at larger strains and

overall exhibits a stiffer response and hence better absorption properties than the longitudinal

geometry since they both exhibit very similar densification strains. The results are qualitatively

similar for ρ = 0.3, not shown here for brevity. Therefore, one may conclude, that for moderate

relative densities ρ ≥ 0.3, the hardening exhibited by the M-Voronoi is mainly due to its geometrical

characteristics–i.e., randomness in both void and ligament size as well as the rounding of the void

surfaces–and not a result of the base material hardening.

In Fig. 12b, we compare M-Voronoi with honeycombs for a lower relative density ρ = 0.1. The

main observations made for ρ = 0.4 remain valid here too except for the fact that all geometries

now exhibit a clear hardening less or more pronounced depending on the loading direction. A main

difference between ρ = 0.1 and 0.4 is that at low relative densities the intervoid ligaments mainly

buckle or bend but very little fracture is observed in all geometries considered here. This change

of deformation mode (i.e. from shear fracturing to bending) leads to a much smoother response

throughout the entire process for both the M-Voronoi and the hexagons. Rather interestingly, the

longitudinal hexagonal geometry exhibits a remarkably uniform local bifurcated pattern up to very

large strains showing no apparent localization band (see also Ohno et al. (2002) for corresponding

theoretical results). Obviously this response is strongly related to the use of a base polymer material

instead of a metallic one. In the latter case, the longitudinal hexagon geometry only shows such

local bifurcated patterns in a fairly short region of straining before plastification beyond which

localization bands and crushing appears (Papka and Kyriakides, 1994; Ashby and Gibson, 1997;

Papka and Kyriakides, 1998). In turn, the transverse hexagon geometry exhibits localization bands

originating from the boundaries in the present case.

In closing, we observe that the M-Voronoi geometry, although softer initially, overcomes both

the longitudinal and transverse honeycomb curves as a result of its strong hardening. In this lower

density case, as expected from the early studies of Ashby and Gibson (1997), the hardening of

the polymer material leads to a slight hardening of the hexagonal geometries (see Fig. 4.2 in that
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reference). Yet, that mild hardening, which is a direct result of the stable post-buckling response

of the honeycombs, remains substantially lower than that exhibited by the M-Voronoi. At this

point, one may also comment on the possible imperfection sensitivity of the random versus periodic

geometries. The M-Voronoi, RSA and E-Voronoi geometries are expected to be relatively insensitive

to small imperfections owing to their intrinsic randomness, while it is intuitively straightforward

to assume that the very uniform deformation process of the longitudinal hexagonal material in

Fig. 12b may be lost under the presence of fabrication imperfections (such as missing or of varying

thickness ligaments) or leading to an even less pronounced hardening response. Nonetheless, such

claims need to be further confirmed by experiments along such directions. Such an analysis is

beyond the scope of the present study.

4.4. Anisotropic M-Voronoi

The morphogenesis process for designing M-Voronoi geometries leads to macroscopic isotropy

or anisotropy depending on the prescribed boundary conditions. As already shown in Fig. 2e-h,

anisotropic M-Voronoi geometries can be obtained using a rectangular cell subjected to biaxial

deformation where principal stretches are not equal λ
app
1 6= λ

app
2 and maintaining positive void

growth via detFapp > 1.

One, however, may readily employ an inverse design protocol to achieve a final square M-Voronoi

cell with final dimensions l1 = l2 through a biaxial loading applied on an initially rectangular cell

with dimensions L1 6= L2. The latter imposes a geometrical constraint on the applied deformation

to obtain the target porosity. The mechanical response of the final M-Voronoi with a specific

porosity is tunable and depends on the applied deformation ratio η = λ
app
1 /λ

app
2 . By taking

into account the geometrical constraint l1 = l2, one can readily show that the deformation ratio

determines entirely the aspect ratio of the initial cell via the following relation

η =
λ
app
1

λ
app
2

=
L2

L1
. (7)

Here, η is an anisotropy parameter that leads to isotropic responses for η = 1 or anisotropic

otherwise.

Using the last definitions together with (5), we readily obtain the following relations for the

applied deformation

λ
app
2 =

√
ρ0
η ρ

, λ
app
1 = η λ

app
2 , (8)
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with ρ0 and ρ denoting the initial and final relative density. It is important to note that void

growth is achieved when detFapp > 1, which imposes the constraint (λ
app
1 )2 > η, (or equivalently

(λ
app
2 )2 > η−1).

Figure 13: Compression experiments and corresponding optical images for the isotropic and anisotropic M-Voronoi

along the longitudinal and transverse direction for ρ = 0.3. For all cases, snapshots are shown of the three relevant

geometries selected at three intermediate strains levels, denoted with (1), (2) and (3). The green lines indicate zones

of strong localization and fracturing of the intervoid ligaments. The in-plane dimensions of the undeformed specimens

are 100 × 100 mm2. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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We assess the effect of anisotropy by designing two anisotropic M-Voronoi with η = 2, 4 and

ρ = 0.3. In Fig. 13, we observe that the initial linear response of the anisotropic M-Voronoi

geometries in the longitudinal direction becomes stiffer with increasing η as compared to the the

corresponding transverse direction as well as the isotropic one (shown again here for completeness).

Subsequently, the anisotropic M-Voronoi exhibit buckling at lower stresses with increasing η in

both directions but maintain a hardening response at large strains, even though the hardening

slope tends to decrease with increasing η. Interestingly, one can observe that significant fracturing

occurs in the longitudinal direction but substantially less in the transverse direction which is rather

soft. We conclude this discussion by the most important observation in the context of this figure

which is that the isotropic response, although slightly more compliant in the initial linear regime,

leads to the larger buckling stress loads as well as overall the stiffest and with largest hardening

rate response throughout the deformation process.

5. Application

In this section, we take advantage of the M-Voronoi growth process over a variety of domains

(Fig. 2) to propose a novel modular assembly of the porous cells into macroscopic structures of

arbitrary shape (Fig. 14). As an example, we consider the logo of Ecole Polytechnique, which

involves an X-shape with triangular curved ends (Fig. 14a). The latter may be discretized in

arbitrary finite volume elements (FVE) (similar to the finite elements in numerical methods) of

triangular, trapezoidal and rectangular shape (Fig. 14b). In addition, each FVE may be attributed

a different relative density and be generated by applying a different deformation history (e.g.,

equi-biaxial, anisotropic biaxial, or shear plus biaxial, etc.). Once created, each FVE is assembled

numerically to reconstruct the original macroscopic X-shape geometry (Fig. 14c). We recall that

each FVE can be uniformly rescaled at will. The final X-shape is then transformed to STL format

and 3D-printed (Fig. 14d). We note that this modular assembly process is easily employed using

the M-Voronoi geometries and at any relative density desired spatially. The advantage of such an

assembly is that the FVEs have a versatile isotropic or anisotropic representative response with

their relative density as an input. This relative density may be further optimized by use of the

earlier homogenization-based methods proposed by Allaire (1992), allowing for a finite void volume

fraction per FVE. Of course, an RSA geometry may also be considered, however, in the context
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Figure 14: Assembly of individual M-Voronoi cells into a macroscopic geometry. (a) Ecole Polytechnique Logo. (b)

Finite Volume Element (FVE) discretization with arbitrary porosity and anisotropy. (c) Numerical creation and

assembly of the individual porous cells. (d) 3D-printed specimen.

of triangular or trapezoidal FVEs, the circles (and more generally the quadric objects) become

highly non-conforming near the sharp corners of the triangles limiting even further the relative

densities that can be reached. In turn, the E-Voronoi have the potential to be implemented in such

an assembly process (Mart́ınez et al., 2018) recalling nonetheless the weaker mechanical resilience

as compared to the M-Voronoi geometries at finite strains and buckling/fracture loads. One can

further envisage a more uniform transition between the FVE boundaries by applying smoothing

techniques (Mart́ınez et al., 2016; Kumar et al., 2020). Obviously, the present assembly method

is limited by the minimum 3D-printing feature capability, i.e., the minimum void size that can be

properly realized in practice.

6. Conclusions

In this study, we propose a versatile mechanically-grown morphogenesis method to obtain high-

to-low density isotropic and anisotropic porous and more generally composite materials, called

M-Voronoi. The method is based on a combined nonlinear elastic finite strain computational

and 3D-printing strategy. In order to achieve sufficient specimen quality, we propose an inter-

ruption program during the 3D-printing which consists in alternate additive manufacturing and

interruption time increments. The resulting porous specimens are then experimentally tested un-

der uniaxial compression. In particular, the newly proposed M-Voronoi materials exhibit a strong

hardening behavior under compressive loads as compared to a number of available voided and

cellular materials, which tend to exhibit either a peak stress and a plateau or only weak hardening
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for most of the deformation process before final densification. This hardening response is mainly a

consequence of three geometrical characteristics: (i) the randomness of the void geometries, (ii) the

non-uniformity of the intervoid ligaments and (iii) the smooth void geometry reducing efficiently

stress localization. In addition, the randomness of the M-Voronoi geometry makes these materials

less sensitive to imperfections and realization variations. Nevertheless, a more detailed study is

required along this direction perhaps including additional loading conditions such as tensile and

hydrostatic ones (Tankasala et al., 2017).

The versatility and generality of the morphogenesis method, which is numerical and is based

on solving a nonlinear elastic problem subjected to only Dirichlet boundary conditions, and un-

like more classical periodic cells, allows to grow uniformly such M-Voronoi geometries in arbitrary

shaped domains or as called in this study, finite volume elements (FVEs), (e.g. triangles, cir-

cles, trapezoids, rectangles, etc.). This allows for their easy subsequent assembly into complex

macroscopic geometries. A potential implication of such processes is the future use of well-known

(Allaire, 1992) as well as more recent (Wang and Sigmund, 2021) optimization techniques to de-

sign lightweight structures that behave optimally for a large number of loading states, since the

proposed materials can vary from isotropic to anisotropic at different regions in these structures.

On a different note, one could apply more complex non-shape-preserving Dirichlet boundary

conditions leading a non-trivial final domain shape. Such a process is beyond the scope of the

present study, however, the same design idea presented here is directly applicable to such a case.

Note, however, that such non-uniform Dirichlet boundary conditions may lead to boundary inter-

penetrations as well as non-uniform inclusion/void concentrations throughout the domain. Yet, it

may allow to reach a pre-designed domain shape and thus deserves further study in the future.

Finally, the method proposed here is directly applicable to three-dimensional geometries while

any type of composites may be created by simply replacing at the final stage the void phase with any

inclusion(s) type that may be required. Such a study is underway. Moreover, a machine learning

inverse approach (Kumar et al., 2020) could potentially be extended to the nonlinear response to

obtain a targeted family of M-Voronoi materials with “tunable” an-isotropy, since the latter allow

for a limitless number of geometries that may be achieved via complex applied mechanical loads.

We also note at this point that the void growth mechanism via incompressible nonlinear elasticity

may be directly applied to porous solids with or without connectivity and with moderate relative
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density in order to reach much lower relative densities (such as the spinodal geometries in Portela

et al. (2020) and Zerhouni et al. (2021)). Finally, a study of the M-Voronoi geometry using a

metallic material is necessary to study the enhancement of the mechanical properties in the latter

case. Such an analysis is left for future study.
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A. Relative density and porosity evolution

We discuss here the evolution of the porous volume fraction or equivalently of the relative

density under prescribed uniform displacement (Dirichlet only) boundary conditions. We recall

that the solid phase (matrix) is taken to be incompressible, and thus the volume of the cell changes

under large deformation, due to void growth only. Therefore, Fapp can be cast in any form (provided

of course that detFapp > 0 to satisfy material impenetrability), although the embedded voids

may grow or shrink depending on the magnitude of detFapp. For the voids to grow one needs

detFapp > 1 and the contrary case to shrink (0 < detFapp < 1). Denote next the volumes of the

matrix and voids in the reference (deformed) configuration to be Vm0 (Vm) and Vv0 (Vv), respectively.

Then, incompressibility in the matrix phase implies that

Vm = Vm0 (A.1)

while the total volumes in the reference and deformed configurations are given by

V0 = Vm0 + Vv0 , V = Vm + Vv. (A.2)

We note further that the deformed volume of the cell, V, is entirely defined in terms of the applied

deformation gradient Fapp by the relation

V = detFapp V0, (A.3)
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given that Fapp corresponds to the average deformation gradient in the cell (Hill, 1963).

Note further that the relative density in the reference, ρ0 and deformed, ρ, configurations for a

porous material are defined as

ρ0 =
ρ̂0
ρ̂m0

, ρ =
ρ̂

ρ̂m
. (A.4)

Here, ρ̂m0 and ρ̂m indicate the density of the matrix phase in the reference and deformed configura-

tions, respectively, and ρ̂0 and ρ̂ the density of the cell in the reference and deformed configurations,

respectively.

Moreover, in a porous material, the total mass in the cell, m, is equal to the mass of the matrix,

mm, i.e.,

m = ρ̂0 V0 = ρ̂V, mm = ρ̂m0 Vm0 = ρ̂m Vm. (A.5)

and thus from mass conservation we have

m = mm ρ̂0
ρ̂m0

=
Vm0
V0

= ρ0, ⇒ ρ̂

ρ̂m
=
Vm

V
= ρ. (A.6)

Using the last definitions together with relations (A.1) and (A.3), we readily get

Vm

V
=

1

detFapp

Vm0
V0

or ρ =
ρ0

detFapp
, (A.7)

which corresponds to equation (5) in the main text.

One may further define the void volume fraction in the reference, c0, and deformed configura-

tion, c, as

c0 =
Vv0
V0

=
V0 − Vm0
V0

= 1− ρ0, c =
Vv

V
=
V − Vm

V
= 1− ρ. (A.8)

Using the result (A.7), one readily gets

c = 1− 1− c0
detFapp

. (A.9)

It can be readily observed that the aforementioned relations are purely kinematic due to the

incompressibility of the matrix phase as well as the application of the Dirichlet-only boundary

conditions and consequently only Fapp controls the final porosity/relative density of the cell. In

the case of mixed Neumann–Dirichlet boundary conditions and incompressible matrix, still the void

growth is controlled by the average deformation gradient in the cell but that does not correspond
35



1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

20

40

60

80

100

det Fapp

c
 (

%
)

c0 = 50 % - Numerical

c0 = 10 % - Numerical

c0 = 20 % - Numerical

c0 = 20 % - Analytical

c0 = 30 % - Numerical

c0 = 30 % - Analytical

c0 = 40 % - Numerical

c0 = 40 % - Analytical

c0 = 50 % - Analytical

c0 = 10 % - Analytical

Figure 15: Evolution of porosity c = 1 − ρ as a function of the applied determinant of the deformation gradient, as

obtained by numerical simulations and the analytical expression (A.9).

exactly to the partially applied deformation gradient imposed via the displacement field in part of

the boundary.

In Fig. 15, we assess our numerical calculations by simulating RSA voided cells with differ-

ent initial porosities c0 applying equi-biaxial loads with detFapp > 1 and comparing the induced

numerical porosity with that obtained by the analytical expression (A.9). In this figure, we ob-

serve a nonlinear saturation type increase of the porosity with increasing detFapp. The numerical

simulation recovers to excellent accuracy the exact analytical result (A.9). This saturation type

response indicates that very large strains are, in general, necessary to reach very high porosities

(or very low relative densities). This, in turn, leads to severe mesh distortion. In order to avoid

numerical issues, a strategy consists in ceasing the simulation, extracting the geometry (but not

the stress and strain fields), remesh and restart the simulation from the lastly obtained geometry.

This allows for an efficient and very accurate resolution at very low relative densities.
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